
REVIEW
published: 24 April 2019

doi: 10.3389/fspas.2019.00024

Frontiers in Astronomy and Space Sciences | www.frontiersin.org 1 April 2019 | Volume 6 | Article 24

Edited by:

Mohamed Chabab,

Cadi Ayyad University, Morocco

Reviewed by:

Alexandre Creusot,

Paris Diderot University, France

Annarita Margiotta,

University of Bologna, Italy

Damien Dornic,

UMR7346 Centre de Physique des

Particules de Marseille (CPPM),

France

*Correspondence:

The Pierre Auger Collaboration

auger_spokespersons@fnal.gov

†Author names and affiliations appear

at the Appendix

Specialty section:

This article was submitted to

High-Energy and Astroparticle

Physics,

a section of the journal

Frontiers in Astronomy and Space

Sciences

Received: 15 January 2019

Accepted: 22 March 2019

Published: 24 April 2019

Citation:

Kampert K-H, Alejandro Mostafa M,

Zas E and The Pierre Auger

Collaboration (2019) Multi-Messenger

Physics With the Pierre Auger

Observatory.

Front. Astron. Space Sci. 6:24.

doi: 10.3389/fspas.2019.00024

Multi-Messenger Physics With the
Pierre Auger Observatory

Karl-Heinz Kampert 1, Miguel Alejandro Mostafa 2,

Enrique Zas 3 and The Pierre Auger Collaboration 4*†

1University of Wuppertal, Wuppertal, Germany, 2 Pennsylvania State University, University Park, State College, PA,

United States, 3University of Santiago de Compostela, Santiago de Compostela, Spain, 4 Pierre Auger Observatory,

Malargüe, Argentina

An overview of the multi-messenger capabilities of the Pierre Auger Observatory

is presented. The techniques and performance of searching for Ultra-High Energy

neutrinos, photons and neutrons are described. Some of the most relevant results

are reviewed, such as stringent upper bounds that were placed to a flux of diffuse

cosmogenic neutrinos and photons, bounds placed on neutrinos emitted from compact

binary mergers that were detected by LIGO and Virgo during their first and second

observing runs, as well as searches for high energy photons and neutrons from the

Galactic center that constrain the properties of the putative Galactic PeVatron, observed

by the H.E.S.S. collaboration. The observation of directional correlations between

ultra-high energy cosmic rays and either high energy astrophysical neutrinos or specific

source populations, weighted by their electromagnetic radiation, are also discussed.

They constitute additional multi-messenger approaches aimed at identifying the sources

of high energy cosmic rays.

Keywords: UHECR, high energy neutrinos, high energy photons, high energy neutrons, multi-messenger

astrophysics, compact binary mergers

1. INTRODUCTION

With the discovery of neutrinos from SN1987A (Bionta et al., 1987; Hirata et al., 1987) arriving
4 h before the light detected by conventional telescopes it became clear that there was a lot
to learn from examining any type of particles and radiation coming from astrophysical objects,
and that neutrino detectors could give early alerts that would facilitate the observation of the
evolution of such transients from the earliest stages. Besides the different wavelengths of traditional
astronomy, neutrinos, cosmic rays, very high energy gamma rays, and gravitational waves provide
complementary information to study the most energetic objects of the Universe. While the
SN1987A event might be said to mark the onset of multi-messenger astronomy, the term was
only introduced in the late 1990s (see e.g., Barwick, 2000; Halzen, 2003), and the final boost to
the field took place quite recently with the emergence of both neutrino (Aartsen et al., 2014)
and gravitational-wave astronomy (Abbott et al., 2016b). Indeed the discovery of gravitational
waves from the merging of a neutron star binary system by LIGO and Virgo (Abbott et al.,
2017a) triggered a spectacular series of observations in the full electromagnetic spectrum from
radio to the very high energy gamma rays (Abbott et al., 2017c) and searches for neutrino
fluxes with ANTARES, IceCube, and the Pierre Auger Observatory (Albert et al., 2017a). The
combined effort marks an unprecedented leap forward in astrophysics revealing many aspects of
the Gamma-Ray Burst (GRB) induced by the merger and its subsequent kilonova. More recently
an energetic neutrino candidate was detected in IceCube in coincidence with the powerful blazar
TXS-0506+056 during a flare in the very-high-energy gamma-ray band, incompatible with a chance
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correlation at the 3σ -level (Aartsen et al., 2018a). After scanning
archival data, possible evidence for enhanced neutrino emission
(quantified at 3.5σ -level) was also found from this direction,
during an independent 5-month period between September
2014 and March 2015 (Aartsen et al., 2018b). It is now quite
clear that there is much potential in the combined analysis of
data from different experiments and multi-messenger astronomy
has excellent prospects of making many more significant
contributions in the near future.

The Pierre Auger Observatory is the largest and most precise
detector of ultra-high energy air showers, such as those regularly
induced by cosmic rays. While cosmic rays are expected to
have curved trajectories in their path to Earth and thus lose
time correlation with light emission, at the highest energies they
could still keep directional information on the as-yet unidentified
sources where they are produced. The study of the arrival
directions of these particles has revealed deviations from isotropy
(Aab et al., 2017d, 2018b) that, combined with other particle
searches, could be of relevance for multi-messenger astronomy.
Indeed spatial correlations have been searched for between the
arrival directions of the highest energy cosmic rays and classes
of objects that have been proposed as sources in the very
high-energy regime such as Active Galactic Nuclei (AGN) and
Starburst Galaxies (SBG) (Aab et al., 2018a). Notably, it has
also been shown that it is possible to detect neutral particles of
sufficiently high energy with the Pierre Auger Observatory. By
looking at the depth development of the showers, it is relatively
easy to identify neutrinos which interact in the lower layers of the
atmosphere. Photons can also be discerned from the background
of cosmic rays because the produced showers have a reduced
number of muons and they develop deeper than cosmic rays
in the atmosphere. Finally, there is no known possibility to
separate neutron-induced showers from the charged cosmic rays
on the basis of the shower development but, since neutrons
are directional, it is in principle possible to identify sources of
nearby neutrons by looking at an excess from given directions
or to exploit potential time and directional correlations. This
procedure could also be applied to any type of neutral particles
that induce a shower in the atmosphere such as photons.

In this article, we review the capability of the Observatory to
search for signals of such particles and discuss the contributions
that have been made.

2. THE PIERRE AUGER OBSERVATORY

The Pierre Auger Observatory is designed to detect extensive
air showers produced by primary cosmic rays above 0.1 EeV. It
is located near the city of Malargüe, Argentina, at a latitude of
35.2◦S, a longitude of 69.2◦W and at an approximate altitude
of 1400m above sea level, or equivalently an atmospheric depth
Xground = 880 g cm−2. It comprises a surface detector (SD) array
of 1,660 water-Cherenkov stations deployed over a triangular
grid of 1.5 km spacing and a system of 27 telescopes grouped in
four sites forming the fluorescence detector (FD). The telescopes
are erected at the periphery of the Observatory to observe the
atmosphere over the full area of 3,000 km2 covered by the SD

array. The SD stations sample the density of the secondary
particles of the air shower at the ground and are sensitive to
the electromagnetic, muonic and hadronic components. The
FD observes the longitudinal development of the air shower
by detecting the fluorescence and Cherenkov light emitted
during the passage of the secondary particles of the shower
in the atmosphere. Unlike the SD, the fluorescence telescopes
are operated only during clear and moonless nights, for an
average duty cycle of about 14%. The hybrid feature of the Auger
Observatory combining these two well-established techniques
has proved to be extremely rewarding in making it the most
precise instrument to reconstruct the energy, mass, and direction
of Ultra-High Energy Cosmic Rays (UHECRs). Details about the
different detector components and their performances can be
found in Aab et al. (2015c) and Abraham et al. (2010).

