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Brief Review on Scalar Field Dark
Matter Models
L. Arturo Ureña-López*

DCI, Departamento de Física, Universidad de Guanajuato, Guanajuato, Mexico

The existence of dark matter in the universe has been solidly established in the last

decades, after the arrival of accurate cosmological and astrophysical observations, and

some consider it the most challenging problem in modern physics. Given the magnitude

of the problem, one cannot discard the existence of new particles with properties

that may look exotic in comparison with our current understanding of ordinary matter.

This is the case for the so-called scalar field dark matter model, which assumes the

existence of a (probably fundamental) scalar field with a very tiny mass that can have

observable consequences in the formation of cosmological structure. We present here

a brief account of the main properties of an ultra-light scalar field (with masses of the

order of 10−22 eV/c2) and how different observations have been used in the last two

decades to put constraints on its physical parameters. Among other topics, we review the

cosmological solutions of themodel, discuss the features of its self-gravitating equilibrium

configurations, revisit the gravitational collapse for the formation of galaxies, and revise

the possibility to find a soliton structure in the center of dark matter halos.
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1. INTRODUCTION

It is without doubt that the existence of dark matter (DM) in the universe is one of the most
intriguing mysteries of modern cosmology (Bertone and Hooper, 2018), especially because of the
good agreement between observations and the theoretical framework of the so-called concordance
model 3CDM. The simple assumption that DM is a pressureless component known as cold dark
matter seems to be sufficient to explain, in particular, the formation of large scale structure in the
cosmos, see (Planck Collaboration et al., 2018) and references therein.

However, the phenomenological description of DM has been under an intense experimental
search, which so far has put strong limits on the interactions between DM and ordinary matter.
This is the reasonwhy theWIMP (Weakly InteractingMassive Particle) hypothesis (Queiroz, 2017),
which has so far been the best option to explain that DM is under extreme pressure, and then the
study of alternative models seems to be the way to go in the near future (Hooper, 2017)1.

Scalar field dark matter (SFDM) refers, in general, to the hypothesis that the properties of DM
can be represented by a relativistic scalar field φ endowed with an appropriate scalar potentialV(φ).

1A separate kind of model exists in which all DM effects are attributed to a modification of gravity laws. The most famous

exponent of such models is Modified Newtonian Dynamics (Milgrom, 1983, 2016). However, these models do not have a clear

relativistic counterpart, and when they do their predictions are not in agreement with observational data. The most recent

and stringent constraints come from the recent detection of gravitational waves, see for instance (Kahya and Woodard, 2007;

Boran et al., 2018), which seems to rule out most such DM emulators.
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This proposal has humble origins in some papers that appeared
about two decades ago in Sahni and Wang (1999), Hu et al.
(2000), Matos et al. (2000), Matos and Ureña-López (2000),
Arbey et al. (2001a,b, 2003), and Matos and Arturo Ureña-López
(2001), although some hints about the idea can be traced further
back in Ji and Sin (1994) and Sin (1994). In the relativistic
regime, the equation of motion for the scalar field is the Klein-
Gordon (KG) equation ∂µ∂

µφ − ∂φV = 0, whereas the non-
relativistic regime leads to a Schrodinger-type equation for a wave
function ψ .

For a scalar field to behave as DM one is required to find
a scalar field potential V(φ) with a parabolic minimum at
some critical value φc, around which we can define a non-
vanishing mass scale ma for the associated boson particle,
through the general relation m2

a ≡ ∂2φV(φc). The simplest
possibility is just to consider the parabolic potential itself:V(φ) =
(1/2)m2

aφ
2, where for practical purposes we have chosen φc =

0. However, one cannot discard the presence of higher order
terms of the form φ4,φ6, . . ., like for instance in the cases
of the axion-like trigonometric potential V(φ) = m2

af
2[1 −

cos(φ/f )] (Cedeño et al., 2017; Zhang et al., 2018), where f is the
so-called decay constant, and its hyperbolic counterpart V(φ) =
m2

af
2[cosh(φ/f ) − 1] (Sahni and Wang, 1999; Matos et al., 2000;

Matos and Arturo Ureña-López, 2001; Matos and Ureña-López,
2004). For the purposes of this paper, we shall refer here to the
parabolic potential and how the boson mass ma determines the
properties of the model at cosmological and astrophysical scales,
so that different observations could be used together to constraint
its value. More details about the model can be found in a series
of interesting reviews of SFDM, such as Ureña-López (2007),
Magaña et al. (2012b), Suárez et al. (2013), Marsh (2015b), Hui
et al. (2017), and Lee (2018).

2. BACKGROUND EVOLUTION AND
LINEAR PERTURBATIONS

Let us start with the following action for a classical scalar field φ:

S =
∫

√

−g d4x

[

R

2κ2
+ ∂µφ∂µφ + m̃2

aφ
2

]

, (1)

where g = det(gµν), κ
2 = 8πG/c4, G is Newton’s gravitational

constant, c is the speed of light and R is the Ricci scalar. The
mass parameter is given in full units as m̃a = mac/h̄, where
h̄ is Planck’s constant and ma is the boson mass. Under this
convention the units of the scalar field physical quantities are
[φ] = (energy/length)1/2 and [m̃a] = length−1. If we choose
to use natural units c = h̄ = 1, the mass parameter becomes the
bare one, m̃a = ma, and then also the units of the field quantities
will be [φ] = [m̃a] = energy. Hereafter we will use natural
units, in the understanding that full physical quantities can be
recovered from the replacements φ → φ̃ andma → m̃a.

2.1. Background Dynamics
The KG equation in a homogeneous and isotropic spacetime with
null curvature that arises from the classical action (1) is:

φ̈ + 3Hφ̇ +m2
aφ = 0 , (2)

where a dot means derivative with respect to the cosmic time t
and H = ȧ/a is the Hubble parameter, with a the scale factor of
the universe. Ever since the study in Turner (1983), it is known
that there are two main stages in the evolution of the scalar field:
an overdamped one with H ≫ ma that results in φ ≃ const.,
and another one characterized by rapid oscillations of the field
around the minimum of the potential, which is triggered once
H≪m, during which φ ∼ a−3/2. The common approach inmany
studies is to put together the two foregoing stages: first by solving
numerically the KG equation, and then to match the resultant
solution to φ = φosca

−3/2 at some point a = aosc ≪ 1 (Hlozek
et al., 2015). Nonetheless, it is always desirable to find better
methods that can generate a continuum solution of the field
variables, as shown first in Magaña et al. (2012a).

