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We present different reaction models commonly used in nuclear astrophysics, in

particular for the nucleosynthesis of the light elements. Nuclear reactions involved in

stellar evolution generally occur at energies much lower than the Coulomb barrier.

This property makes the cross sections extremely small, and virtually impossible to be

measured in the laboratory. We start with a general discussion of low-energy scattering,

and define the various cross sections required for reaction networks (essentially radiative

capture and transfer reactions). Then we present specific models. Microscopic theories

are based on fundamental principles, such as a nucleon-nucleon interaction, and an

exact account of the antisymmetrization between all nucleons. In this context, most

calculations performed so far have been done in the cluster approximation, but recent

works, referred to as “ab initio” models, go beyond this approximation. Microscopic

models can be simplified by neglecting the internal structure of the colliding nuclei, which

leads to the potential model, also named the optical model. An alternative approach

for the theoretical analysis of the experimental data is based on the phenomenological

R-matrix theory, where parameters are fitted to the existing data, and then used to

extrapolate the cross sections down to stellar energies. Indirect approaches, such as the

Trojan Horse method, are briefly outlined. Finally, we present some typical applications

of the different models.

Keywords: nuclear reactions, nuclear astrophysics, scattering models, capture reactions, transfer reactions,

indirect methods

1. INTRODUCTION

Nuclear reactions are responsible for the nucleosynthesis, i.e., for the formation of the elements
in the Universe (Bethe, 1939; Burbidge et al., 1957). Big-Bang nucleosynthesis mainly produces
2H, 3He, and α particles. This primordial nucleosynthesis is followed by the formation of early
stars where elements up to Fe are produced. Heavier elements are then synthesized by various
processes, such as neutron capture (Reifarth et al., 2018), neutrino-induced reactions (Alvarez-
Ruso et al., 2018), explosive events in supernovae (Wiescher et al., 2012), and the rapid-neutron
process in neutron-star mergers (Thielemann et al., 2017). Astrophysical scenarios and stellar
models are discussed in many textbooks (see e.g., Clayton, 1983; Rolfs and Rodney, 1988; Iliadis,
2007; Thompson and Nunes, 2009) and review articles (see e.g., Aprahamian et al., 2005; José and
Iliadis, 2011; Wiescher et al., 2012).

The role of nuclear physics in astrophysics is fundamental, and this discipline is referred to
as nuclear astrophysics. It essentially started with the pioneering work of Bethe (1939). Later,
the various cycles of stellar evolution were described in the seminal review by Burbidge et al.,
known as B2FH (Burbidge et al., 1957). Many observational properties find their origin in
nuclear physics. (i) A typical example is the 0+2 level of 12C, known as the Hoyle state (Hoyle,
1954), which was predicted from the observed 12C abundance in the Universe, and found
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experimentally later. The formation of 12C is currently well-
understood from the triple α process. (ii) From the observed
abundances of the elements, a gap between masses 5 and 8
is explained by the particle instability of 5He and 5Li. (iii) In
the high-mass region of the abundance distribution, peaks are
clearly observed, and are explained by the existence of magic
numbers in nuclear physics. Magic nuclei are strongly bound,
and therefore difficult to destroy by photodissociation. (iv) The
abundance distribution also presents an “even-odd” effect, even
nuclei being more abundant; again the origin of this effect stems
from nuclear binding energies since odd-mass nuclei are less
bound and therefore more fragile than even-mass nuclei. Recent
reviews on nuclear astrophysics can be found in Bertulani and
Kajino (2016) and Liccardo et al. (2018).

Stellar models require many nuclear inputs. A huge number
(up to several thousands) of reaction rates, involving charged
particles (protons and alphas) and neutrons, are needed in
nucleosynthesis networks (Wiescher et al., 2012). Reactions
involving charged particles are transfer and capture processes.
The former stem from the nuclear force, and the latter from
the electromagnetic interaction. When both channels are open,
the transfer cross section is always much larger than the capture
cross section. A challenge for nuclear physicists is to determine
the cross sections at stellar energies, which are in general much
lower than the Coulomb barrier. Except in a few cases, direct
measurements in this low-energy range (referred to as the
“Gamow peak”) are not possible, since the cross sections are too
low to be measured in the laboratory. Although experimental
techniques have been strongly developed over the last decades
(Broggini et al., 2010), a theoretical support is often necessary to
complement the data, and in particular to extrapolate them down
to stellar energies.

Owing to the experimental difficulties associated with direct
measurements, several indirect techniques have been developed:
the Trojan Horse method (Baur, 1986; Tumino et al., 2013;
Spitaleri et al., 2019), the Coulomb breakup method (Baur et al.,
1986), or the Asymptotic Normalization Coefficient method
(ANC, see Mukhamedzhanov et al., 2001). The main advantage
of these indirect approaches is to circumvent the smallness of
the cross sections. However, they require a precise theoretical
modeling to determine the relevant cross sections from the data.

The calculation of the cross sections is of course based on the
scattering theory. Various models are being used in the literature.
Owing to the low energies relevant in nuclear astrophysics,
and to the low level densities, the optical model (also referred
to as “potential model”) can be used for capture reactions
(Tombrello and Parker, 1963; Bertulani, 2003). Heavy-ion fusion
reactions are also described by this model, even if different
variants exist (Canto et al., 2006). Impressive developments
have been performed in the framework of microscopic models,
which present an important predictive power since they rely
on a nucleon-nucleon interaction only. Solving a many-body
Schrödinger equation for scattering states is however a difficult
task, and the cluster approximation (Horiuchi et al., 2012) is
used in most calculations. However, recent works succeeded
to address, in a microscopic theory, the 2H(d,γ )4He (Arai
et al., 2011), 3He(d,p)4He (Navrátil and Quaglioni, 2012), and
3He(α, γ )7Be (Neff, 2011; Dohet-Eraly et al., 2016) reactions

without the cluster approximation. Recent progress has been
made in Effective Field Theories (Zhang et al., 2018). These
calculations are highly computer demanding, and are currently
limited to low-mass systems.

The models discussed above are, in principle, independent
of experimental data. In practice, however, available data are
used to assess their reliability, and/or to tune some important
parameter(s). In contrast, the phenomenological R-matrix theory
(see for example Barker and Kajino, 1991; Descouvemont and
Baye, 2010) explicitly relies on the existence of data, but is an
efficient tool to analyse reactions of astrophysical interest. The
cross sections can be parameterized by a small number of real,
energy-independent, parameters. This fitting procedure requires
the availability of experimental data, but in general allows a
reliable extrapolation down to stellar energies. The R-matrix
theory deals with capture, transfer and elastic scattering on an
equal footing. In practice, however, the R-matrix theory is limited
to reactions where the level density is limited (typically up to a
few levels per MeV).

When the mass increases, the level density is in general too
large for cluster models or for an R-matrix approach. In that
situation, the cross section essentially depends on properties of
the compound nucleus. Here the shell model (Richter et al.,
2011) provides information on resonance properties, such as
energies, spins, widths, etc. An extension to the continuum has
been developed (Chatterjee et al., 2006). The Hauser-Feshbach
formalism (Rauscher et al., 1997) is also widely used in high-mass
systems, with a high level density.