Besides its general hybrid capabilities, a feature that makes the
Pierre Auger Observatory a very versatile and powerful multi-
messenger observatory is the specific design of the SD stations.
They are constructed as cylinders of 3.6 m diameter and 1.2
m height filled with 12 tones of purified water, each. Charged
particles entering a station induce emission of Cherenkov light
which is reflected at the walls by a diffusive Tyvek liner, and
collected by three 9-inch photomultiplier tubes (PMT) at the
top surface and in optical contact with the water. The PMT
signals are sampled by flash analog-to-digital converters (FADC)
with a time resolution of 25 ns (Abraham et al., 2010)1. This
provides good discrimination of electrons and muons entering
the detector station from the top, a feature which is important
to identify muon-poor air showers induced by photons, not only
with the FD but also with the SD. Moreover, the detector stations
also provide a large cross section for inclined and up-going air
showers, a feature that is of key-importance for the detection
of neutrino-induced air showers. Both of these aspects will be
discussed in more detail below.

The modular structure of the surface detector array and
fluorescence telescopes allowed the data taking to start in 2004 in
a partial configuration. In 2008 the detector was completed and
since then data have been taken, practically without interruption.
Once installed, the local stations work practically without
external intervention. There are two types of trigger conditions:
a local trigger at the level of an individual station (second
order or T2 trigger), and a global trigger (third order or T3
trigger) to register events. The T2 trigger condition is satisfied
when either the signal exceeds the equivalent of 3.2 Vertical
Equivalent Muons (VEM) in at least one time bin of the signal
trace in the FADC—the so-called “threshold trigger”—or when
it exceeds a much lower threshold (0.2 VEM) in at least 13
bins within a 3 µs time window (i.e., 120 bins)—the so-called
“Time-over-threshold (ToT) trigger.” The ToT condition was
designed to trigger on signals broad in time, characteristic of
the electromagnetic component dominant over the first 1,000 g
cm−2 of the extensive air shower, and it is crucial for neutrino
identification as explained below. The data acquisition system
receives the local T2 triggers and builds a global T3 trigger
requiring a relatively compact configuration of at least three

1The recorded sequence of signals every 25 ns is referred to as the signal trace.
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local stations compatible in time, each satisfying the ToT trigger,
or four triggered stations within a time window slightly larger
than light travel time with any type of T2 trigger (Aab et al.,
2015c). With the completed array, the global T3 trigger rate
is about two events per minute, one third being showers with
energies above 3× 1017 eV.

3. NEUTRINOS

Neutrinos can travel in straight paths from the confines
of the Universe, are capable of going through large matter
depths without absorption, and are excellent messengers from
extragalactic sources, where protons or nuclei are thought to be
accelerated to high energies. Neutrinos are also produced from
cosmic-ray interactions with the cosmic microwave background.
Besides pointing to the position of their sources, they can also
provide valuable information concerning hadronic acceleration
processes, composition, the local environment at the sources, and
their evolution with redshift (Gaisser et al., 1995).

The idea of using inclined showers to search for neutrino
interactions is old (Berezinsky and Smirnov, 1975), and the
large potential of the Pierre Auger Observatory for neutrino
detection was already recognized in its design stages (Capelle
et al., 1998). Inclined showers induced by cosmic rays were
observed in Haverah Park (Hillas et al., 1969), in the early days of
extensive air shower arrays. It was at the beginning of the 2000s
when the muon patterns of the showers at ground level were
sufficiently understood to allow shower reconstruction (Ave et al.,
2000) (see also Aab et al., 2014e). These showers traverse large
atmospheric depths, and their electromagnetic component gets
almost completely absorbed before the shower particles reach
ground level. As a result, for zenith angles exceeding ∼ 60◦, the
shower front reaching the SD detector stations consists mainly
of muons that typically have energies between 20 and 200 GeV
and travel tens of km without decaying. These muons are little
affected by interactions, except for continuous energy loss and
deflections in the Earth’s magnetic field (Ave et al., 2000). As their
radius of curvature is a few thousands km, they do not deviate
much from their initial trajectories, keeping the timing of the
shower front sharp.

As opposed to cosmic rays, inclined neutrinos can interact
deep in the atmosphere because their interaction length exceeds
the matter depth of the atmosphere for any zenith angle, θ . The
resulting “young” showers are rich in electrons and photons at
ground level. These showers induce signals typically spread over
much wider time intervals than cosmic rays with the same θ

because of multiple scattering of the electrons and photons in
the shower front. The broader digitized signal traces recorded at
the particle detectors of the SD array resemble those produced
by vertical air showers and it is thus relatively easy to single them
out from the sharply arriving fronts produced by inclined protons
or nuclei. Tau neutrinos interact in the Earth just below the
surface and produce tau leptons that escape into the atmosphere,
decaying in flight and producing up-going air showers (Letessier-
Selvon, 2001; Fargion, 2002). For neutrino energies exceeding 100
PeV, the combined conversion and exit probability is maximal

for nearly horizontal (“Earth-skimming”) directions that exit
with an elevation angle between 1◦ and 2◦ above the horizontal
direction (Zas, 2005). These showers develop close and almost
parallel to the ground. As the shower particles, particularly
electrons and photons, spread laterally they can reach the SD
stations, inducing characteristic signals which are also easily
identified because of their broader time spread.

3.1. Selection and Identification
The event selection, the neutrino identification, and the exposure
calculations are performed separately for Earth-skimming (ES)
and down-going (DG) showers (Aab et al., 2015a). To select
ES showers, all triggered events involving at least three stations
are considered. The ellipsoidal signal pattern at the ground is
required to have a large eccentricity (characterized by a ratio
of major and minor axes greater than 5), and the direction of
the major axis indicates the azimuthal angle of the event. The
apparent speed of the signal at the ground, measured for each
pair of stations and averaged over all of the pairs, must be in the
interval [0.967, 1.034]c 2, and the r.m.s. spread must be less than
0.267c 3. For the DG selection (Abreu et al., 2011a) a minimum of
four triggered stations is required to reduce noise from random
triggers, and two zenith angle groups are made:“Low” (DGL) and
“High” (DGH), respectively, for 60◦ < θ < 75◦ and 75◦ < θ <

90◦. The selection of DGL showers is just made requiring the
reconstructed zenith angle to be in the 58.5◦-76.5◦ range allowing
for uncertainties. It is obtained fitting a plane to the positions of
the triggered stations and the start time of the signals. For the
selection of DGH showers, the reconstructed θ must exceed 75◦,
the apparent average speed of the signal at the ground must be
smaller than 1.044c 4, its spread must be smaller than 0.08c, and
the eccentricity must exceed a value of 3.

The ES (DG) neutrino identification has been optimized
using extensive shower simulations for different energies, arrival
directions, decay (interaction) depths, and impact parameters,
with standard software such as AIRES Sciutto (1999) and
CORSIKA Heck et al. (2000) and including the SD response of
the individual detector stations using specific software (Argiro
et al., 2007; Aab et al., 2015c) based on GEANT4 (Agostinelli
et al., 2003). A single variable has been chosen for the
identification procedure in both searches. Its distribution for
neutrino simulations is compared to that of regular showers
obtained from a small sample of the data assumed to be
exclusively cosmic rays. To select neutrino candidates, a cut
is made on this variable at a value that would just yield one
cosmic-ray in 50 years according to the extrapolated background
distribution. For instance, in the ES case, this variable is the
average area over peak (AoP) value of the signal traces of each
event. The area is the integrated charge of the signal trace and
the peak is its maximum value, both normalized to one for
vertical throughgoing muons used for on-line calibration. The
cut obtained is AoP > 1.83, ensuring sufficient time spread
in the signal to reject cosmic-ray showers (Aab et al., 2015a).