Here we will follow the recipe described in Ureña-López and
Gonzalez-Morales (2016) and Cedeño et al. (2017) and use a
polar transformation of the field variables in the form:

κφ̇ = 3H�
1/2
φ sin(θ/2) κmaφ = 3H�

1/2
φ cos(θ/2)

y1 = 2
ma

H
, (3)

where H = ȧ/a is the Hubble parameter, �φ is the density
parameter, θ is an internal angle, and y1 is an auxiliary potential
variable. The KG equation (2) can then be written as a first-order
dynamical system for the variables�φ and θ :

dθ

d(ln a)
= −3 sin θ + y1 ,

d(ln y1)

d(ln a)
= 3

2
(1+ wtot) ,

d(ln�φ)

d(ln a)
= 3(wtot + cos θ) . (4)

The term wtot = ptot/ρtot here refers to the effective equation
of the state of the universe, which changes accordingly to the
dominant components in the matter density.

In terms of the new variables (3), we must impose 0 < θ ≪ 1
and y1 = 5θ for the initial conditions, so that the early damped
stage can be found from Equation (4) under the approximations
cos θ ≃ 1 − θ2/2 and sin θ ≃ θ , whereas the rapidly oscillating
one corresponds to cos θ → 0 and sin θ → 0. Interestingly, there
is a direct correspondence between the initial conditions and the
scalar field mass in the form:

ma

Hi
= 5

2
�

1/2
r0 a−2

i θi , (5)

which eases the numerical effort when studying this type of
model. Here, �r0 is the present density parameter of relativistic
species, whereas Hi, ai and θi are the initial values of the Hubble
parameter, the scale factor and the angular variable, respectively.

The interesting regime is that of rapid oscillations, which
according to previous estimations in Ureña-López and Gonzalez-
Morales (2016) starts by the time ma/Hosc ≃ 3.39. Within this
regime, the equations of motion (4) can be written as:

dθ

d(ln a)
≃ y1 ,

d(ln y1)

d(ln a)
= 3

2
(1+ wtot) ,

d(ln�φ)

d(ln a)
≃ 3wtot .

(6)
The solution for the angular variable we get, in terms of the
cosmic time, is the linear solution θ(t) = 2mt, which results in
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an equation of state that oscillates harmonically, namely wφ =
pφ/ρφ = − cos(2mat). Quite naturally, the frequency of the
oscillations is the mass scale itself, and then the period of the
oscillations (m−1

a ), is much smaller than the time scale for the
expansion of the universe (H−1) and then in this regimema/H≫
1. Furthermore, the equation of motion of the density parameter
�φ has the same form as that of a CDM component, which shows
that the appearance of rapid oscillations also compels the field φ
to behave as CDM.

The polar equations of motion (4) have been implemented in
an amended version of the public Boltzmann code CLASS, which
has been dubbed CLASS.FreeSF. The numerical solutions of the
background density ρφ , as compared to that of CDM with the
same cosmological parameters, are shown in Figure 1. Notice
that SFDM follows the evolution of CDM after the start of the
rapid oscillations, and actually the oscillations of the density itself
can be clearly seen in the curves. The matching between SFDM
andCDMdensities occurs at later times for smaller bosonmasses.
The value of the scale factor for the start of the oscillations is
indicated by the vertical lines, which actually were calculated
with the other Boltzmann code available for SFDM: axioncamb,
the latter based on the public code CAMB. Notice that there
is good agreement between the two codes (CLASS.FreeSF and
axioncamb) for the background dynamics, even though they
follow different numerical approaches to deal with the rapid
oscillations of the field. More details about the two codes and
their mathematical description can be found in Hlozek et al.
(2015) and Ureña-López and Gonzalez-Morales (2016).

2.2. Linear Perturbations
The next step in the analysis is to find the behavior of linear
perturbations and to verify that the scalar field DM allows the

FIGURE 1 | The background solution of the SFDM density, for different values

of the boson mass ma, in comparison with the case of CDM. The numerical

solutions were obtained from the Boltzmann code CLASS.FreeSF that solves

the polar form of the KG equation (2) discussed in section 2.1. The vertical

dashed lines indicate the values of the scale factor aosc at the start of the rapid

oscillations of the scalar field φ; the values of aosc were obtained from the

equivalent solutions of the Boltzmann code axioncamb.

formation of structure following the standard CDM paradigm.
Within the synchronous gauge of metric perturbations, in which
the line element is written as ds2 = −dt2 + a2(δij + h̄ij)dx

idxj,
the linearly perturbed KG equation in Fourier space for a given
wavenumber k reads:

ϕ̈ = −3Hϕ̇ −
(

k2

a2
−m2

a

)

ϕ − 1

2
φ̇
˙̄h , (7)

where we are considering that φ(t, k) = φ(t) + ϕ(t, k), with ϕ
a small field perturbation, and h̄ = hl l is the trace of the spatial
perturbations in the metric. Reliable numerical simulations can
be obtained if we define polar variables in the form:

κϕ̇ = −�1/2
φ eα cos(ϑ/2) , κmaϕ = −�1/2

φ eα sin(ϑ/2) , (8)

where α and ϑ are the new dynamical variables. However, it is
better to define new variables:

δ0 = δρφ/ρφ = −eα sin(θ/2−ϑ/2) , δ1 = −eα cos(θ/2−ϑ/2) ,
(9)

under which the perturbed KG equation (7) is written also as
a dynamical system (Ureña-López and Gonzalez-Morales, 2016;
Cedeño et al., 2017):

dδ0

d(ln a)
=

[

−3 sin θ − k2

k2J
(1− cos θ)

]

δ1 +
k2

k2J
sin θ δ0

−1

2

dh̄

d(ln a)
(1− cos θ) , (10a)

dδ1

d(ln a)
=

[

−3 cos θ − k2

k2J
sin θ

]

δ1 +
k2

k2J
(1+ cos θ) δ0

−1

2

dh̄

d(ln a)
sin θ , (10b)

where k2J ≡ 2a2Hma is the (squared) Jeans wavenumber that
naturally arises because of the wave nature of the scalar field.