A specificity of nuclear astrophysics is to require a large
number of reaction rates. These reaction rates are obtained
from various sources, experimental as well as theoretical.
A link between nuclear physics and astrophysics can be
established by compilations, where the authors provide an
evaluation of the available data, and recommend reaction
rates. The first compilations were performed by the Caltech
group (Caughlan and Fowler, 1988), and then improved in
various ways: evaluation of uncertainties, improved numerical
treatment, update of experimental data, etc. Some compilations
address specific reactions, such as Big-Bang nucleosynthesis
(Descouvemont et al., 2004; Coc et al., 2012) or solar fusion
reactions (Adelberger et al., 2011), but other works cover a wider
range (Angulo et al., 1999; Longland et al., 2010).

In this review, we discuss the current status of reaction
models in nuclear astrophysics. We focus on charged-particle
induced reactions, which represent one of the main inputs in
stellar evolution. In section 2, we present an overview of the
different cross sections involved in the nucleosynthesis. In section
3 we briefly describe some theoretical models used for nuclear
reactions. Applications are presented in section 4. The conclusion
and outlook are presented in section 5.

2. CROSS SECTIONS FOR NUCLEAR
ASTROPHYSICS

2.1. Scattering Wave Functions
In this section, we present an outline of the reaction theory
needed for nuclear astrophysics. In particular, we are dealing

Frontiers in Astronomy and Space Sciences | www.frontiersin.org 2 April 2020 | Volume 7 | Article 9

https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org
https://www.frontiersin.org/journals/astronomy-and-space-sciences#articles


Descouvemont Nuclear Reactions of Astrophysical Interest

with low energies, around and below the Coulomb barrier. The
goal is to model different processes, such as transfer or capture
reactions. We start from a general formalism of scattering theory,
and then apply it to different models. This outline is of course
very brief, and we refer to textbooks (e.g., Satchler, 1983; Canto
and Hussein, 2013) for a more detailed presentation.

The main goal of scattering models is to solve the
Schrödinger equation

H9 = E9 (1)

for positive energies E (this energy is defined from the reaction
threshold). In this equation, H is the Hamiltonian, and 9 is
the nucleus-nucleus wave function. For the sake of simplicity we
assume here that the internal structure of the colliding nuclei is
neglected and that the spin of the target is zero. Consequently,
the Hamiltonian only depends on the relative coordinate rrr. For a
system with charges (Z1e,Z2e) and nucleon numbers (A1,A2), it
is written as

H = −
h̄2

2µmN
1r + VN(r)+ VC(r), (2)

where, mN is the nucleon mass and µ = A1A2/(A1 + A2) is the
dimensionless reducedmass of the system. In Equation (2),VN(r)
and VC(r) are the nuclear and Coulomb potentials, respectively.
In general VN(r) depends on the angular momentum and on the
spin. A partial wave with total spin J and angular momentum L is
given by

9
JM
L (rrr) =

1

r
g
J
L(r)

[

YL(�r)⊗ χs

]JM
, (3)

where the spinor χs is associated with the spin. In most cases,
s = 0 or s = 1/2 (the latter case covers the frequent situation
of nucleon scattering). The relative function g

J
L(r) is given by the

one-dimension Schrödinger equation

−
h̄2

2µmN

(

d2

dr2
−
L(L+ 1)

r2
+ VN(r)+VC(r)

)

g
J
L(r)=Eg

J
L(r), (4)

and must be solved for scattering states (E > 0) or for bound
states (E < 0) with the corresponding boundary conditions.
Efficient techniques are based on the Numerov algorithm
(Raynal, 1972) or on the R-matrix method (Descouvemont and
Baye, 2010).

At large distances, the nuclear potentialVN in (2) is negligible.
For a scattering state, the radial wave function tends to

g
J
L(r) −−−→r→∞

IL(kr)− U
J
LOL(kr), (5)

where IL(x) and OL(x) are the incoming and outgoing Coulomb
functions (see section 2.2), and U

J
L is the scattering matrix (in

single-channel calculations, it is a 1 × 1 matrix). The scattering
matrix depends on the nuclear potential, and provides the elastic
cross sections. For real potentials, usually used in astrophysics,
we have the property

|UJ
L| = 1. (6)

The phase shift δJL is defined from

U
J
L = exp(2iδJL), (7)

and is real. At energies above the Coulomb barrier, complex
potentials are often used. The imaginary part simulates
absorption, and the model is referred to as the “optical model”
(Satchler, 1983). In that case, we have

|UJ
L| ≤ 1, (8)

and the phase shift contains an imaginary part.
Generalizations can be performed in various directions. A first

possibility is to extend the wave function (3) to multichannel
calculations as

9
JM
L (rrr) =

1

r

∑

cLI

gJcLI(r)

[

YL(�r)⊗
[

φI1
c ⊗ φI2

c

]I
]JM

, (9)

where φ
I1
c and φ

I2
c are the internal wave functions with spins I1

and I2, and where I is the channel spin. Equation (4) is replaced
by a system of coupled equations.

In Equations (3) and (9), antisymmetrization effects between
the target and the projectile are neglected. However, they can
be partly simulated by an appropriate choice of the nucleus-
nucleus potential (Friedrich, 1981; Baye, 1987). A second
generalization aims to explicitly include antisymmetrization
effects. In microscopic cluster models (Descouvemont and
Dufour, 2012), the wave function is defined as

9
JM
L = A

1

r

∑

cLI

g
J
cLI(r)

[

YL(�r)⊗
[

φI1
c (ξ1ξ1ξ1)⊗ φI2

c (ξ2ξ2ξ2)
]I

]JM

,(10)

where A is the A-nucleon antisymmetrization operator. The
internal wave functions are defined in the shell model and depend
on a set of internal coordinates (ξiξiξi). We will briefly describe
microscopic models in section 3.

2.2. General Properties of Low-Energy
Reactions
Before discussing applications specific to nuclear astrophysics,
we address here some general properties of the cross sections at
low energies, typical of stellar conditions. In this energy regime,
the scattering between charged particles is essentially governed
by the Coulomb interaction. In other words, we can neglect the
structure of the nuclei, and reduce the Schrödinger equation
to a two-body problem. For a given angular momentum L, the
wave function depends on the relative coordinate rrr. The radial
Schrödinger equation only involves the Coulomb potential and
reads, at c.m. energy E,

−
h̄2

2µmN

(

d2

dr2
−

L(L+ 1)

r2

)

gL(r)+
Z1Z2e

2

r
gL(r) = EgL(r),(11)

where we have dropped index J. The solutions of Equation (11)
are the regular and irregular Coulomb functions FL(η, kr) and
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GL(η, kr) (Thompson, 2010). They depend on the wave number
k, and on the Sommerfeld parameter η

k =

√

2µmNE

h̄2
,

η =
Z1Z2e

2

h̄v
≈ 0.158Z1Z2

√

µ

E
(E in MeV), (12)

where v = h̄k/µmN is the relative velocity.
From the Coulomb functions, one defines the incoming and

outgoing functions as

IL(η, x) = GL(η, x)− iFL(η, x),

OL(η, x) = GL(η, x)+ iFL(η, x). (13)