2Actual values used are [0.29, 0.31] m ns−1.
30.08 m ns−1.
40.313 m ns−1.
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Events with just three stations are further required to have
AoP exceeding 1.4. For DG showers, a Fisher discriminant
approach combines several variables based on the AoP of a
few selected stations. For the DGH case, the multivariate Fisher
method (Fisher, 1936) uses nine variables obtained with the AoP
values of the four earliest stations and a tenth variable accounting
for the asymmetry in the time distribution of the earliest and
latest stations of the event. For the DGL case, the Fisher variable
combines five or six variables obtained from the AoP of the four
or five stations closest to the shower core and their product. For
DGL showers, 75% of the triggers are also required to be of special
“ToT” kind (Aab et al., 2015a). For optimization purposes of DG
neutrinos, further subdivisions have beenmade using the number
of triggered stations for the DGH set and the reconstructed θ for
the DGL set. The condition for a neutrino candidate is slightly
different in each subset.

3.2. Efficiency and Aperture
The effective aperture of the detector (aperture from now on)
is defined so that when it is multiplied by the neutrino spectral
flux, it gives the energy distribution of the detection rate. For
point sources in the DG case, this aperture is simply calculated
integrating the interaction and detection probabilities over the
SD area. Three separate apertures are calculated according to
interaction type and neutrino flavor: (1) neutral current for all
flavors and charged current muon neutrinos, where the shower is
produced by the nuclear debris (typically carrying about 20% of
the neutrino energy); (2) charged current for electron neutrinos
where all the energy is converted to the air shower (80% induced
by the electron and the rest by nuclear fragments); (3) charged
current for tau neutrinos where the shower can be produced
either by the nuclear debris (20% of the energy) or, deeper in
the atmosphere, by the tau decay (80% of the energy). The
three apertures can be added under the assumption of equal
fluxes for each neutrino flavor, as expected because of neutrino
flavor oscillations in the characteristic long baselines provided by
extragalactic distances to plausible sources (Learned and Pakvasa,
1995; Athar et al., 2000).

On the other hand, only tau neutrinos can be efficiently
detected in the ES mode. When muon neutrinos convert to high
energy muons that exit the Earth, practically all of them also
exit the atmosphere without decaying because of their longer
lifetime and when electron neutrinos convert to electrons the
shower develops rapidly in the Earth before exiting. In the ES
case, the aperture is calculated as an integral over the Earth’s area
(transverse to the flux direction), weighted by the probability of a
tau neutrino interacting and producing a tau which subsequently
exits the Earth, decays in the atmosphere and induces a shower
that triggers the SD and is effectively selected and identified. This
is done in two steps. The differential probability of a tau lepton of
given energy exiting the Earth has been calculated as a function
of θ using simulations of tau neutrino interactions in rock that
include regeneration (Abreu et al., 2013). The tau-exit probability
must be integrated over decay distance weighted by the survival
probability, the decay probability per unit distance and the
probability of detection with the SD. The detection probability

for both DG and ES showers includes trigger, selection and
identification and it is also obtained from the simulations.

The exit and detection probabilities in the aperture calculation
depend strongly on θ . A given source located at right ascension
α, and declination δ in equatorial coordinates, is observed with a
zenith angle that oscillates with time according to:

cos θ(t) = sin λ sin δ + cos λ cos δ sin(2π t/T − α). (1)

Here λ = −35.2◦ is the latitude of the detector, t is the sidereal
time, and T the duration of a sidereal day. Naturally, the aperture
is strongly dependent on source position and time. At any given
instant the field of view of the Observatory for each of the ES,
DGH and DGL channels is limited to the bands corresponding to
the zenith angle range of the channel, as displayed in Figures 2

(left), 3 for specific examples discussed below.
Typically, the search for neutrinos from point sources is

performed on a pre-selected time interval chosen to match
plausible emission times according to theoretical models
describing the mechanisms acting within the sources. The
expected event rate at the detector is calculated by integrating
the aperture over the neutrino flux and, if no candidate events
are found in a given time interval, a 90% C.L. upper limit to the
flux normalization is obtained matching the expected number
of detected events over the time interval to 2.39 (Feldman and
Cousins, 1998). An assumption about the energy spectrum of the
flux has to be made. It is customary to again assume a canonical
E−2

ν . In this case, 90% of the detected events at the Observatory
are between 100 PeV and 25 EeV (Aab et al., 2015a). The most
effective channel for neutrino detection is ES because the target
mass provided by the Earth is large compared to the atmosphere
and also because the threshold energy is low. For the ES channel
algorithms have been found to identify events with just three
triggered stations. It has been shown that Earth-skimming events
can only be observed for zenith angles between 90◦ and 95◦,
corresponding to declination angles −55◦ < δ < 60◦. The
exposure is maximal for δ ≃ −53◦ and δ ≃ 55◦. The apertures
provided by theDGH andDGL are progressively smaller because,
as the zenith angle decreases, the atmosphere offers less target
mass in which the neutrinos can interact and be identified. As
the search is effectively performed only for θ between 60◦ and
95◦, the field of view of the Observatory for neutrinos is limited
to equatorial declinations between∼ −85◦ and∼ 60◦.

When the pre-selected time interval is short, much less than a
day, the aperture can be very different depending on the source
position and the observation time. The instantaneous aperture
reaches its maximum if the source position is just below the
horizon with θ between 90◦ and 95◦. While the source is in the ES
field of view, the instantaneous aperture for neutrinos of energies
above 100 PeV exceeds that of other neutrino telescopes. Also,
depending on declination, the source can be inside the ES field of
view for different lengths of time. For δ = 0◦ there are two transit
periods per day into the ES field of view of about 25 min each. For
the optimal declination positions (δ ≃ −53◦ and δ ≃ 55◦), near
the extremes in declination of the ES band, the total transit time
per day is more than 4 h, as can be seen in Figures 2 (left), 3.
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FIGURE 1 | (Left) Distribution of the Fisher variable for the DGH search (see text) for simulations compared to a small fraction of the data and assumed to be due to

cosmic rays. The cut is made at a value of the Fisher variable of 3.28. (Right) Limits to the point source fluxes as a function of equatorial declination obtained from the

non-observation of ES and DGH neutrino candidates up to March 31st 2017 (from Zas, 2018).

The selection and identification procedures have been applied
to the data registered by the Observatory. As no neutrino
candidates have been found, upper limits to the ultra-high
energy (UHE) neutrino fluxes have been obtained. Upper
limits to the diffuse flux with important implications for some
models of UHECR production were first obtained in the ES
channel (Abraham et al., 2008, 2010) and subsequently extended
to include the DGH (Abreu et al., 2011b) and the DGL (Aab
et al., 2015a) channels. Upper limits to point source fluxes were
obtained for the ES and DGH channels (Abreu et al., 2012).
Upper limits on neutrino fluxes from point sources are shown in
Figure 1 (right) as a function of declination for the search period
up to 31 March 2017. Articles with further updates and details on
both diffuse and point source searches are to appear soon.