The interesting regime, as before for the background
dynamics in section 2.1, is that of rapid oscillations, under which
Equation (10) become:

dδ0

d(ln a)
= −k2

k2J
δ1 −

1

2

dh̄

d(ln a)
,

dδ1

d(ln a)
= k2

k2J
δ0 . (11)

For length scales k ≪ kJ , we recover the same expression as

that of the density contrast for CDM, namely, δ̇0 = −(1/2) ˙̄h,
whereas δ1 remains approximately constant. However, in the
opposite regime k≫kJ , Equation (11) resemble that of a harmonic
oscillator, and then the density perturbations cannot grow as
much as those of CDM.

As before for the background, we show in Figure 2 the
solutions of the linear density perturbations of SFDM in
comparison with those of CDM, as obtained from the Boltzmann
code CLASS and its amended version CLASS.FreeSF. In the case
of the so-called mass power spectrum (MPS), we notice the sharp
cut-off that has become a trademark of SFDM ever since it was
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FIGURE 2 | The MPS (Left) and the anisotropies of the CMB (Right) obtained for the SFDM model from the amended Boltzmann codes CLASS.FreeSF and

axioncamb. As explained in section 2.2, the code CLASS.FreeSF solves the polar form of the perturbed KG equation (10), whereas axioncamb solves its equivalent

fluid form. In general, SFDM looks indistinguishable from CDM, although there are some small discrepancies in the outputs generated by the Boltzmann codes.

firstly shown in Matos and Arturo Ureña-López (2001) as an
output of the now outdated Boltzmann code CMBFast. We also
show in the same plot the output from axioncamb, which seems
to differ a little bit regarding the profile of the MPS at around
the cut-off scale in the two cases shown (ma = 10−22, 10−24 eV).
The differences may indicate here some discrepancy in the
treatment of linear perturbations in the two Boltzmann codes:
CLASS.FreeSF directly solves the (polar) Equations (10), whereas
axioncamb uses a formal equivalence of the field perturbations
to those of a fluid, following the prescription in Hu (1998) and
the scale-dependent speed of sound suggested in Hwang and
Noh (2009). Moreover, we also show the analytic formula put
forward in Hu et al. (2000) for the linear MPS. With the latter
being just an analytic approximation without proper backup
from a Boltzmann code, its manifest discrepancies with the
aforementioned numerical results should not be surprising after
all, and this little exercise suggests that it would be better to use
the numerical output from the Boltzmann codes rather than the
approximation to model the MPS.

In the case of the anisotropies of the Cosmic Microwave
Background (CMB) the differences between the different models
are almost unnoticeable, and then this observable is not able to
distinguish SFDM from CDM, even if the boson mass changes
in two orders of magnitude (recall that ma = 10−22, 10−24 eV).
However, the outputs from CLASS.FreeSF and axioncamb do
not agree completely again, which seems to point out some
possible inconsistencies between the polar and fluid approaches
to the KG equation at the level of linear perturbations. A more
thorough analysis of the differences of the two codes will be
reported elsewhere.

3. GRAVITATIONAL CONFIGURATIONS OF
SFDM

Ever since the seminal paper (Ruffini and Bonazzola, 1969), there
has been much interest in the properties of the gravitational
objects made of scalar fields, in both the relativistic and non-
relativistic regimes, see the comprehensive reviews in Jetzer
(1992), Schunck and Mielke (2008), and Liebling and Palenzuela

(2017). Different approaches have been devised to find the
general features of the gravitational collapsed objects within
a cosmological context (Widrow and Kaiser, 1993; Woo and
Chiueh, 2009; Schive et al., 2014a; Uhlemann et al., 2014;
Veltmaat and Niemeyer, 2016; Edwards et al., 2018), where it has
been verified that the non-linear process of structure formation
in SFDMmodels proceeds as in CDM for large enough scales.

According to the detailed analysis made in Schive et al.
(2014a), Schwabe et al. (2016), and Mocz et al. (2017a), the
gravitationally bounded objects that one could identify with DM
galaxy halos all have a common structure: one central soliton
surrounded by a Navarro-Frenk-White-like envelope created by
the interference of the Schrodinger wave functions. In terms of
the standard nomenclature, the SFDM model belongs to the so-
called non-cusp, or cored, types of DMmodels. Although not yet
completely conclusive, there seems to be an increasing evidence
in favor of cored DM models (Walker and Peñarrubia, 2011;
Rodrigues et al., 2018), and then the non-cusp nature of SFDM
objects remain one of the most promising features of the model.

Here we will make a quick review of the general features of the
soliton structures that arise from SFDMmodels, using for this the
so-called field and fluid approaches, in order to highlight their
equivalences and differences and their use in cosmological and
astrophysical settings.

3.1. The Field Approach
The field approach to the formation of structure within the SFDM
paradigm refers to the solutions obtained from the Schrodinger-
Poisson (SP) system, which is represented by the equations:

ih̄∂tψ = − h̄

2ma
∇2ψ +8ψ , ∇28 = 4πGm2

a|ψ |2 , (12)

where ψ is the wave function that collectively represents
the boson particles in their ground state, and 8 is the
Newtonian gravitational potential. Notice that the latter is
calculated from the mass density effectively defined through
ρ = m2

a|ψ |2. For the purposes of simplicity, we do not include
any self-interaction term in the SP system, which would then
become the Gross-Pitaeevski-Poisson system. For a discussion
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of the latter and its general properties at cosmological and
astrophysical scales (see Barranco and Bernal, 2011; Li et al., 2013;
Diez-Tejedor et al., 2014).

The SP system possesses the following scaling symmetry:

{t, x, ψ , 8} →
{

λ−2 t̂, λ−1x̂, λ2ψ̂ , λ28̂
}

, (13)

for an arbitrary value of the scaling parameter λ. It is then
common to choose a particular configuration and then find any
others by a proper scaling of the different quantities to ease the
numerical effort.

3.2. The Fluid Approach
There is also a fluid equivalent of the SP system (12), for which
we only need to apply the so-called Madelung transformation of
the wave function by means of ψ(t, x) = ϕ(t, x) exp(−iS(t, x)/h̄).
The resultant equations of motion are then:

ϕ̇ = 1

2
ϕ∇2S+∇ϕ · ∇S , ϕ

[

Ṡ+ 1

2
(∇S)2 +8− 1

2

∇2ϕ

ϕ

]

= 0 .