The penetration factor PL and the shift factor SL are obtained, at
a radius a, from

PL(E, a) = ka/[F2L(η, ka)+ G2
L(η, ka)]

SL(E, a) = [FL(η, ka)F
′
L(η, ka)+ GL(η, ka)G

′
L(η, ka)] PL(E, a),

(14)

where the prime denotes the derivative with respect to ka.
The penetration factor can be approximately interpreted as the
probability to cross the Coulomb barrier, and therefore strongly
depends on energy (strictly speaking, however, PL is not a
probability since it may be larger than unity). Below the Coulomb
barrier, it essentially depends on energy as

PL(E, a) ∼ exp(−2πη). (15)

This term represents the main contribution to the energy
dependence for L = 0. Higher-order corrections can be found in
Clayton (1983) andAfanasjev et al. (2012). The penetration factor
is illustrated in Figure 1 for a light system p+12C, and for an
heavier system α+12C. The Coulomb barriers are around 1.6 and
3.2MeV, respectively. As expected, the centrifugal barrier reduces
the penetration factor. This effect is stronger for light systems,

where the reduced mass is small. Some dependence upon the
radius a shows up, but is weak at very low energies.

The fast energy dependence (15) is common to all low-energy
cross sections. For this reason, nuclear astrophysicists use the
S factor

S(E) = σ (E)E exp(2πη), (16)

which presents a smooth energy dependence for non-resonant
reactions. It contains the nuclear information on the reaction.

Resonances play an important role in many reactions. Near a
resonance energy ER in a partial wave JR, a cross section σ (E) can
be written at the Breit-Wigner approximation as

σ (E) ≈
π

k2
2JR + 1

(2I1 + 1)(2I2 + 1)

Ŵi(E)Ŵf (E)

(E− ER)2 + Ŵ(E)2/4
, (17)

where Ŵi and Ŵf are the partial widths in the initial and final
channels, Ŵ is the total width, and (I1, I2) are the spins of the
colliding nuclei. This definition is valid for transfer as well as
for capture reactions. In both cases, the entrance width Ŵi(E) is
a particle width, often a proton or an alpha width. Its energy
dependence is given by

Ŵi(E) = Ŵi
PL(E, a)

PL(ER, a)
= 2γ 2

i PL(E, a), (18)

where Ŵi is the width at energy ER, and γ 2
i is called the reduced

width (Descouvemont and Baye, 2010). Notice that the energy
variation slightly depends on the radius a. The Breit-Wigner
approximation is a particular case of the more general R-matrix
theory (Lane and Thomas, 1958; Descouvemont and Baye, 2010),
where several resonances may overlap.

According to Equation (15), the width of a resonance gets very
narrow when the energy decreases. The reduced width γ 2

i reflects
the cluster structure of the resonance (Descouvemont and Baye,
2010) and is defined even for bound states (in that case the total
width is Ŵi = 0 since the penetration factor vanishes). It does not
depend on energy. Consequently, even a state presenting a strong
cluster structure may be characterized by a small total width

FIGURE 1 | Penetration factor (14) for the p+12C (left) and α+12C (right) systems. Solid and dashed lines correspond to a = 5 fm and a = 6 fm, respectively.
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if it is located at low energies. As the entrance width depends
on the penetration factor, the fast Coulomb dependence is also
removed in the resonant S factor [Equation (16) with the cross
section (17)].

In transfer reactions, Ŵf (E) is also a particle width, and
the previous discussion is still valid. Notice that, in general,
the L values are different (see a discussion and examples in
Descouvemont, 2003). However, the Q value must be taken into
account as

Ŵf (E) = 2γ 2
f PL(E+ Q, a) (19)

where γ 2
f

is the reduced width of the resonance in the exit

channel. If the threshold energy Q is large (typically a few MeV),
the corresponding penetration factor presents a slow energy
dependence, and the final width is approximated by a constant.
This is not true in a few specific reactions, where the Q value is
small (or even negative), and where the energy dependence of
(19) is not negligible (an example is 17O(α,n)20Ne where Q =
0.586 MeV).

In capture reactions, the width of the exit channel Ŵf is
the γ width. The energy dependence is given by the theory of
electromagnetic transitions and reads

Ŵγ (E) = Ŵγ

(

E− Ef

ER − Ef

)2λ+1

, (20)

where Ŵγ is the γ width at the resonance energy, λ is the order
of the electromagnetic transition, and Ef the energy of the final
nuclear state (Ef < 0). In general this energy dependence is
rather weak, and can be neglected. Owing to the lower amplitude
of the electromagnetic interaction compared to the nuclear force,
γ widths are in general much lower than particle widths (in light
nuclei Ŵγ . 1 eV).

The total width Ŵ(E) in (17) is in general defined as the sum
of the partial widths,

Ŵ(E) = Ŵi(E)+ Ŵf (E). (21)

If more than two channels are open, the total width should
include all partial widths of the resonance.

2.3. Radiative-Capture Reactions
Radiative-capture reactions play an important role in the
nucleosynthesis (Iliadis, 2007). They can be seen as a transition
from an initial scattering state to a final bound state of the system.
This process arises from the electromagnetic interaction, and can
therefore be treated in the perturbation theory (Rose and Brink,
1967). If He is the photon-emission Hamiltonian for the nuclear
system, the capture cross section to a final state with spin Jf and
parity πf is given by

dσc

d�γ

(E, Jfπf ) =
kγ

2π h̄

1

(2I1 + 1)(2I2 + 1)

×
∑

qν1ν2Mf

|〈9JfMf πf |He(q,�γ )|9
ν1ν2〉|2,(22)

where�γ is the photon angle, q = ±1 is the photon polarization,
and 9JfMf πf the final-state wave function. Here ν1 and ν2 are the
spin projections of the colliding nuclei.

To compute the cross section, the initial wave function 9ν1ν2

is expanded in partial waves, and the electromagnetic operator is
expanded in multipolesMσ

λµ (Rose and Brink, 1967). At the long
wavelength approximation, the electric (σ = E) and magnetic
(σ = M) multipole operators are given by

M
E
λµ = e

A
∑

i

gℓ(i) r
λ
i Y

µ
λ (�ri ),

M
M
λµ = µN

A
∑

i

[

2

λ + 1
gℓ(i)ℓℓℓi + gs(i)sssi

]

· ∇∇∇rλi Y
µ
λ (�ri ), (23)

with

gℓ(i) = 1/2− tiz ,

gs(i) = gp(1/2− tiz)+ gn(1/2+ tiz), (24)

where tiz is the isospin projection of nucleon i, and gp, gn are
the gyromagnetic factors of the proton (gp = 5.586) and of the
neutron (gn = −3.826) (µN = eh̄/mNc is the nuclear magneton).
Equations (23) are written in the framework of a microscopic
approach. Simplified expressions, valid for two-particle systems
can be found (e.g., in Bertulani, 2003; Descouvemont, 2003).
After integration over the photon angle�γ , the total cross section
is given by

σc(E, Jfπf ) =
2Jf + 1

(2I1 + 1)(2I2 + 1)

8π

h̄

×
∑

σλJiIωLω

k2λ+1
γ

2Lω + 1

(λ + 1)

λ(2λ + 1)!!2

|〈9Jf πf ||Mσ
λ ||9

Jiπi
LωIω

(E)〉|2,

(25)

where Ji and πi are the spin and parity in the entrance channel,
and where Lω and Iω are the channel spin and the orbital
momentum. The summations in (25) are limited by the usual
selection rules

|Ji − Jf | ≤ λ ≤ Ji + Jf ,

πiπf = (−)λ (for σ = E),

πiπf = (−)λ+1 (for σ = M). (26)

In addition, the long-wavelength approximation (kγR≪1, where
R is a typical dimension of the system) strongly reduces the
summation over λ. Inmany cases, a singlemultipole is important.