3.3. Correlated Searches of Neutrinos
The detection of gravitational waves from the merging of
binary systems has marked the birth of gravitational wave
astronomy. The first signals from the merging of two Black
Hole (BH) systems GW150914 (Abbott et al., 2016b) and
GW151226 (Abbott et al., 2016a) were reported in 2016. The
luminosity distances of the two events were deduced to be
410+160

−180 and 440+180
−190 Mpc and the radiated energies 3.0+0.5

−0.5 and

1.0+0.1
−0.2 solar masses, respectively. They triggered the search for

the emission of electromagnetic radiation and neutrinos (Aab
et al., 2016d; Adrian-Martinez et al., 2016), even though the
black hole systems are not expected to emit any other type
of radiation unless matter debris and magnetic fields can be
found in their neighborhood, possibly remaining from the BH
progenitors (Kotera and Silk, 2016; Murase et al., 2016).

Neutrinos were searched for with the Pierre Auger
Observatory in two periods of time: ±500 s around the UTC
times at which the mergers were observed and 1 day following
their occurrence (Aab et al., 2016d). These intervals were
motivated by the association of the merging of compact objects

to Gamma-Ray Bursts (GRBs) (Mészáros, 2006; Moharana et al.,
2016; Perna et al., 2016). Neutrinos have been postulated to be
produced by accelerated cosmic rays interacting with the GRB
photons in the prompt phase and with the lower energy photons
of the afterglow. The 1,000 s time window is an upper bound
of the duration of the prompt GRB phase (Albert et al., 2017b;
Kimura et al., 2017) while the 1-day window is a conservative
bound of the duration of the afterglow (Mészáros, 2006).

No neutrino candidates were observed in coincidence with
these events in either of the time windows. Assuming a flux
kGWE−2

ν , where kGW is a normalization constant, 90% C.L. limits
on the neutrino emission in the EeV from these events were
reported as fluence limits. The spectral fluence is defined as
E2νφ(Eν)1t. Here φ is the spectral flux and 1t is the chosen
time interval over which the emission is assumed to take place
and during which it is also assumed to be constant. In these
conditions the spectral fluence is related to the total energy
emitted in neutrinos. For the assumed spectrum it is trivial
to convert the spectral fluence to an upper limit for the total
energy emitted in neutrinos in a given energy band, which can
be compared to the energy radiated in gravitational waves. The
reported limits were obtained for a 1-day period. Due to the
poor localization of these events the upper limits, shown in
Figure 2 (left) for GW150914, are reported as a function of
declination. A similar limit was obtained for GW151226 since the
distances to both mergers are quite similar. The most restrictive
limit assuming emission during a single day for GW150914
(GW151226) is obtained for δ = −53◦ (δ = 55◦) and
would correspond to a total energy radiated in UHE neutrinos
smaller than 7.7 × 1053 (9.7 × 1053) erg when integrated from
100 PeV to 25 EeV. This corresponds to 14.3% (44.1%) of
the radiated energy in gravitational waves. The limits found by
IceCube and ANTARES apply to lower neutrino energies and
give more restrictive limits on the total energy radiated in these
neutrinos (Adrian-Martinez et al., 2016).
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FIGURE 2 | (Left) Field of view of the Observatory exemplified at the instant of detection of the black hole coalescence event GW150914 by Advanced LIGO

(LIGO-Collaboration, 2018). The band limits from top to bottom correspond to lines of zenith angles 95◦, 90◦, 75◦, and 60◦, used to separate the neutrino search into

ES, DGH, and DGL channels. The black contours give the 90% C.L. region of the reconstructed position of the BH merger as obtained by LIGO observations. (Right)

Upper limit at 90% C.L. to the neutrino spectral fluence in the 100 PeV to 25 EeV range as a function of declination (see text), for the detection of black hole merger

GW150914. The blue band is the 90% C.L. of the reconstructed source declination, illustrating the limited precision level achieved using just detections at two LIGO

sites.

Models have been proposed where black hole mergers
accelerate UHECR (Kotera and Silk, 2016), and the energy budget
of these collapsing events could account for all of the UHECR
with a modest fraction of the gravitational wave energy (of order
3%) going to UHECR acceleration. Assuming that a similar
fraction goes into UHE neutrinos, about 0.5 events could have
been expected at the Observatory in coincidence with GW150914
in the most optimistic scenario. The upper limits were obtained
averaging the instantaneous aperture over a day. If the emission
time was shorter than 1 day, more stringent limits would be
obtained provided the source was in the neutrino field of view
during the neutrino emission, especially if it was in the ES
field of view. Due to the poor localization of both events, it is
not possible to know if the events were in the neutrino field
of view at the detection time. Given the 90% C.L. contour of
GW151226 (GW150917) the overlap with the field of view of the
neutrino search is 68.9% (13%) for a time window of 1,000 s.
The overlap over a whole sidereal day is 100% in both cases.
The detection of black hole mergers closer to us and with more
directional precision could provide more stringent constraints
for such models.

The observation of a neutron star merger GW170817 by
the LIGO-Virgo collaboration (Abbott et al., 2017b) less than
two seconds before the short GRB 170817A detected by Fermi-
LAT (Goldstein et al., 2017; Savchenko et al., 2017) from a
coincident direction, has had outstanding implications. The
successful alert systems triggered observations and detection
in practically all bands of the electromagnetic spectrum in
an unprecedented way, marking the onset of a new era of
Multimessenger Astronomy (Abbott et al., 2017c). Early optical
observations allowed a precise localization slightly off-centered
in the galaxy NGC 4993 at equatorial coordinates α(J2000.0) =
13h09m48s, δ(J2000.0) = −23◦22′53.′′343 (Coulter et al., 2017).

FIGURE 3 | Field of view of the Observatory in Earth-skimming and

down-going channels at the instant of the detection of neutron star merger

GW170817. The small red contour marks the event localization obtained by

the Ligo-Virgo collaborations (LIGO-Collaboration, 2018) and the black cross

is the position of NGC4993, later correlated to the event by optical

telescopes (Coulter et al., 2017).

Searches for neutrino events were also performed at neutrino
telescopes and at the Pierre Auger Observatory (Albert et al.,
2017a). At the time of the GW detection, the source was located
at a zenith angle of 91.9◦ at the Observatory site, just below
the horizon and extremely close to the sweet-spot for Earth-
skimming neutrinos, see Figure 3. When considered in a time
interval of ±500 s about the detection (93.3◦ < θ < 90.4◦), the
EeV exposure is larger than that of dedicated neutrino telescopes
and provides the most stringent upper limit to the neutrino
fluence at 90% C.L. in the 100 PeV to 25 EeV interval (Albert
et al., 2017a), complementary to IceCube and ANTARES, as
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FIGURE 4 | Upper limits at 90% C.L. on the neutrino spectral fluence from

GW170817 for a 1,000 s period centered at (14 day after) the time of the event

in the top (bottom) panel. The bounds in the top panel are compared to

predictions of models of prompt and extended emission (EE) (Kimura et al.,

2017) in the case of exact alignment of the line of sight to the rotation axis and

for selected off-axis viewing angles. The bounds obtained for a 14-day period

on the bottom panel are compared to models of longer lived emission (Fang

and Metzger, 2017). All models have been scaled to 40 Mpc, the distance to

the host galaxy NGC 4993 (Modified from Albert et al., 2017a).

illustrated in Figure 4. The analysis was also made for a longer
time window of 14 days matching predictions from longer-lived
emission processes (Gao et al., 2013; Metzger, 2017) and also
displayed in Figure 4. Neutrino bounds obtained with the Pierre
Auger Observatory and other neutrino telescopes are within
the range predicted in some models of GRB from neutron star
mergers. IceCube bounds allowed constraints to be placed on the
orientation angle relative to the jet axis (assumed to be coincident
to the rotation axis) for one of the most optimistic models.