(14)
Notice, under the assumption that ϕ 6= 0, that the scalar function
S obeys a Hamilton-Jacobi type of equation Ṡ + H(∇S, x, t) = 0,
in which the potential part in the Hamiltonian H is represented
by two terms:8+Q, whereQ is the so-called quantum potential:

Q = −1

2

∇2ϕ

ϕ
. (15)

Taking the assumption ϕ 6= 0 for granted, one can further
manipulate Equation (14) to write them down as fluid equations.
We define the velocity field v = −∇S and the mass density
ρ = m2

a|ψ |2 = m2
aϕ

2, and then the SP system becomes the
QuantumEuler-Poisson (QEP) system (for details seeWallstrom,
1994; Chavanis, 2011; Uhlemann et al., 2014).

∂ρ

∂t
+ ∇ · (ρv) = 0 ,

∂v

∂t
+ (v · ∇)v = −∇8− ∇Q ,

∇28 = 4πGρ . (16)

Equation (16) are the standard fluid equations except for the
presence of the quantum potential Q. The QEP also posses the
same scaling symmetry of the SP system, namely:

{t, x, ρ, S, v,8,Q} →
{

λ−2 t̂, λ−1x̂, λ4ρ̂, Ŝ, λv̂, λ28̂, λ2Q̂
}

. (17)

Notice that the function S is scale invariant, whereas the velocity
field v is not.

3.3. Stationary Equilibrium Configurations
We call equilibrium configurations to those spherically
symmetric solutions of the SP system (12) that arise from the
ansatz ψ = ϕ(r) exp(−iγ t) (Ruffini and Bonazzola, 1969;
Guzmán and Ureña-López, 2004), and which are then solutions
of the eigenvalue problem:

∇2ϕ = 2 (8− γ ) ϕ , ∇28 = 4πGϕ2 . (18)

Given the scaling symmetry of the SP system, one only has to
find the solution corresponding to the special value ϕ(0) = 1
to determine the full family of solutions. Different numerical
solutions, classified in terms of the number of nodes in the
wavefunction, are shown in Figure 3.

From the fluid approach, equilibrium configurations arise
from the conditions ρ(t, r) = ρ(r) and v = 0. The conservation
equations are identically satisfied, whereas the Euler equation
implies that ∇8 = −∇Q (the quantum force acts against the
gravitational one), and then one arrives to the Poisson equation
in the form:

∇2

(∇2√ρ
√
ρ

)

= 8πGρ . (19)

In principle, one only needs to solve the cumbersome
Equation (19) to find the equilibrium configuration in the
Madelung representation of SFDM. It is not clear at first sight
whether Equation (19) will lead us to an eigenvalue problem,
unless one takes further assumptions by hand. For instance, from
the equilibrium of forces one obtains Q = 8 + γ , where γ
is a constant, and then Equation (19) could be rewritten in the
same form as Equation (18) as long as we identify ρ = ϕ2.
However, one can see that this procedure is not as clean or as

FIGURE 3 | Different equilibrium solutions of the SP system (12), see also Equations (18): the amplitude of the wavefuction ψ (0, r) = ϕ(r) (Left) and the square root of

the density ρ1/2 = |ψ (r)| (Right). The ground state corresponds to the node-less wavefunction, see the text for more details.
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direct as the one from the original SP system. Moreover, for
equilibrium configurations, the wavefunction, and in turn the
density, has nodes, which means that there are points at which
the quantum potential cannot be calculated directly from the
expression Q = −(1/2)∇2ϕ/ϕ, simply because there will be
a division by zero at the node points of the wavefunction ϕ.
But the first of Equation (18) tells us that the ratio ∇2ϕ/ϕ =
2(8 − γ ) should be well behaved everywhere, although this can
only be known in the field approach and not in the fluid one (see
again Figure 3).

3.4. Shortcomings of the Fluid
Approximation
Although the Madelung transformation compels us to believe in
the equivalence between the field and fluid approaches for the
gravitational collapse of SFDM objects, one has to bear in mind
that such equivalence works, strictly speaking, in one direction
only, namely, from the SP system to the QEP one. As it is
convincingly described in Wallstrom (1994), the equivalence is
not true in the opposite direction: one cannot recover a truthful
wavefunction from the solution of the density ρ and velocity
v fields. The main objection is that we cannot recover the
quantum nature, or to be more conservative, the discrete nature
of some physical quantities related to the SP system, without the
introduction of extra constraints. More precisely, it is argued
in Wallstrom (1994) that one may be required to impose the
discretization condition

∮

L v · dℓ = 2π j for any closed loop L and
any integer j. The latter condition translates into

∮

L dS = 1LS =
2π j, with which one could recover a single-valued wavefunction
ψ at any point in configuration space.

One then sees that the sensible point is the solution of the
velocity field, or in turn the solution of the action function S,
especially in the cases in which there is angular momentum or
any non-spherically symmetric collapse. In Wallstrom (1994)
the author mentions the case of axially-symmetric solutions for
which S = mϕ, with m an integer number and ϕ here the
azimuthal angle. But one must remember that there is another
quantum number which is the energy of the system and that is
also related to the action function: En = ∂tS. There is not for the
latter case a quantization condition that one could impose upon
the solutions of the QEP system as simple as the one described
before (1SL = 2π j).

Another important feature of the equilibrium configurations
shown in section 3.3 is that the only stable one is the ground
state, node-less, solution, which is also the attractor solution
a general configuration settles down onto, a property that was
comprehensively studied in Guzmán and Ureña-López (2004)
and Guzmán and Avilez-Lopez (2018). That any arbitrary, initial,
field configuration ψ evolves toward the ground state is a
consequence of the appropriateness of the SP system to provide
an eigenvalue solution by dynamical means. In other words, the
eigenvalue solution ψ = ϕ(r)e−iγ t emerges eventually during
the evolution of the field configuration. Such a property is
seemingly non-existent in the fluid approach, and then one must
be skeptical again of the equivalence between the two methods.
So far, it has just been reported in Veltmaat and Niemeyer (2016)

that the ground state remains stable in the two approaches, but
it was not shown that the ground state is the attractor solution
and that the QEP system (16) is able to find it together with the
correct eigenvalues and eigenfunctions.