As in the previous subsection we only give the integrated
cross section, where no interference between multipoles and
partial waves shows up. In contrast, the differential cross
section (22) involves interference terms (see more detail
in Descouvemont, 2003).
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2.4. Transfer Reactions
In a transfer reaction (also denoted as “rearrangement reaction”),
some nucleons are exchanged between the target and the
projectile. A typical example in astrophysics is the 13C(α,n)16O
reaction, where two protons and one neutron are stripped
from the α particle to 13C, to produce 16O. Transfer processes
arise from the nuclear interaction and the corresponding cross
sections are usually much larger than the capture cross sections,
arising from the electromagnetic interaction. For example, the
13C(α,n)16O cross section is larger by several order of magnitude
than the 13C(α, γ )17O cross section.

If � = (θ ,φ) is the relative direction of the nuclei in the
final channel, the transfer cross section (Descouvemont and Baye,
2010) is given by

dσt

d�
(E, i → f ) =

π

k2
1

(2I1 + 1)(2I2 + 1)

∑

j

Aj(E) Pj(cos θ), (27)

where the anisotropy coefficients Aj(E) are defined as

Aj(E) =
1

4π

∑

JπℓLI

∑

J′π ′ℓ′L′I′

(−)I−I′Z(j, J, J′, ℓ, L, I)Z(j, J, J′, ℓ′, L′, I′)

U
Jπ
iℓI,f ℓ′I′ (E)U

J′π ′∗
iLI,fL′I′ (E). (28)

and UUUJπ represents the collision matrix generalized to
multichannel systems. Coefficients Z are defined as

Z(j, J, J′, ℓ, L, I) = [(2J + 1)(2J′ + 1)(2ℓ + 1)(2L+ 1)]1/2

< ℓ 0 L 0|j 0 >

{

ℓ L j
J′ J I

}

. (29)

Again, definition (27) is model independent. The choice of
the model only affects the collision matrix. As for radiative
capture, the important quantity in astrophysics is the integrated
cross section

σt(E, i → f ) =
π

k2

∑

Jπ

2J + 1

(2I1 + 1)(2I2 + 1)

∑

LL′II′

|UJπ
iLI,fL′I′ (E)|

2.

(30)

The discussion of subsection 2.3 remains valid: in general a few
terms are important in (30), since only low L values contribute at
energies below the Coulomb barrier.

2.5. Fusion Reactions
A number of nuclear reactions that occur in stars are fusion
reactions, involving light to medium-mass nuclei. Important
examples are the carbon and oxygen burning processes in
massive stars. The angular momentum and energy-dependent
transmission coefficient Tf (L,E) is then used in the cross section
formula to obtain the fusion cross section σf

σf (E) =
π

k2
(1+ δ12)

∑

L

(2L+ 1)Tf (L,E), (31)

where δ12 = 1 for symmetric systems and 0 otherwise. For
symmetric systems the sum runs over even L values only.

Within an optical model approach to fusion (in that case,
|UJ

L| < 1), the transmission coefficient is given by

Tf (L,E) = 1− |UJ
L|
2. (32)

However, at very low energies, UJ
L ≈ 1, and this technique

is not accurate. From the continuity equation, the transmission
coefficient (32) is strictly equivalent to

Tf (L,E) = −
2

h̄v

∫

|gL(r)|
2W(r)dr, (33)

where W(r) is the imaginary part of the optical potential that
represents absorption due to fusion, and gL(r) is the exact (single-
channel) wave function (Hussein, 1984; Canto et al., 2006).

2.6. Weak-Capture Cross Sections
For low-mass stars, the nucleosynthesis is initiated by the
p(p,e+ν)d reaction, which occurs through the weak interaction.
Since the corresponding Hamiltonian is much smaller than the
nuclear and electromagnetic Hamiltonians, the cross section is
very small. Estimates in optimal experimental conditions (Rolfs
and Rodney, 1988) predict one event per 106 years! Fortunately,
theoretical models are quite accurate (Kamionkowski and
Bahcall, 1994; Marcucci et al., 2013). The cross section is shown
to be proportional to

σpp(E) ∼ | < 91+

d ||MF + λ2MGT ||9pp(E) > |2, (34)

where 91+
d

is the deuteron wave function, 9pp(E) is the p − p
scattering wave function and MF and MGT are the Fermi and
Gamow-Teller operators, respectively. In (34), λ2 is the ratio of
axial-vector to vector coupling constants. A recent calculation
(Gaspard et al., 2019) provides S(0) ≈ 3.95 × 10−25 MeV-b,
which is considerably lower than values obtained for capture or
transfer reactions.

3. REACTION MODELS IN NUCLEAR
ASTROPHYSICS

3.1. Microscopic Models
Microscopic models are based on fundamental principles of
quantum mechanics, such as the treatment of all nucleons,
with exact antisymmetrization of the wave functions. Neglecting
three-body forces, the Hamiltonian of a A-nucleon system is
written as

H =

A
∑

i=1

Ti +

A
∑

i<j=1

Vij, (35)

where Ti is the kinetic energy and Vij a nucleon-nucleon
interaction (Wildermuth and Tang, 1977).

The Schrödinger equation associated with this Hamiltonian
cannot be solved exactly when A > 3. For very light systems
(A ∼ 4 − 5) efficient methods (Kievsky et al., 2008) exist,
even for continuum states (Navrátil et al., 2010). However, most
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reactions relevant in nuclear astrophysics involve heavier nuclei,
essentially with nucleon or α projectiles. Recent developments of
ab initio models (see e.g., Caurier and Navrátil, 2006; Navrátil
and Quaglioni, 2011) are quite successful for spectroscopic
properties of low-lying states. These models make use of
realistic interactions, including three-body forces, and fitted
on many properties of the nucleon-nucleon system. Recent
works succeeded in applying ab initio calculations to nuclear
astrophysics (see e.g., Arai et al., 2011; Neff, 2011; Dohet-Eraly
et al., 2016; Marcucci, 2018). However, a consistent description
of bound and scattering states of an A-body problem remains
a challenging task (Navrátil et al., 2010), in particular for
transfer reactions.