Acceleration of hadrons in astrophysical objects inevitably
leads to photon and neutrino production with similar energy
fluences. On September 17th of 2017, a 290 TeV neutrino
was detected at the IceCube telescope (Aartsen et al., 2017) in
Antarctica and subsequent correlated gamma-ray observations
pointed for the first time to a powerful blazar in a flaring state,
TXS 0506+056, as a candidate source of the neutrino (Aartsen
et al., 2018a). This result was further supported by a neutrino
burst from the same direction of the sky obtained in a time
window of about 158 days when searching for time correlations
from the same direction (Aartsen et al., 2018b). A search for
possible coincident signals at the Auger Observatory was also
performed when the results were made public. This source is 21%

of the sidereal day in the field of view of the neutrino search but
it was not in the field of view at the exact time of the neutrino
detection. No neutrinos were found (Alvarez Muñiz, 2018). The
details of this search and the bounds obtained are to be reported
in a separate article.

4. PHOTONS

4.1. Photon Identification
Ultra-high energy (UHE) photons are among the possible
particles contributing to the flux of cosmic rays and may arise
from a number of processes. Firstly, UHE photons are expected
from the GZK-process just like UHE neutrinos and can be used
to probe the parameter space of UHECR sources. Secondly,
they may be produced by hadronic interactions of cosmic
rays within the sources or within their local environment. In
these cases, the photons are produced on average with around
10% of the energy of the primary incident proton. Thirdly, a
large flux of UHE photons has been predicted in top-down
models with UHECR originating from the decay of supermassive
particles such as topological defects or Super Heavy Dark
Matter (SHDM) particles (see e.g., Bhattacharjee and Sigl, 2000;
Aloisio et al., 2015).

As opposed to neutrinos, photons undergo interactions
with the extragalactic background light (EBL) inducing
electromagnetic cascades. This process makes photons sensitive
to the extragalactic environment (e.g., EBL and magnetic fields)
but it also limits the volume from which EeV photons may be
detected. It is small compared to the GZK-sphere, but large
enough to encompass the Milky Way, the Local Group of
galaxies, and possibly Centaurus A, given an attenuation length
of about 4.5 Mpc at EeV energies (De Angelis et al., 2013). The
secondary electrons and positrons created by pair production in
the photon fields can again interact with background photons
via inverse-Compton scattering, resulting in an electromagnetic
cascade that ends at GeV-TeV energies. Comparing these
expected diffuse GeV-TeV fluxes measured with instruments
sensitive in this energy range provides another important
cross-link to γ -astronomy (see e.g., Alves Batista et al., 2016).

The search for UHE photon primaries is based on the
different development and particle content of electromagnetic
and hadronic air showers. The induced electromagnetic cascades
develop slower than hadronic ones so that the shower maximum
Xmax is reached closer to the ground. Proton and photon
simulated showers have average Xmax values that differ by
about 200 g cm−2 in the EeV energy range. This difference is
enhanced at energies above 10 EeV because of the Landau-
Pomeranchuk-Migdal (LPM) effect (Landau and Pomeranchuk,
1953; Migdal, 1956). Above 50 EeV, photons also have a
non-negligible probability to convert in the geomagnetic field
(Erber, 1966; McBreen and Lambert, 1981; Homola et al., 2007)
producing a bunch of low-energy electromagnetic particles,
called “pre-shower”, entering the atmosphere. The Xmax of the
pre-showered cascades is smaller than for non-converted ones
and the separation between the average Xmax for photons and
proton correspondingly reduced. The fluorescence detector (FD)
with its high resolution of about 15 g cm−2 and systematic
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uncertainties of less than about 8 g cm−2 for Xmax (Aab et al.,
2014c; Bellido, 2018) is an ideal instrument to discriminate
photon- from hadron-induced air showers with high sensitivity
even in single events. Thus the FD is able to provide strong
constraints on the photon fraction of UHECR.

It is also possible to search for photon showers using the
SD because the shower development and nature of the primary
cosmic ray affect the content and the shape of the distribution
of particles at the ground as a function of the distance from
the shower axis (Lateral Distribution Function, LDF). Photon-
induced showers generally are expected to have a steeper LDF
compared to hadron primaries because of the sub-dominant role
played by the flatter muonic component. The high-energy effects
(LPM and pre-showering) affect the average muon content of
air showers by typically less than 20–50% dependent on zenith
angle, which is small compared to the factor 5–8 difference
in muons with regards to hadronic showers (Homola et al.,
2007; Risse and Homola, 2007). However, the different stage of
shower development at the ground (relative to Xmax) leads to a
modification of the observed LDF. Given the steeper LDF and
the muon-driven SD triggers, the footprint at the ground, and
consequently the number of triggered stations, Nstat, is typically
smaller for electromagnetic showers (Abreu et al., 2011b). These
features can be combined into a single observable Sb, that
discriminates the photon- and hadron-induced air showers (Aab
et al., 2016b). Discrimination on a shower by shower basis is
less efficient compared to the FD, but given the much larger
statistics of the SD, strong constraints on the photon fluxes
can be provided. For hybrid observations, the discriminating
observables Xmax, Sb, and Nstat are injected into a Boosted
Decision Tree (BDT) algorithm that takes into account also
the energy and angular dependencies of the discriminating
observables. To identify photons, a cut is defined at the median of
the BDT response distribution for simulated photons, as depicted
in Figure 5 (left). We note that the discrepancy between the data
and the proton simulations is in agreement with the current
experimental indications of a composition varying from light to
heavier in the EeV range (Aab et al., 2014d) and with the muon
deficit observed in simulations with respect to the Auger data
(Aab et al., 2015b, 2016b). Applying the cut in this conservative
way, the signal efficiency remains constant independently of the
composition and hadronic model assumptions. Events having a
BDT response larger than the median cut are selected as “photon
candidates”. This yields a background contamination of∼ 0.14%
for proton showers using QGSJET-II-04. This background level
overestimates the one expected in data because the composition
is generally heavier than that of pure protons and because the
interaction models underestimate the muon number in EAS,
making the showers look more photon-like. If the multivariate
analysis is performed with a mixture of 50% proton and 50% iron
as input to the training phase, the background contamination
reduces to ∼ 0.04% with the main contribution coming from
the smaller values of the simulated Xmax. At present, such
probabilities are to be considered systematic uncertainty to the
background of potential photon candidates, i.e., such background
events would dilute the photon limits.

4.2. Photon Searches
Figure 5 (right) shows, as a result, the upper limits on the integral
photon flux derived from 9 years (Jan. 2005–Dec. 2013) of hybrid
and SD data compared to results from other experiments (Aab
et al., 2017e). Eight candidates were found in the first two
energy intervals. These events are close to the applied photon
cut and detailed simulations of hadronic showers will need to
be performed to judge the probability that they are caused by
UHECR rather than by photons. For now, they are conservatively
considered background rather than signal so that the upper
limits of the first two energy bins become less stringent. The
differential flux limit between 10 and 30 EeV is found to be 6.80 ·
10−11 GeV cm−2 s−1 sr−1 at 90%C.L. Some top-down scenarios
proposed to explain the origin of trans-GZK cosmic rays (dashed
lines) are illustrated and rejected by previous bounds on the
photon flux. A recent super-heavy dark matter proposal (SHDM
II) developed in the context of an inflationary theory is shown
as a long-dashed line (Aloisio et al., 2015). Constraints on the
lifetime-and-mass parameter space of SHDM particle will be
imposed by current and future limits on the photon flux, as
obtained for example in Kalashev and Kuznetsov (2016).