3.5. Energy Considerations of SFDM
Gravitational Configurations
As explained in Guzmán and Ureña-López (2004), Guzmán
and Ureña-López (2006), and Hui et al. (2017), there are some
physical quantities that help us to monitor the evolution of the
wavefunction, but given that we will be dealing with a single
configuration here we will use the energy quantities, namely:

E =
∫

V
Im(ψ∗∂tψ) dV

′ , K = −1

2

∫

V
Re(ψ∗∇2ψ) dV ′ ,

W =
∫

V
8|ψ |2 dV ′ , (20)

where E is the total energy, K is the kinetic energy and W the
potential energy. Directly from the Schrodinger equation (12),
one can show that the three quantities are related through E =
K + W. In the case of equilibrium configurations one finds
that E = (1/3)γM and K/|W| = 1/2, which means that
the total energy is negative E < 0 and that the configuration
is virialized, independently of the number of nodes in the
(stationary) wavefunction ϕ.

All the above quantities can be rewritten in terms of the
Madelung variables as:

E = −
∫

V
∂tSϕ

2 dV ′ , K = −1

2

∫

V

[

ϕ∇2ϕ − ϕ2(∇S)2
]

dV ′ ,

W =
∫

V
8ϕ2 dV ′ . (21)

Alternatively, in terms of the fluid equations, one finds:

K = KQ + Kv = −1

2

∫

V

(∇2√ρ
√
ρ

)

ρ dV ′ + 1

2

∫

V
ρ v2 dV ′ ,

W =
∫

V
8ρ dV ′ . (22)

It must be noticed that the kinetic energy K is composed of two
terms, one related to the quantum potentialQ and another one to
the velocity field v. The virialization of the system, if it is going to
coincide with the field expression, should be written as K/|W| =
(KQ + Kv)/|W| = 1/2, and not simply as Kv/|W| = 1/2,
which would be the direct expression within the fluid approach.
Actually, the latter expression would be completely wrong in the
case of equilibrium configurations for which, as we have seen
above, the kinetic energy due to the velocity dispersion of the
fluid is Kv = 0.

The virial ratio K/|W| is indeed one important quantity in
the evolution of gravitational configurations; such a ratio is 1/2
for virialized systems, and then we can say that a gravitational
configuration is overwarmed (underwarmed) if K/|W| > 1/2
(K/|W| < 1/2). As reported in Seidel and Suen (1990), Guzmán
and Ureña-López (2004), and Guzmán and Ureña-López (2006),
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a gravitational configuration can resort to the mechanism of
gravitational cooling to get rid of the excess in the kinetic
energy and eventually reach a virialized state. The cases studied
in Guzmán and Ureña-López (2004) only considered reasonable
values of the virial ratio, and for the largest value considered
(K/|W| ≃ 1.2, see Figure 18 in Guzmán andUreña-López, 2004),
the configuration had to expand for about 100 times its initial
radius and expel about 90% of its initial mass before it could
become an equilibrium configuration. This tells us about the role
played by the virial ratio to determine how long, if at all, it would
take for a given system to find a stationary configuration.

4. COSMOLOGICAL COLLAPSE OF SFDM
COSMOLOGICAL CONFIGURATIONS

The whole process of structure formation, and its various
implications, have been studied recently in dedicated numerical
simulations. Themajority of them rely on standardN-body codes
but with modified initial conditions that reflect the properties
of SFDM at the level of linear density perturbations in the
mass power spectrum as obtained from the amended Boltzmann
codes (Hlozek et al., 2015; Ureña-López and Gonzalez-Morales,
2016). However, there are some others that solve directly the SP
system (Schive et al., 2014a; Mocz et al., 2017a; Edwards et al.,
2018), which would be the most reliable ones, and also others that
consider the equivalent fluid approach bymeans of theMadelung
transformation of the wave function (Nori and Baldi, 2018;
Zhang et al., 2018). In these latter codes the quantum pressure has
to be approximated in its numerical implementation, and there is
not yet conclusive proof that they deliver the same results as those
of the SP system (although see Li et al., 2019).

4.1. The Top-Hat Model for SFDM
Many details are given in Guzmán and Ureña-López (2004)
for the evolution of unstable configurations, and here I will
only show one further example which would be equivalent to
the top-hat model for the gravitational collapse of CDM (see
also Siddhartha Guzmán and Arturo Ureña-Lòpez, 2003). For
that, let us consider a spherical configuration with a constant
density, which is equivalent to |ψ0| = const., and total radius
rT . The total mass contained within the sphere is MT =
(1/3)|ψ0|2r3T , or in terms of dimensionless (ket) quantities we

have MT = M̂T m
2
Pl
/m, with M̂T = (1/3)|ψ̂0|2r̂3T . Likewise,

the physical density is ρ = |ψ̂ |2m2
Pl
m2
ψ/(4π), whereas for the

physical radius we have rT = r̂T/m.
We further assume that the spherical configuration is about to

collapse under its own gravity, i.e., it is about to separate from
the general expansion of the universe at the time of turnaround.
In terms of the fluid picture, this just means that the kinetic
energy due to the dispersion velocity of the particles is null,
Kv = 0. However, the potential part of the kinetic energy KQ

is still present, and we should take it into account in the energy
calculations.

A back-of-the-envelope calculation, using Equation (20), can
be used to estimate the order of magnitude expected for the
virial ratio of the spherical configuration at turnaround. The

gravitational potential is of the order of8 ∼ −|ψ̂0|2r̂2, and then
the gravitational energy in the configuration is W ∼ −|ψ̂0|4r̂5T .
In the same manner, the kinetic energy is given by K ∼ |ψ̂0|2r̂T ,
and then the virial ratio is of the order of K/|W| ∼ 1/(|ψ̂0|2r̂4s ).
Of course, in the ideal case ψ̂ = const. the kinetic energy is
exactly zero, but on more realistic grounds the wavefunction
must have a profile a bit different from that of the step function
and some extra contribution to the kinetic energy comes from
its derivatives in the term KQ. Thus, the estimation above about
the virial ratio K/|W| should considered a lower bound on its
true value2. Notice that the quantity |ψ̂0|2r̂4T is an invariant
quantity according to the scaling transformation (13), and then
it is truly representative of the system under study. Moreover, it
cannot either be tailored to ease the numerical effort. This has a
strong physical consequence for the evolution of the gravitational
configuration, as we are going to show now.