In the cluster approximation, it is assumed that the
nucleons are grouped in clusters (Wildermuth and Tang, 1977;
Descouvemont and Dufour, 2012). The internal wave functions
of the clusters are denoted as φ

Iiπiνi
i (ξiξiξi), where Ii and πi are

the spin and parity of cluster i, and ξiξiξi represents a set of their
internal coordinates. In a two-cluster system, a channel function
is defined as

ϕ
JMπ
LI (�r ,ξ1ξ1ξ1,ξ2ξ2ξ2) =

[

YL(�r)⊗ [φI1π1
1 (ξ1ξ1ξ1)⊗ φ

I2π2
2 (ξ2ξ2ξ2)]

I
]JM

, (36)

where different quantum numbers show up: the channel spin I,
the relative angular momentum L, the total spin J and the total
parity π = π1π2(−)L.

As discussed in section 2.1, the total wave function of the
A-nucleon system is written, in a microscopic cluster model, as

9JMπ =
∑

cLI

9
JMπ
cLI =

∑

cLI

A g
Jπ
cLI(r)ϕ

JMπ
cLI (�r ,ξ1ξ1ξ1,ξ2ξ2ξ2), (37)

which corresponds to the Resonating Group (RGM) definition
(Horiuchi, 1977; Descouvemont and Dufour, 2012). Index c
refers to different two-cluster arrangements, and A is the
antisymmetrization operator. In most applications, the internal

cluster wave functions φ
Iiπiνi
i are defined in the shell model.

Accordingly, the nucleon-nucleon interaction must be adapted
to this choice, which leads to effective forces, such as the
Volkov (Volkov, 1965) or the Minnesota (Thompson et al.,
1977) interactions. The relative wave functions g

Jπ
cLI(r) are

to be determined from the Schrödinger equation, which is
transformed into a integro-differential equation involving a non-
local potential (Horiuchi, 1977). In practice, this relative function
is expanded over Gaussian functions (Wildermuth and Tang,
1977; Dufour and Descouvemont, 2011), which corresponds
to the Generator Coordinate Method (GCM). The numerical
calculations can be made systematic with the GCM, which is not
the case for the RGM.

The main advantage of cluster models with respect to other
microscopic theories is their ability to deal with reactions, as well
as with nuclear spectroscopy. The first applications were done
for reactions involving light nuclei, such as d, 3He or α particles
(Liu et al., 1981; Hofmann and Hale, 1997). More recently, much
work has been devoted to the improvement of the internal wave
functions: multicluster descriptions (Descouvemont and Baye,
1994), large-basis shell model extensions (Descouvemont, 1996),
or monopolar distortion (Baye and Kruglanski, 1992).

3.2. The Potential Model
Solving the Schrödinger equation associated with a many-body
system is a difficult problem, which does not have an exact
solution when the nucleon number is larger than three. The
potential model is fairly simple to use, and has been applied to
several reactions in low-energy nuclear physics (Tombrello, 1965;
Bertulani, 2003). The basic assumptions of the potential model
are: (i) the nucleon-nucleon interaction is replaced by a nucleus-
nucleus force V(r), which depends on the relative coordinate
r only; (ii) the wave functions of the unified nucleus can be
described by a cluster structure with A1 + A2 nucleons; (iii) the
internal structure of the nuclei does not play any role. Since we
are dealing with low energies, the potential is in general real. The
extension to higher energies, which requires complex potentials
to simulate absorption channels, is known as the optical model. A
generalization to coupled-channel problems is also possible, but
seldom used in nuclear astrophysics.

The radial function g
Jπ
L (r) for bound and scattering states is

deduced from Equation (4). According to the application, the
choice of the nuclear contribution is guided by experimental
constraints. In radiative-capture calculations it is crucial to
reproduce the final-state energy. If phase shifts are available, they
can be used to determine the initial potential.

Besides experimental constraints, the nucleus-nucleus
potential must follow requirements arising from microscopic
arguments (Kukulin et al., 1983; Baye and Descouvemont,
1985). In the microscopic wave function (37), it can be shown
that, under some assumptions, there are non-vanishing radial
functions gJπcLI(r) which yield 9

JMπ
cLI = 0 after application of the

antisymmetrization operatorA. These radial functions are called
“forbidden states,” and their number depends on the system
and on the angular momentum. To illustrate the problem, let
us consider the α+p system where the α particle is described
in the shell model. Since the s-shell is filled by the α orbitals,
the external proton cannot occupy this s-shell state, which
corresponds to a forbidden state. We refer the reader to Buck
et al. (1977), Kukulin et al. (1983), and Baye and Descouvemont
(1985) for more information. The occurrence of forbidden
states can be simulated by an adequate choice of the potential.
According to Buck et al. (1977), the potential must contain a
number of bound states nr , equal to the number of forbidden
states. This prescription leads to deep potentials, since they
involve additional (unphysical) bound states. The calculation of
nr is in general not obvious, except for nucleus-nucleon systems.

In this simple model, the capture cross sections are deduced
from integrals involving scattering functions gJiπi

LiI
(r) at energy E,

and bound-state wave functions g
Jf πf

Lf I
(r)

Iλif (E) =

∫

g
Jiπi
Li

(E, r)rλg
Jf πf

Lf
(r)dr. (38)

We refer to Bertulani (2003) for more detail.
The main advantage of the potential model is its simplicity.

However, it assumes from the very beginning that the final bound
state presents the two-body structure of the entrance channel.
This is also true for resonances, which must be described by
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the adopted nucleus-nucleus structure. This hypothesis is not
always valid. In the 16O(α, γ )20Ne reaction for example, the 0+1
ground state and the 0+4 broad resonance are well described by
an α+16O structure, but the 0+2 and 0+3 resonances would require
other configurations, such as α+16O∗ or p+19F. This problem is
more and more frequent as the level density increases. Another
well-known example is the 15O(α, γ )19Ne reaction where most
of the 19Ne low-lying states can be accurately reproduced by
an α+15O structure, but where the resonance important for
astrophysics (3/2+ at Ec.m. = 0.50 MeV) most likely presents
another structure (Dufour and Descouvemont, 2000).

3.3. The Phenomenological R-Matrix
Method
The R-matrix method is well-known in atomic and nuclear
physics (Descouvemont and Baye, 2010). The basic idea is to
divide the space in two regions: the internal region (with radius
a), where the nuclear force is important, and the external region,
where the interaction between the nuclei is governed by the
Coulomb force only. Although the R-matrix parameters do
depend on the channel radius a, the sensitivity of the cross section
with respect to its choice is quite weak. In the R-matrix method,
the energy dependence of the cross sections is obtained from
Coulomb functions, as expected from the Schrödinger equation.

In the phenomenological variant of the R-matrix method, the
physics of the internal region is determined by a number N of
poles, which are characterized by their energies Eλ and reduced
widths γλi. In a multichannel problem, the R-matrix at energy E
is defined as

Rif (E) =
N

∑

λ=1

γλiγλf

Eλ − E
, (39)

which must be determined for each partial wave Jπ (not written
for the sake of clarity). Indices i and f refer to the initial and final
channels. The pole properties are associated with the physical
energy and width of resonances, but not strictly equal. This
is known as the difference between “formal” and “observed”
parameters, deduced from experiment.