A prime interest in the search for photons is to identify the first
UHE photon point sources or—in case of non-observations—
to provide relevant upper limits thereby constraining the source
characteristics. As already mentioned, the horizon is limited to
only a few Mpc which reaches out to CenA but not much
farther (Aab et al., 2017a). If the energy spectra of TeV γ sources
measured by atmospheric Cherenkov telescopes (Hinton and
Hofmann, 2009) extend to EeV energies, it is plausible that
photons and neutrons from these sources are detectable also
by the Auger Observatory. Sources that produce particle fluxes
according to an E−2 energy spectrum inject equal energy into
each decade. Thus, a measured energy flux of 1 eV cm−2 s−1 in
the TeV decade, as is found for a number of Galactic sources,
would result in the same energy flux in the EeV decade if the
spectrum continues to such high energies and energy losses
during propagation are negligible. A source of specific interest is
the galactic center for which the H.E.S.S.-collaboration measured
a gamma-ray flux up to about 50 TeV without any observation
of a cutoff or a spectral break, suggesting that the Galactic
center hosts a peta-electron volt accelerator, called “PeVatron”
(Abramowski et al., 2016).

It is still debated whether these photons are produced in
hadronic processes. An interesting test for this is provided by
a search for neutrons from this direction, because neutrons
would necessarily be produced in charge exchange interactions
of protons at the source. This will be discussed in section 5.
The ratio between photon and neutron emissivities from p-p
collisions at the same primary proton energy depends primarily
on the spectral index of the protons at the source. Assuming
a continuation of the parent proton spectrum with a spectral
index Ŵp . 2.4 well beyond the energies observed in the photon
spectrum, the photon emissivities are expected to dominate over
those of neutrons (Crocker et al., 2005).

To search for photons from a list of predefined target sources
(Aab et al., 2017a), more relaxed cuts are applied to the observed
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FIGURE 5 | (Left) Photon identification with a Boosted Decision Tree for signal (photon, blue), background (proton, red) and data (black). For simulations, both the

training and the test samples are shown. The cut at the median of the photon distribution is indicated by the dashed line. QGSJET-II-04 is used as high-energy

hadronic interaction model. (Right) Compilation of upper limits on the integral photon fluxes from Aab et al. (2017e). Blue arrows: Integral photon upper limits from the

9 year hybrid data sample assuming a photon flux following E−2 and with no background subtraction. The limits obtained when the detector systematic uncertainties

are taken into account are shown as horizontal segments (light blue) delimiting a dashed-filled box at each energy threshold; Black arrows: Nine year SD data sample

(Bleve, 2016). Previous data from Auger as well as data from TA, AGASA, Yakutsk, and Haverah Park are included for comparison. The lines and shaded regions give

the predictions for top-down models and GZK photon fluxes, respectively, assuming different parameters (references can be found in Aab et al., 2017e).

events (Aab et al., 2014a). For each candidate source direction
an optimized cut in the multivariate output distribution is
determined which depends on the expected number of isotropic
background events in that direction. This number is calculated by
applying a scrambling technique that takes into account detector
efficiencies and aperture features. For each target direction, a
top-hat counting region of 1◦ is assumed (Aab et al., 2014a).
Averaging over all considered target directions, the multivariate
cut is expected to retain 81.4% of photons while rejecting 95.2%
of background hadrons. In none of the sources and source classes
could EeV photons be detected. As an example, the result for
the Galactic center is illustrated in Figure 6. Conservatively,
the extrapolation of the H.E.S.S. data to EeV energies does not
take into account the increase of the p-p cross-section by about
40% relative to TeV energies. The current upper limit of 0.044
eV cm−2 s−1 (95% C.L., Ŵ = 2) at energies above 0.2 EeV
can already constrain the allowed parameter space for a flux
continuation to EeV energies.

The observation of photon fluxes from individual sources
or from stacked sets of targets would have proved that EeV
protons are being accelerated at those considered sources within
the galaxy or its neighborhood. However, the null results leave
open the possibility that protons observed at EeV energies are of
extragalactic origin. This is in fact suggested by the large scale
anisotropies observed with the Auger Observatory (Aab et al.,
2017d). Moreover, the absence of detectable photon fluxes, as
reported here, does not exclude the production of EeV protons
within the Galaxy because the derived flux limits are time-
averaged values. EeV photons might be produced in transient
sources, such as gamma-ray bursts or supernovae, or be aligned in
jets not pointing to us. Extending the searches to bursting sources
of EHE photons is a goal of ongoing multi-messenger analyses
within Auger, briefly addressed in section 7.

FIGURE 6 | Gamma-ray spectrum from the Galactic center region as

measured by the H.E.S.S. collaboration (red points) (Abramowski et al., 2016).

The measured photon flux is extrapolated into the EeV range, given the quoted

spectral index and its uncertainties (blue shaded region). The Auger limit (Aab

et al., 2017a) is indicated by a green line (the green band reflects again the

spectral uncertainties of the gamma-ray spectrum). A spectral index with

cutoff energy Ecut = 2.0 · 106 TeV is indicated by the dashed line.

5. NEUTRONS

Like photons and neutrinos, neutrons travel in straight lines,
undeflected by magnetic fields. They produce air showers that
are indistinguishable from those produced by protons. Thus, a
flux of neutrons from a discrete source would cause an excess of
cosmic-ray events around the direction to the source, clustered
within the angular resolution of the Observatory. Since free
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neutrons undergo β-decay with a mean lifetime of about 880 s
at rest, the mean travel distance for relativistic neutrons is 9.2
kpc×En/EeV. The distance from Earth to the Galactic center is
about 8.3 kpc, and the radius of the Galaxy is approximately
15 kpc. Thus, sources in part of the Galactic disk, including the
Galactic center, should be detectable via neutrons above 1 EeV.
Above 2 EeV, the volume for detectable neutron emitters includes
most of the Galaxy.

Neutron production is governed by charge exchange
interactions of high energy cosmic-ray protons with ambient
photons, protons, or nuclei leading to the creation of a π+-
meson. The π+ takes the positive charge of the proton and a
leading neutron emerges with most of the energy that the proton
had. The production of neutrons via creation of π+-mesons is
necessarily accompanied by photons originating from decay of
similarly produced neutral pions. However, photons resulting
from the decay of neutral pions acquire only a small fraction of
the proton energy, so that the production of neutrons exceeds the
hadronic production of photons of the same energy, provided
the accelerated proton spectrum falls approximately like 1/E2 or
more steeply with energy. This makes searches of high energy
neutrons a highly relevant and sensitive probe for Galactic
hadronic cosmic ray accelerators.

Similarly to the targeted search of EeV photon sources,
discussed in section 4, a flux of neutrons from astrophysical
sources in the Galaxy can be detected in the Pierre Auger
Observatory as an excess of cosmic-ray air showers arriving from
the direction of the sources. To avoid the statistical penalty for
makingmany trials, classes of objects were tested in combinations
as “target sets”. Those target sets include msec pulsars (PSR),
pulsar wind nebulae (PWN), microquasars, and magnetars (the
full list of targets can be found in Aab et al., 2014b). In addition,
a search for a neutron flux from the Galactic center and from the
Galactic plane was performed. Within a target set, each candidate
source is weighted in proportion to its electromagnetic flux,
its exposure to the Auger Observatory, and its flux attenuation
factor due to neutron decay.