For the purposes of illustration, let us consider that the
constant density is the same as that of DM, |ψ0|2 =
(3H2

0/8πG)�b0 a
−3, and that rT is its comoving radius (the

physical radius would be rT,phys = a rT). The physical density

in terms of the field variables is |ψ0|2 = |ψ̂0|2m2
Pl
m2
ψ/(4π),

where ψ̂0 is the dimensionless wavefunction. After a bit of algebra
we find3:

|ψ̂0|2 = 6.86× 10−22 h2

m2
a22

�M0a
−3 , (23a)

where H is the reduced Hubble constant and ma22 =
ma/10

−22 eV. Likewise, the dimensionless radius would be given
by r̂T = marT . Then, from the definition of the total mass we find
the following relation for the dimensionless quantities:

|ψ̂0|2r̂3T = 2.32× 10−12ma22(MT/M⊙)�
−1
M0 . (23b)

From the combination of the two equations (23), we finally
find that

|ψ̂0|2r̂4T = 3.48× 10−9m2
22h

−2/3�
−5/3
M0 (MT/M⊙)

4/3 a . (24)

Equation (24) indicates that the virial ratio of the cosmological
sphere of matter has a very clear dependence on the boson
mass, the total mass and the scale factor, namely, K/|W| ∼
107m−2

22 (MT/M⊙)−4/3a−1 (with h = 0.67, �M0 = 0.26). The
condition K/|W| . 1 seems to suggest that configurations with

masses MT . 105M⊙m
−3/2
a22 a−3/4 are overwarmed and most

likely will be unable to collapse eventually into an equilibrium
configuration. There is some weak dependence on the scale
factor, and from it we can conclude that configurations with

MT < 105M⊙m
−3/2
a22 cannot collapse and form virialized objects.

2For instance, for the initial configuration chosen in this section the kinetic energy

is of the formK ∼ |ψ̂0|2 r̂3s /12, where1would be the length scale for the variation

of the derivatives. If our choice were 1 = rT/10, the virial ratio should rather be

K/|W| ∼ 102/(|ψ̂0|2 r̂4T ). This is why the estimation used in the text should be

considered a conservative lower bound.
3In writing Equations (23) and (24), we have made use of the following relations

in natural units for the boson mass: m = 1.56 × 107ma22 Mpc−1 = 1.59 ×
10−7ma22 s

−1 = 4.79ma22 yr
−1 = 8.96× 10−89ma22 M⊙.
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This prediction comes directly from the intrinsic properties of the
cosmological setup, more specifically from the (dimensionless)
values of the density |ψ̂0|2 and total radius r̂T that are needed
to achieve the cosmological masses annotated above, and it is of
general applicability for any particular profile of the mass density
at the time of turnaround.

The existence of a lower mass for the gravitational collapse
has been inferred before from the evolution of linear density
perturbations (see section 2.2 above), but our calculations here
show that such cut-off mass scale should also appear naturally
from the evolution of the SP system if the initial configuration
complies with the cosmological values. In our estimation, the
virial ratio also has a clear dependence on the boson mass,
K/|W| ∝ m−2

a22, which implies that less massive configurations
can collapse into equilibrium configurations for larger values
ma22 ≫ 1. Actually, all mass values MT are allowed to collapse
gravitationally, however small they are, in the limit ma22 → ∞,
in which the SFDM model becomes indistinguishable from the
CDMmodel.

4.2. Relativistic Effects
In general, the total mass of stable, self-gravitating configurations
in SFDM models is given as MT = β (m2

Pl
/m), where β .

0.6. This indicates that there is a maximum mass for stability:
configurations with a larger value can either migrate to a stable
configuration or collapse into black holes, see the works in Seidel
and Suen (1990, 1991) and Alcubierre et al. (2003). Moreover,
according to the studies in Guzmán and Ureña-López (2004),
the SP system is a good approximation to the EKG one under
the condition that β . 0.02, because for larger values one has
to take into account relativistic effects for a proper gravitational
evolution of the system. For instance, for a sufficiently massive
configuration with β & 1, the SP system predicts its collapse into
a very dense, small but regular object, whereas the EKG system
would predict the formation of a black hole. In our case we see
that the mass parameter is β ≃ (1/3)|ψ0|2r̂3T , and from the values
calculated from Equation (23b), we must conclude that the SP
system (12) cannot follow reliably the gravitational collapse of
systems with massesMT & 1011M⊙.

5. UNIVERSAL SOLITON PROFILE

One of the most remarkable features of the gravitational
structures found in the simulations of SFDM (Schive et al., 2014a;
Mocz et al., 2018) is the presence of a soliton core in all of them,
which is surrounded by an interference pattern that resembles
the so-called Navarro-Frenk-White profile that is typical in N-
body simulations of CDM. The soliton core is an unavoidable
result of the wave nature of the boson particles within the SFDM
paradigm, and its properties can be understood from those of
the equilibrium configurations of the SP system (see section 3.3).
Some properties of the soliton configurations are discussed next
in connection with some galaxy data.

5.1. Soliton Profile in Satellite Galaxies
There has been some recent interest in the possibility to detect
the presence of soliton core in different galaxies. Satellite galaxies

are the obvious candidates to search for intrinsic scale properties
of DM, in particular for any central structure like a soliton. So far,
studies with a Jeans analysis suggest that the boson mass should
be ma22 . 0.1 (Diez-Tejedor et al., 2014; Marsh and Silk, 2014;
Lora, 2015; Gonzalez-Morales et al., 2016; Ureña-López et al.,
2017; Bar et al., 2018; De Martino et al., 2018). Here we will do a
simple exercise to make a comparison with some galaxy data, and
for that we will propose a new observable that takes into account
the scaling properties of the SP system (13).