The scattering matrices, and therefore the cross sections, are
directly determined from the R matrices in the different partial
waves (see Lane and Thomas, 1958; Descouvemont and Baye,
2010 for detail). When a single-channel is involved (i = f = 1),
the scattering matrix is written as

U =
I(ka)

O(ka)

1− (S− iP)R

1− (S+ iP)R
, (40)

where P(E) and S(E) are the penetration and shift factors,
respectively. In that case, the R-matrix has a dimension 1×1. This
definition can be easily extended to multichannel calculations
(Descouvemont and Baye, 2010). The phase shift is defined by

U = exp(2iδ) = exp(2i(δHS + δR)), (41)

where δHS is the hard-sphere phase shift which is obtained with
R = 0, and therefore with γλi = 0. The hard-sphere and R-matrix

phase shifts are obtained from

δHS = − arctan
F(ka)

G(ka)
,

δR = arctan
PR

1− SR
. (42)

Let us discuss the calculation of resonance properties. The
pole energies Eλ and reduced widths γλ (see Equation 39) are
associated with the poles of the R-matrix, and therefore depend
on the conditions of the calculation, such as the radius a. In a
single-channel problem, the resonance energies Eri , also referred
to as the “observed” energies, are defined as the energies where
the R-matrix phase shift is δR = π/2. According to (42), Eri are
therefore solutions of the equation

S(Eri )R(E
r
i ) = 1. (43)

On the other hand, the “observed” width enters the Breit-Wigner
parameterization near the resonance energy

δR(E) ≈ arctan
Ŵi(E)

2(Eri − E)
, (44)

which gives, by using (42)

Ŵi(E) = 2P(E)
R(Eri )

[

S(E)R(E)
]′

E=Eri

= 2P(E) γ̃ 2
i , (45)

and defines γ̃ 2
i as the “observed” reduced width of the resonance.

We also have

Ŵi(E) = Ŵi
P(E)

P(Eri )
, (46)

where Ŵi is the width calculated at the resonance energy.
If the pole number N is larger than unity, or in multichannel

calculations, the definition of Eri and of γ̃ 2
i is not analytical

and requires numerical calculations (Angulo and Descouvemont,
2000; Brune, 2002). We illustrate here a simple but frequent
situation of a single-channel calculation with N = 1. The phase
shift (42) is

δR(E) = arctan
Ŵ1(E)

2(E1 − E− γ 2
1 S(E))

, (47)

which is equivalent to (44) if we set

Er1 = E1 − γ̃ 2
1 S(E

r
1)

γ̃ 2
1 = γ 2

1 /
(

1+ γ 2
1 S′(Er1)

)

, (48)

where S′(E) = dS/dE. These formulas provide a simple link
between calculated and observed values. To derive (48) we
have used the Thomas approximation where the shift factor is
linearized near Er1 as

S(E) ≈ S(Er1)+ (E− Er1)S
′(Er1). (49)
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This approximation is in general quite accurate. The term
γ̃ 2
1 S

′(Er1) is called the shift factor; it is proportional to the
reduced width and is therefore large for strongly deformed states.
With Equation (48), the fitting procedure can be used from
the observed parameters. It presents important simplifications
when some of the parameters (such as bound-state or resonance
energies) are known from experiment, and therefore should be
constant during the fit.

The phenomenological R-matrix method can be applied
to transfer as well as to capture reactions. It is usually
used to investigate resonant reactions but is also suited to
describe non-resonant processes. In the latter case, the non-
resonant behavior is simulated by a high-energy pole, referred
to as the background contribution, which makes the R-matrix
nearly energy independent. In nuclear astrophysics, a famous
application is the 12C(α, γ )16O reaction. Experimental cross
sections are available down to E ≈ 1 MeV, whereas the relevant
stellar energy is close to 0.3 MeV. The R-matrix parameters are
fitted to the available data, and then used to extrapolate the cross
section to stellar energies (see a review in deBoer et al., 2017).

3.4. Indirect Methods
The main problem of nuclear astrophysics is the smallness of
the cross sections at stellar energies. Further, in some reactions
the availability of the required beam at the right energy may
be difficult to obtain. These issues spurred interest in devising
indirect methods (Tribble et al., 2014; Mukhamedzhanov and
Rogachev, 2017), whereby the induced desired reaction is
extracted from another reaction. We give below a brief overview
of some indirect methods.

3.4.1. The Trojan Horse Method
The basic idea behind the Trojan Horse Method (Baur, 1986;
Typel and Baur, 2003; Tumino et al., 2013; Spitaleri et al., 2019)
is to use the three-body reaction,

a+ A → b+ (x+ A) → b+ (c+ C), (50)

to extract the cross section of the desired x+A → c+C two-body
reaction. In the entrance channel, nucleus a presents a cluster
structure a = b + x, and cluster x is transferred to the target
A. In this process, cluster b acts as a spectator.

Using the Plane Wave Impulse Approximation and the
spectator model (Typel and Baur, 2003), the cross section of
process (50) is factorized as

d3σ

dEcd�cd�C
= K

(

dσ

d�

)

off
|8(kkkxb)|

2, (51)

where K is a kinematic factor. In this equation,
(

dσ
d�

)

off
is the

half-off-energy-shell differential cross section for the two-body
reaction, x + A → c+ C, and 8(kkkxb) is the Fourier transform of
the ground state wave function of nucleus a(= b+ x).

The main advantage of the Trojan Horse Method is that the
cross section (51) is not affected by Coulomb effects, and is
therefore more accessible than cross sections of astrophysical
interest. Dividing it by a calculated K|8(kkkxb)|

2 provides the

desired cross section
(

dσ
d�

)

off
. We refer the reader to Tribble et al.

(2014) and Spitaleri et al. (2019) for recent reviews. The Trojan
Horse Method has been applied to many reactions (see a review
in Tumino et al., 2013). A recent example is the measurement
of the 2H(d,p)3H and 2H(d,n)3He cross sections from 2 keV
to 1.5 MeV (Tumino et al., 2011). An 3He beam was used to
measure the three-body 2H(3He,p3H)1H and 2H(3He,n3He)1H
cross sections. Here nucleus a is 3He=d+p, and the deuteron
cluster (x in our notations) is transferred to the target. This
approach provides 2H(d,p)3H and 2H(d,n)3He cross sections free
of electron screening effects.

3.4.2. Coulomb Dissociation
The Coulomb breakup method (Baur et al., 1986, 2001) has been
suggested in experiments using radioactive beams to address the
problem of small cross sections. The photodissociation reaction

c+ γ → a+ b (52)

represents the reverse process of the capture reaction

a+ b → c+ γ , (53)

and their cross sections σd and σc are related by the
balance theorem

σd(E) =
(2Ia + 1)(2Ib + 1)

2(2Ic + 1)

k2

k2γ
σc(E), (54)

where Ii represents the spin of nucleus i In most applications,
the photon wavelength kγ is much larger than the particle
wavelength k, which means that

k2

k2γ
≫ 1, (55)

and σd is significantly larger than σc. This method is therefore a
good way to compensate the smallness of capture cross sections
at low energies. It is, however, limited to capture reactions toward
the ground state of nucleus c.