None of the searches provided evidence for a neutron flux
from any class of candidate sources. Based on the first 9 years
of data (Jan. 1, 2004–Oct. 31, 2013), the upper limits on the
energy flux from these candidate sources, including the Galactic
center, are mostly at a value of 0.10–0.15 eV cm−2 s−1 (Aab et al.,
2014b), which is about a factor of 10 below the energy fluxes
detected from TeV gamma-ray sources in the Galaxy (Hinton
and Hofmann, 2009) and at about the level of sensitivity reached
with the targeted photon searches, discussed above. If those
sources were accelerating protons in the same environment to
EeV energies with the 1/E2 dependence expected for Fermi
acceleration, then the energy flux of neutrons in the EeV energy
decade would even exceed the energy flux in TeV gamma rays.

Similarly, the energy flux of neutrons from the Galactic
plane could be derived to less than 0.56 eV cm−2 s−1 (95%C.L.).
This provides a stringent constraint on models for continuous
production of EeV protons in the Galaxy because the injection
rate of protons into theGalactic diskmust be sufficiently strong to
balance their escape from the Galaxy. The concomitant neutron
emission rate is model dependent. It could exceed the proton

emission rate if protons are magnetically bound to the sources
and only the produced neutrons escape, yielding EeV protons by
their later decays. More likely, however, the neutron luminosity
at any fixed energy is less than the proton luminosity. Based on
an estimate of the proton emission rate, the limits on the neutron
flux from the Galactic plane could be used to derive an upper
limit on the ratio η = neutron luminosity/proton luminosity. It
was found to be ηUL ≃ 0.006 (Aab et al., 2014b), which is a
significant constraint on models for continuous production of
EeV protons in the Galaxy.

6. DIRECTIONAL CORRELATIONS OF
UHECRS WITH NEUTRINOS AND SOURCE
CANDIDATES

Even the most energetic cosmic rays can be subject to significant
deflection and corresponding energy-dependent time delays.
The strength and properties of the extragalactic magnetic field
(EGMF) causing these effects remain largely unknown, and
UHECR observed from bursting and continuous sources have
already helped to provide constraints to the EGMF (see e.g.,
Lemoine et al., 1997; Bray and Scaife, 2018;Mollerach and Roulet,
2018). In section 3.3 we have discussed the time-correlated
observation of neutrinos from merging binary systems. In fact,
black holemergers are also expected to produce UHECR andmay
provide sufficient luminosity to power the UHECR acceleration
up to the highest energies (Kotera and Silk, 2016). On the
other hand, 100 EeV protons from an extragalactic bursting
source located at a distance of 30 Mpc are expected to arrive
with time delays relative to photons and neutrinos by O(1 −

1, 000) years (Lemoine et al., 1997) and may even reach out
to 106 yrs in extreme cases, so that UHECR could not be
included in those combined directional and temporal searches in
a straightforward way.

6.1. Search for UHECR-Neutrino
Correlations
Purely directional correlations between high-energy neutrinos
and UHECR still provide an interesting target of opportunity
because UHECRs accelerated in astrophysical sources are
naturally expected to produce high-energy photons and
neutrinos in interactions with the ambient matter and radiation.
If neutrinos result from the decays of pions produced in pγ or
pp processes, they would carry about 3-5% of the proton energy.
Hence, neutrinos observed with energies of 30 TeV to 2 PeV,
such as observed by IceCube, would have been produced by
protons with energies in the 1–100 PeV range. These energies are
much smaller than those registered by the Auger Observatory,
and it is possible that the sources that produce the PeV neutrinos
do not accelerate CRs up to ultra-high energies. In that case no
correlations would be expected. On the other hand, the sources
that produce the UHECR can also be expected to produce lower
energy CRs. If the observed neutrinos come from the same
sources as the UHECR, some degree of correlation in the arrival
directions of the highest energy cosmic rays and the observed
neutrinos could be expected depending on composition and
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on the strength of magnetic fields. It should also be noted that
neutrinos can reach us from cosmological distances while the
UHECR horizon is limited to only a few 100 Mpc. Thus, only
a small fraction of the detected neutrinos could be expected to
have originated from visible UHECR sources so that correlations,
if they were found, cannot be very prominent.

After some initial cross-correlation efforts by the ANTARES
collaboration (Adrián-Martínez et al., 2013; Aublin et al.,
2018) different analysis strategies have been devised in an
intercollaborative effort of IceCube and Auger (Aartsen et al.,
2015) that were more recently joined also by the ANTARES
and Telescope Array (TA) collaborations (Aartsen et al., 2016;
Al Samarai et al., 2018).

In a classical cross-correlation method, the number of
observed UHECR-neutrino pairs is counted as a function of
the maximal angular separation and then compared to the
averaged background, which is calculated once for an isotropic
neutrino flux and once for an isotropic UHECR flux. Applying
this analysis to the latest combined Auger+TA UHECR and
IceCube neutrino data sets, it was found that a maximum
departure from the expectation for an isotropic CR flux,
keeping the arrival directions of the neutrinos fixed, occurs
at an angular distance of 1◦ for tracks and 22◦ for cascades,
with post-trial p-values of 0.48 and 5.4 · 10−3, respectively
(Al Samarai et al., 2018). In parallel, an unbinned likelihood
method was used. It is based on a stacking point-source
analysis applied to the UHECRs, where the neutrino arrival
directions are smeared with a symmetric 2D-Gaussian and
stacked as the signal template. The width of the Gaussian is
the quadratic sum of the UHECR reconstruction uncertainty
and the magnitude of the magnetic deflection, which is assumed
to be described by σMD = 6◦/ECR[100 EeV]. Again, the
analysis is applied to track- and cascade-like high-energy
neutrino candidates separately. Assuming an isotropic flux of
neutrinos, the smallest post-trial p-values are found to be
2.2 · 10−2 and 1.7 · 10−2 for the track- and cascade-like
events, respectively.

These results are interesting, but the level of correlation
is still too small to arrive at a conclusion. It will be
interesting to see how the signal evolves as more data
are accumulated by the neutrino and UHECR observatories
involved. In addition, new improved analysis strategies are being
developed making, for example, better use of the measured
UHECR composition and energy so that deflections in the
EGMF and Galactic magnetic field can be more appropriately
accounted for.

6.2. Association of UHECR With Source
Populations
A related multi-messenger approach aimed at identifying the
sources of UHECR from their directional information is to
search for correlations with catalog based astronomical objects.
The basic concept is related to the studies presented in the
previous section, only that the tracers are specific source
populations rather than samples of high energy neutrinos.
A set of source candidates that was studied in Aab et al.

(2018a) includes nearby radio-loud AGNs and SBGs5, selected as
possible sources to accelerate CRs to the highest energies (Hillas,
1984; Dermer and Razzaque, 2010). Individual objects found
within a given catalog are expected to contribute differently
to the total UHECR flux observed at Earth. Since the CR
luminosity of individual sources is not known, we have chosen
their observed electromagnetic emission as a proxy. In case
of the 17 radio loud γAGN found within 250 Mpc in the
2FHL catalog from Fermi-LAT (Ackermann et al., 2016), the
measured integral γ -flux from 50GeV to 2 TeV was used as a
proxy for the UHECR flux. Similarly, 23 (out of a total of 63)
SBGs within 250 Mpc and with a flux larger than 0.3 Jy were
taken from (Ackermann et al., 2012) and weighted with their
continuum radio emission at 1.4GHz. In both cases, attenuation
of UHECRs from distant objects in the photon background
fields was accounted for using a data-driven scenario that
reproduces the composition and spectral constraints obtained
by the Observatory (Aab et al., 2017b). Within this Ansatz,
the relative contributions of NGC4945, NGC253, and M83 are
expected to be about 38, 33, 13% of the total UHECR flux
from SBGs observed at the Auger Observatory. The relative
contributions seen at the Observatory from the γAGN would
be dominated by the Cen A Core (75%), followed by M87
(15%) and Mkn 421 (8%).