Let us consider the density profile of SFDM solitons ρ(r) as
characterized by the semi-analytic approach in Marsh (2015a):

ρ(r) = ρs

(1+ r2/r2s )
8
, (25)

where ρs is the central density and rs is the scale radius. The
parameters ρs and rs are predicted to have the following scaling
property: ρs = λ4m2

am
2
Pl
/4π and rs = (0.23 λma)

−1, where mPl

is the Planck mass, ma is the mass of the boson particle and λ is
the scaling parameter in Equation (13). It is shown in Figure 4

that Equation (25) is a good approximation of the numerical
result up to r = rs. Likewise, the mass Ms of the soliton profile
can be obtained from:

Ms(r) = 4πρsr
3
s M̂s(r/rs) = λ

(0.23)3
m2

Pl

ma
M̂s(r/rs) ,

M̂s(r/rs) =
∫ r/rs

0

x2 dx

(1+ x2)8
. (26)

The total mass of the configuration is obtained when r → ∞, and
thenMs = 2.08 λ(m2

Pl
/ma), which is in agreement with previous

results (Guzmán and Ureña-López, 2004). It can be shown that
the radius containing 95% of the total mass is r95 ≃ 0.89rs, and
then as a rule of thumb we can say that the scale radius is a good
measure of the total radius of the whole configuration.

Given the scaling properties of the different quantities, it can
be seen that a good observable is the quantity:

[

GMs(r) r
]1/2 = 121

ma22

[

M̂s(r̂) r̂
]1/2

kmkpc s−1 , (27)

where Ms(r) is the enclosed mass at radius r and r̂ = r/rs. The
combinationMs(r) r does not depend on the scaling parameter λ,
but only on the boson mass. The enclosed mass at a given radius
can be estimated in different galaxies, and from them we could
make an estimation of the presence of a soliton center using the
new observable (27).

Considering the data of the classical satellites in the Milky
Way from Fattahi et al. (2016), we show in Figure 4 a comparison
with the theoretical profile that corresponds to an equilibrium
configuration. There are two free parameters: ma22 and rs, and
then one only has to adjust them to get a fit to the theoretical
curve (in doing so, we are implicitly adjusting the scaling
parameter too, see Equation 25). In the plot we considered three
different combinations of the parameters (ma22, rs), which are
indicated by the corresponding colors. The best fit-by-eye seems
to be the intermediate case withma22 = 1.5 and rs = 900 pc, that
somehow follows the transition trend of the soliton configuration
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FIGURE 4 | (Left) Comparison between the numerical (see section 3.3) and semianalytical (see Equation 25) profiles of the density ρ = |ψ |2 in the case of a

stationary equilibrium configuration. Notice that the relative error between the two cases is less than 4% up to r = rs. At larger distances the difference grows

enormously because the numerical profile decays exponentially. (Right) The observable quantity [rM(r)]1/2, see Equation (27), calculated from the corresponding

quantities reported in Fattahi et al. (2016) of the eight classical Milky Way dwarf spheroidals. The observable is scale invariant, see Equation (13), but the colors of the

error boxes indicate the corresponding different values of the boson mass ma and the soliton radius rs. The magenta curve represents the complete profile of the

observable, whereas the yellow and cyan straight lines indicate the asymptotic behaviors at small (∼ r2) and large radii (∼ r1/2 ), respectively.

at r ≃ rs. This would mean that the size of the DM halo in
the satellites seem to agree with that of a single soliton, with
a total mass of about 108M⊙, which would be in agreement
with previous estimations of the mass contained in the Milky
Way satellites (Strigari et al., 2008). However, notice that the
comparison is not conclusive, as the data boxes for lower boson
masses ma22 are not completely out of fit, which could explain
that some of the detailed studies so far can only put an upper
bound ma22 . 0.1 (Marsh, 2015a; Gonzalez-Morales et al., 2016;
Bernal et al., 2017).

5.2. The Core-Halo Relation and
Galaxy Data
The presence of a soliton in the center of larger galaxies is more
difficult to detect. For instance, in De Martino et al. (2018) the
authors tried to disentangle the contributions to the rotation
curve of different matter components in the central parts of the
Milky Way. They determine that, within the error bars in the
observational data, there seems to be strong enough evidence for
the presence of a soliton with parameters.

A similar study was done in Bar et al. (2018) but for a
larger sample of galaxies. Quite interestingly, the study takes
into account theoretical constraints that can be inferred from the
numerical simulations of the SP system (Schive et al., 2014a),
and put them under scrutiny given the galaxy data. One main
assumption is the so-called core-halo relation found in the
simulations, and which is summarized in the expression Mc ∝
M

1/3
h

, where Mc (Mh) is the core (halo) mass. It is shown in Bar
et al. (2018) that the core-halo relation suggests another one (see
their Equation 35): that the specific energy for the central soliton
and the host halo are the same, in other words:

E

M

∣

∣

∣

∣

soliton

≃ E

M

∣

∣

∣

∣

halo

. (28a)

This interesting relation is arguably inferred from the properties
of the halo profiles found in the dedicated numerical simulations
in Schive et al. (2014a,b), which, as we mentioned before, are the

only ones that solve directly the SP system within a cosmological
context. Equation (28) is quite interesting, as the number on
its lhs can be readily calculated from the properties of the
equilibrium configurations discussed in section 3.3. According
to the calculations in Guzmán and Ureña-López (2004) and Bar
et al. (2018), we find that E/M|soliton = (1/3)γ = (1/3)λ2γ̂ ,
where γ̂ = −0.69 is the (dimensionless) characteristic frequency
of the soliton configurations (which have also been identified
in simulations, e.g., Mocz et al., 2017b), and λ is the scaling
parameter in Equation (13).

That the energy per unit mass is the same seems to be
counterintuitive at first sight: for the soliton, it corresponds to
its gravitational equilibrium (the eigenvalue problem explained
in section 3.3), whereas there is not such a case for the host halo,
at least not one that could be expected from first principles. As
explained in Schive et al. (2014b) (see their Figure 3), the final
configuration seems to consist of a central soliton surrounded
by density granules that appear from the quantum interference
of the wavefunction and which seem to be of the same size as
the soliton itself. In other words, the host halo appears from a
very different physical process to that of the soliton configuration,
which adds to the mystery of Equation (28a).