The 6Li→α+d breakup reaction was used to assess themethod
(Kiener et al., 1991), and reinvestigated recently (Hammache
et al., 2010). Coulomb breakup has also been used with
radioactive beams, to investigate reactions, such as 14O→13N+p
(Motobayashi et al., 1991; Kiener et al., 1993) or 8B→7Be+p
(Motobayashi et al., 1994; Kikuchi et al., 1998; Schümann et al.,
2006). The importance of the nuclear interaction on the Coulomb
dissociation has been discussed, for example, in Kumar and
Bonaccorso (2012).

3.4.3. The Asymptotic Normalization Coefficient

(ANC) Method
At large distances, the radial wave function for bound states tends
to aWhittaker function (Abramowitz and Stegun, 1972); we have

gJπL (r) −−−→
r→∞

CJπ
L W−η,L+1/2(2kBr), (56)
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where CJπ
L is the so-called “asymptotic normalization coefficient”

(ANC). For weakly bound states, the exponential decrease is
slow, and the main contribution to the electromagnetic matrix
elements arises from large distances. The capture cross section
is then essentially determined by the ANC. A typical example is
the 7Be(p,γ )8B reaction, where the 8B ground state is bound by
137 keV only. Of course, this is true at very low energies only
(typically ≤ 100 keV); for higher energies, the inner part of the
wave function and, consequently, the nuclear interaction play
a role.

When the external-capture approximation is valid, the capture
cross section to a final state f can be written as

σc(E, Jfπf ) ≈ |C
Jf πf

Lf
|2σ̃c(E, Jfπf ), (57)

where σ̃f (E, Jfπf ) is independent of the model; its energy
dependence is given by the properties of the Coulomb functions
(Baye and Brainis, 2000). The measurement of the ANC is
based on transfer reactions where a nucleon of the projectile
is transferred to the target. Energies must be large enough to
ensure a peripheral process which is sensitive to the external
part of the wave functions only. An example is the 7Be(3He,d)8B
reaction which has been used to determine the ANC of
8B (Mukhamedzhanov et al., 1995).

4. APPLICATIONS

4.1. Applications of Microscopic Models
The knowledge of the 2H(d,γ )4He, 2H(d,p)3H, and 2H(d,n)3He
cross sections at astrophysical energies is of great interest. Aside
from the astrophysical interest, the 2H(d,γ )4He capture reaction
is extremely important from the nuclear physics viewpoint
because its cross section at low energies (below 0.3 MeV) is
expected to be dominated by D-wave components in the α

particle. Hence it should be very sensitive to the tensor force in
the NN interaction (Sabourov et al., 2004).

An ab initio model has been used to study the phase shifts of
the p+3He (Arai et al., 2010) and d+d, p+3H, n+3He (Arai et al.,
2011) systems. For the two-bodyNN interactionVij, two different
realistic potentials are used: AV8′ (Pudliner et al., 1997) and
G3RS (Tamagaki, 1968), that consist of central, tensor, and spin-
orbit components. Because the main aim is to clarify the role of
the tensor force, it is useful to compare results obtained with the
realistic interactions with that of an effective NN interaction that
contains no tensor force. The MN central potential (Thompson
et al., 1977) is adopted with the standard value for the admixture
parameter u = 1.

The 2H(d,p)3H and 2H(d,n)3He reactions play an important
role in Big-Bang nucleosynthesis. As the observed D/H ratio is
currently known with 1.5% accuracy, a high precision is required
for the reaction rates. The cross sections have been measured
by several groups (Leonard et al., 2006; Tumino et al., 2014),
but the extrapolations down to low energies are still uncertain.
A compilation of the latest data has been undertaken to reduce
the extrapolation uncertainties (Coc et al., 2015). The 2H(d,p)3H
and 2H(d,n)3He S factors are presented in Figure 2. They mainly
occur from the transitions of the d + d 5S2 channel to the

FIGURE 2 | 2H(d,p)3H and 2H(d,n)3He astrophysical S-factors calculated with

the realistic AV8′+ G3RS potential (solid lines) and with the effective MN

potential (dotted lines). See Angulo et al. (1999) for the experimental data.

Reprinted figure with permission from Arai et al. (2011). Copyright (2011) by

the American Physical Society.

D-wave continuum of p+3H or n+3He, which is due to the
tensor force.Without the tensor force, these cross sections cannot
be reproduced.

More recently, the 3He(α, γ )7Be and 3H(α, γ )7Li cross
sections were computed in the no-core shell model (NCSM)
(Dohet-Eraly et al., 2016). The authors used a renormalized
chiral nucleon-nucleon interaction. In addition to NCSM
states, which are optimized for bound states of the seven-
nucleon systems, a specific treatment of the α+3He and α+3H
configuration is introduced, yielding the NCSMwith continuum.
With this correction, bound-state properties and elastic phase
shifts are well-reproduced. Figure 3 shows the corresponding
S-factors, which are compared with previous ab initio models
(Nollett, 2001; Neff, 2011). Significant differences exist, due
to convergence problems and to the use of different nucleon-
nucleon interactions.

4.2. Applications of the Potential Model
The first applications of the potential model were devoted to the
3He(α, γ )7Be (Tombrello and Parker, 1963; Buck et al., 1985) and
the 7Be(p,γ )8B (Robertson, 1973; Typel et al., 1997) reactions.
Both reactions are essentially non-resonant at low energies, and
the final bound states can be fairly well-described by a two-cluster
structure. Most applications in the literature are performed
with local potentials. More recently, the influence of the non-
locality was investigated by Tian et al. (2018). Applications to
fusion reactions can be found, for example, in Chien et al.
(2018) (single-channel model) and Assunção and Descouvemont
(2013) (multichannel model).

We present in Figure 4 the 3He(α, γ )7Be S-factor computed
with the potential of Buck et al. (1985), and compare with some
experimental data sets. The goal is not to provide a fit of the
data, but rather to illustrate the use of the potential model in
a simple example. The α+3He potential contains a spin-orbit
term; it reproduces several spectroscopic properties of 7Be and
of 7Li. We show separately the contributions of the s wave
(Li = 0, Ji = 1/2+) and of the d wave (Li = 2, Ji =
3/2+, 5/2+). Around E = 0 the main contribution comes from
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FIGURE 3 | 3He(α, γ )7Be and 3H(α, γ )7Li S-factors computed with the No

Core Shell model (solid lines). The other lines represent alternative calculations

(see Dohet-Eraly et al., 2016 for details and for the references to the data).

Reprinted from Dohet-Eraly et al. (2016) with permission from Elsevier.

FIGURE 4 | 3He(α, γ )7Be S-factor computed in the potential model. The

Li = 0 and Li = 2 components are shown separately. The data are taken from

Parker and Kavanagh (1963), Kräwinkel et al. (1982), and Di Leva et al. (2009).

Li = 0, but Li = 2 cannot be neglected at energies where data
are available.