To test these models against the observed UHECR sky maps,
a maximum-likelihood analysis was performed with two free
parameters aimed at maximizing the degree of correlations of
the model maps with UHECR events: (a) the fraction of an
isotropic component contributing to the total UHECR flux in
addition to the source population being tested, and (b) the
width of a 2D Gaussian smearing around the position of the
source candidates. The first free parameter can be interpreted
as the contribution from more distant or less luminous sources,
and the second parameter effectively accounts for the random
scattering of UHECR in the EGMF. This analysis is repeated
for a sequence of energy thresholds applied to the UHECR
events and the test statistic (TS) as a function of the two
parameters is analyzed. The results are shown in Figure 7.
It was found that the SBG-Model rejects the hypothesis of
an isotropic sky best at ECR > 39 EeV and yields a post-
trial significance of 4.0σ . Here, the SBGs contribute about
10% to the total flux, and the smearing angle is 12.9◦. In the
case of the γAGN model, the best rejection of isotropy is
reached at ECR > 60 EeV at a level of 2.7σ with a γAGN
fraction to the total flux of about 7% and a smearing angle
6.9◦. Interestingly, the smearing angle decreases with increasing
energy as expected from the larger rigidities of the UHECR in the
γAGNmodel.

The results are very promising and demonstrate departures
from a pure isotropic sky with more and more structure
becoming visible, starting at above 8 EeV with the observation
of a large-scale dipole (Aab et al., 2017d), indications of higher
order moments above 16 EeV (Aab et al., 2018b), blurry spots
above 40 EeV, and hints of sharper spots above 60 EeV. There

5We note that the potential of SGBs to accelerate particles to the highest energies
has been questioned, recently (Romero et al., 2018; Matthews et al., 2019).
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FIGURE 7 | (Top row) observed excess maps for ECR > 39EeV and ECR > 60EeV. (Bottom row) model excess maps for the SGB (left) and γAGN model (right) at

the same energy thresholds as above. The color scales indicate the number of events per smearing beam (see inset). The model flux map corresponds to a uniform

full-sky exposure. The supergalactic plane is shown as a solid gray line. An orange dashed line delimits the field of view of the array (from Aab et al., 2018a).

are indications that both SGB and AGN, as well as a mixture of
both or similar populations could play a significant role in the
production of UHECR. However, it is still too early to conclude
about this long standing problem. Future analyses, possibly
profiting from full-sky observations with TA,may involve a better
modeling of the Galactic magnetic field, account for the change of
the composition as a function of energy, and possibly introduce
better proxies for the unknown UHECR luminosities, so that 5σ
detections are well within reach.

7. CONCLUSIONS AND PROSPECTS

The Pierre Auger Observatory was designed as a multi-purpose
observatory for the high-energy Universe with multi-messenger
observations being foreseen from the beginning. In this review,
we have summarized a few prominent examples that demonstrate
the unprecedented sensitivities to UHE photons, neutrinos, and
neutrons. Observations of photons in the so far dark Universe
at Eγ & 1017 eV or of a neutrino at these energies would be
a major breakthrough by itself. However, the non-observation
of point sources and diffuse fluxes of photons and neutrinos
allowed the derivation of upper bounds that constrain models
very effectively. The bounds to diffuse photon and neutrino
fluxes have ruled out the top-down models of UHECRs origin
motivated by particle physics and also started to constrain the
GZK-effect as a dominant process for explaining the observed
flux suppression of the most energetic UHECR (Zas, 2018).

Many TeV γ -sources are observed at energy fluxes of the order
of 1 eV cm−2 s−1. Such sources would be visible to the Auger
Observatory as strong photon and Galactic neutron sources if
their energy spectrum would continue with a Fermi-like energy
distribution up to about 1017 eV. Again, their absence suggests
that their maximum source energy does not reach out to the
threshold energy of the Observatory and/or that their spectrum
is significantly softer than dJ/dE ∝ E−2.

Point source searches now routinely include also mergers of
compact binaries alerted by gravitational wave interferometers.
The most spectacular event so far was the neutron star merger
GW170817 at a distance of about 40 Mpc. Within the predefined
±500 s search window, the Auger Observatory reached a
neutrino flux sensitivity above 100 PeV that was over an order
of magnitude higher than of any other neutrino observatory
presently operated. Again, the absence of neutrinos at Auger,
IceCube and ANTARES allowed constraining the jet properties
of the neutron star merger. The third observation run O3 is about
to start with many more events being expected in the near future.
To accommodate for this, mechanisms are set up to automatically
react to GWor other astrophysical alerts and search for neutrinos
and photons.

While receiving alerts from a worldwide network of
observatories, it is also possible to send alerts from the
Observatory. The Auger Observatory is both a triggering
and a follow-up partner in the Astrophysical Multi-messenger
Observatory Network (AMON) (Smith et al., 2013), which
establishes and distributes alerts for immediate follow-up
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by subscribed observatories with private or Gamma-Ray
Coordinates Network6 notices. AMON registers all vertical (θ ≤

60◦), high-quality, Auger SD events, with energy above 3 EeV
with a cadence of at most a few minutes. AMON establishes
clusters of two or more Auger events received correlated in
time and arrival direction as alerts. These are excesses of events
expected from neutral (photon or neutron) UHECRs as discussed
in sections 4 and 5. Unlike the aforementioned neutron and
photon searches, this alert channel is sensitive to ultra-high
energy neutral transient emission which is less well constrained
in the time-integrated searches. For each Auger alert, AMON
also receives and transmits the background rate, in other words,
the significance of each of the alerts, which depends on the
energy and declination of each event. Thus high-significance
alerts can be preferentially followed-up. To improve the overall
significance of alerts and to enhance future photon and neutrino
searches in general, additional improved hardware triggers have
been implemented to the existing surface detector array of the
Observatory. Besides enhancing the sensitivity to photons and
neutrinos, they allow reducing their detection thresholds. Thus,
photon alerts for individual ultra-high energy photon candidates
from a selection of events which utilizes observables based on the
new triggers will be transmitted in near-real time and available
for immediate follow-up using the AMON infrastructure. Finally,
the infilled array, covering an area of 23.5 km2 with a 750m
detector spacing, will provide acceptance for neutrinos and
photons below the present detection threshold, though with
reduced total exposure. It may also be used to generate specific
alerts and there are plans to extend the neutrino search to the
FD (Aramo et al., 2005).

Presently, the Pierre Auger Observatory is being upgraded
to AugerPrime primarily to improve the mass composition
measurements and particle physics capabilities with the surface
detector array (Aab et al., 2016c; Engel, 2016; Martello, 2017).
For this purpose, 3.8m2 plastic scintillation detectors will be
installed on each of the existing surface detector stations and
the current readout electronics will be replaced by a faster and
more powerful one. The new electronics will facilitate three times
faster sampling of the signals (120MHz instead of 40MHz),
will have more monitoring features implemented, and will have
more sensitive triggers installed for low-energy showers and
those initiated by photons and neutrinos. Moreover, the infilled
array will be furnished with large area underground muon
detectors (Aab et al., 2016a, 2017c) and each surface detector
station will be amended by a radio antenna to provide improved
shower information for inclined air showers (Hörandel, 2018).
AugerPrime will be operated into 2025 and will improve
the statistics for composition information and composition
enhanced astronomy by about a factor of 10. Clearly, all
of these features will open up many new possibilities for
improved searches of photons and neutrinos. This suit of
enhancements will further strengthen the prominent role of the
Pierre Auger Observatory as a multi-messenger observatory for
the next decade.

6https://gcn.gsfc.nasa.gov.
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