In a follow up paper, the authors of Bar et al. (2018) consider
a wider sample of rotation curves but now consider that a better
energy relation between the soliton and the host halo is given in
terms of their kinetic energy (Bar et al., 2019), namely:

K

M

∣

∣

∣

∣

soliton

≃ K

M

∣

∣

∣

∣

halo

. (28b)

As in the case of Equation (28a), we can give the exact expression
for the soliton only, which is Guzmán and Ureña-López (2004):
K/M|soliton = −E/M|halo = −(1/3)γ , given that the soliton
configuration satisfies the virial relation K/|W| = 1/2, see
section 3.5 above. Notice that for the soliton, whether we consider
the total energy or just the kinetic one, the energy for unit mass is
numerically the same, except for a change in sign. Again, that the
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numerical ratios seem to be the same for the two systems (soliton
and halo) is not at all expected beforehand.

The discussion about the energy relations (28) is not trivial,
as one prediction of particular importance is that, under the
SFDM hypothesis, the peak rotation velocity in the interior
parts of galaxies should match the one at its outer parts (Bar
et al., 2018, 2019). The internal peak must be attributed to the
soliton configuration, whereas the asymptotic value comes from
the NFW envelope, if the matching of the two profiles is done
consistently. According to the results reported in Bar et al. (2018),
the presence of the internal soliton is not supported by the data
and the latter put a lower bound on the fiel mass of ma22 > 10,
which is inconsistent with other studies (see section 5.1 above) 4.

5.3. Multi-State Configurations
It must be clear that the topic of the core-halo relations is not
yet closed. For instance, in Mocz et al. (2017b) it is suggested
that Msoliton ∝ |E|1/3, but as shown in Bar et al. (2018) this
relation comes directly from the intrinsic scaling relation of
the SP system (13). Moreover, in a more recent study in Chan
et al. (2018), which even considers the contribution of stars
in the simulations, it is found that resultant halos satisfy the
expected scaling relations and that the granules that made
up the halo are about the same size as the central soliton.
Granules are a recurrent feature in cosmological simulations,
and it seems that their presumed presence in galaxy halos
is yet to be considered carefully in the comparison with
galaxy data.

A related idea that was first proposed in Matos and Ureña-
López (2007) is the gravitational co-existence of different energy
eigenstates of the wavefunction; the resultant objects were called
multi-state configurations. The idea behind this is that the
ground state configuration, being the only one which is alone
stable, can provide gravitational support for other excited states
to also become stable (Ureña-López and Bernal, 2010), see
also (Lin et al., 2018) for a similar approach. Actually, multi-
state configurations are stable and virialized (just like the soliton-
halo systems represented by Equation 28), as shown in Ureña-
López and Bernal (2010) and Bernal et al. (2010) for both
the non-relativistic and relativistic regimes, respectively. In this
manner, one could build up complex configurations with a
given number of ripples that could resemble the presence of
granules in the simulations in Schive et al. (2014a), but further
research is necessary before we can give solid evidence about
this idea.

6. CONCLUSIONS

We have made a concise account of the properties of SFDM,
in which the DM particle is described by a minimally coupled
scalar field. If true, this model implies that DM is made up of

4Another possibility to test the presence of a soliton configuration in the central

parts of galaxies is to study its characteristic oscillations and their influence in the

motion of stars. The first attempt in Marsh and Niemeyer (2018) considered the

quasinormal frequency γ . However, a more complete study should also consider

other higher frequencies, see (Guzmán, 2019). This is an interesting test that

deserves further investigation.

ultra-light bosons whose quantum properties are able to show up
at cosmological and astrophysical scales. Different observations
seem to indicate that most likely the boson mass is of the order
of 10−22eV, which at the same time allows the model to comprise
the totality of the DM budget and to explain the seemingly cored
density profile in the central parts of the galaxies. However, it is
not yet clear whether the SFDMmodel is to survive further tests,
especially those at small scales that are most sensitive to the value
of the boson mass and that are currently inconclusive about the
preferred value of the boson mass.

To describe the non-linear process for the formation of
structure within the SFDM paradigm, N-body simulations have
been adapted to simulate the fluid description of the model,
but they cannot yet capture the full field dynamics and the
best option remains to solve directly the so-called Schrodinger-
Poisson system. We have discussed the shortcomings of the fluid
description in the simplest case possible represented by stationary
equilibrium configurations. There is a reasonable doubt that
the well-know solutions of the SP system for self-gravitating
configurations can be faithfully replicated by the classical fluid
equations, which casts further doubts in the results obtained
from N-body emulators of the SFDM model. This is particulary
acute in the cases in numerical simulations that only consider
a cut-off in the MPS without taking into account the repulsive
quantum force (see for instance Leo et al., 2018). As an example,
we have studied a top-hat collapse model for SFDM, and found
that the formation of low-mass systems could be prevented by
the cosmological settings themselves because of the intrinsic wave
nature of the equations of motion. More detailed studies are
necessary to establish this newly found non-linear suppression of
structure, and whether it is also present in the outputs from the
N-body emulators.

Another remarkable prediction of the SFDM model is the
presence of a soliton structure in the center of all galaxies, and this
begs the question of the possible interaction of the boson particles
with the supermassive black holes (SMBHs) that are reported to
exist in the center of many galaxies. The masses of these SMBHs
are in the range 104 − 106M⊙, quite similar to the estimated
107 − 108M⊙ of the aforementioned soliton cores. Preliminary
studies indicate a non-trivial interaction between black holes
and scalar fields (Ureña-López and Liddle, 2002; Barranco and
Bernal, 2011; Brito et al., 2017; Avilez et al., 2018), but so far it
seems that there is not a significant absorption of the field for the
values of the bosonmass in the range 10−22−10−21eV, which are
precisely of the most interest in cosmology and astrophysics.

One last topic that would have deserved a separate discussion
is that about constraints arising from the comparison with
observations of the Lyman-α forest, that so far seem to be the
tightest ones according to recent studies (Armengaud et al., 2017;
Iršič et al., 2017; Leong et al., 2019; Nori et al., 2019). These
studies require results from dedicated N-body simulations with
gas and stars, which seem to point out that the boson massma >

10−21 eV, and then there could be some incompatibility with the
constraints obtained at astrophysical scales (except for the studies
in Bar et al., 2018, 2019). However, given the current concerns
about the reliability of the N-body emulators (Li et al., 2019), it
seems wise to wait until further developments of the numerical
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codes allow a better interpretation of the Lyman-α forest within
the SFDM paradigm.
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