As discussed in section 3, the capture cross sections are
determined from integrals involving the initial and final wave

FIGURE 5 | Integrand (58) at 0.02 MeV for 7Be(p,γ )8B, and at 0.1 MeV for
3He(α, γ )7Be (λ = 1). The normalization is arbitrary.

functions. Let us define

I(r) = gJf (r)rλgJi (r), (58)

whose integral provides the electric component of the cross
section. In Figure 5, we present this integrand for typical
energies. For the 3He(α, γ )7Be reaction, the maximum of I(r) is
located near rmax = 10 fm. At low energy the initial function
gJi (r) decreases rapidly in the nuclear region; conversely, the
final function gJf (r) is maximal in this region, and exponentially
decreases as

gJf (r) = Cf W−η,ℓf+1/2(2kBr) ∼ Cf exp(−kBr)/ρ
η , (59)

where kB is the wave number of the bound state. The decrease
is therefore faster for large kB values, and hence for large binding
energies. For very low binding energies, such as in 8B (−137 keV),
we have rmax ≈ 40 fm and integrand (58) is non-negligible up to
150 fm. Accordingly, integrals (38) must be performed up to large
r values to ensure the convergence.

4.3. Applications of the R-Matrix Method
Besides the typical application of the R-matrix to the
12C(α, γ )16O reaction (deBoer et al., 2017), various reactions
have been analyzed recently in the R-matrix approach. Some
examples are 14N(p,γ )15O (Li et al., 2016) or 13C(p, γ )14N
(Chakraborty et al., 2015). Here we discuss in more detail a
recent R-matrix analysis of the 18O(p,α)15N cross section which
has been measured in the underground laboratory of the Gran
Sasso (LUNA) (Bruno et al., 2019). This reaction influences the
abundances of 15N, 18O and 19F isotopes, critical to constrain a
wide variety of stellar models.

At stellar temperatures, the rate is mainly determined by
the properties of three 1/2+ (ℓ = 0) resonances at center
of mass energies 0.143, 0.610, and 0.800 MeV. For the latter
two resonances, results on their energy and partial widths are
inconsistent (La Cognata et al., 2008), and important differences
have also been reported between the cross sections of different
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FIGURE 6 | 18O(p,p)18O differential cross section at θ = 140◦ with the

R-matrix fit. The data are taken from Yagi (1962). Reprinted from Bruno et al.

(2019) with permission from Elsevier.

FIGURE 7 | 18O(p,α)15N differential S-factor at θ = 135◦ with the R-matrix fit.

The red dashed lined in the inset shows the effect of removing the new state at

E = 106 keV. Reprinted from Bruno et al. (2019) with permission from Elsevier.

datasets at low energies. The main goal of Bruno et al. (2019) was
to measure the non-resonant component of the cross section of
the 18O(p,α)15N reaction at proton beam energies from Ep = 360
to 60 keV, extending the range of direct measurements to stellar
energies. From the cross section measurements, the strength of
resonances of astrophysical interest could be determined.

An important advantage of the R-matrix theory is that some
parameters are common to different reactions. In the present
case, resonance energies, and proton widths are common to the
18O(p,p)18O and 18O(p,α)15N cross sections. Only the α widths
are specific to 18O(p,α)15N. This property therefore provides
several constraints on the parameter sets. Ideally, the cross
sections should be measured at several angles, which permits to
add further constraints.

The LUNA data and the fits of the 18O(p,p)18O and
18O(p,α)15N cross sections are shown in Figures 6, 7,

respectively. Several resonances are included in the fit (see
Bruno et al., 2019 for detail). Both fits are excellent, with
common parameters (energies and proton widths of resonances).
The new data set (Bruno et al., 2019) suggest a new resonance
at Ecm = 110 keV.

5. CONCLUSION

Nuclear astrophysics is a broad field, where many nuclear inputs
are necessary. In particular, charged-particle cross sections are
quite important, and difficult to measure, owing to the low
energies and cross sections. Another characteristic of nuclear
astrophysics is that there is almost no systematics. In the low-
mass region, each reaction presents its own peculiarities and
difficulties, in the theoretical as well as in the experimental
viewpoints. Nevertheless some hierarchy can be established
among reactions of astrophysical interest. Transfer reactions,
arising from the nuclear interaction, present cross sections larger
than capture cross sections which have an electromagnetic origin.
In addition, the resonant or non-resonant nature of a reaction
also affects the amplitude of the cross section.

We have discussed different theoretical models often used
in nuclear astrophysics. The potential model and the R-matrix
method are widely applied in this field; they are fairly simple
and well-adapted to low-energy reactions. On the other hand,
microscopic cluster models have a stronger predictive power,
since they only rely on a nucleon-nucleon interaction, and on the
assumption of a cluster structure for the nucleus. Finally, indirect
methods are more and more developed since they overcome the
major difficulty of nuclear astrophysics, i.e., the smallness of the
cross sections.

A very impressive amount of work has been devoted
to nuclear astrophysics in the last decades. Although most
reactions involving light nuclei are sufficiently known, some
reactions, such as 12C(α, γ )16O or 12C+12C, still require much
effort to reach the accuracy needed for stellar models. In
the nucleosynthesis of heavy elements (s process, p process),
further problems arise from the level densities and the cross
sections should be determined from statistical models. A better
knowledge of these cross sections represents a challenge for
the future.
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Horiuchi, H., Ikeda, K., and Katō, K. (2012). Recent developments in nuclear
cluster physics. Prog. Theor. Phys. Suppl. 192:1. doi: 10.1143/PTPS.192.1

Hoyle, F. (1954). On nuclear reactions occuring in very hot stars.i. the synthesis of
elements from carbon to nickel. Astrophys. J. Suppl. 1:121. doi: 10.1086/190005

Hussein, M. S. (1984). Theory of the heavy-ion fusion cross section. Phys. Rev. C
30:1962. doi: 10.1103/PhysRevC.30.1962

Iliadis, C. (2007). Nuclear Physics of Stars. Weinheim: Wiley-VCH Verlag GmbH.
José, J., and Iliadis, C. (2011). Nuclear astrophysics: the unfinished

quest for the origin of the elements. Rep. Prog. Phys. 74:096901.
doi: 10.1088/0034-4885/74/9/096901

Kamionkowski, M., and Bahcall, J. N. (1994). The rate of the proton-proton
reaction. Astrophys. J. 420:884. doi: 10.1086/173612

Kiener, J., Gils, H. J., Rebel, H., Zagromski, S., Gsottschneider, G., Heide, N., et al.
(1991). Measurements of the coulomb dissociation cross section of 156 mev 6Li
projectiles at extremely low relative fragment energies of astrophysical interest.
Phys. Rev. C 44, 2195–2208. doi: 10.1103/PhysRevC.44.2195

Kiener, J., Lefebvre, A., Aguer, P., Bacri, C. O., Bimbot, R. B., Borderie, G. B.,
et al. (1993). Determination of the 13N(p, γ)14O reaction rate through the
coulomb break-up of a 14O radioactive beam. Nucl. Phys. A 552, 66–81.
doi: 10.1016/0375-9474(93)90331-Q

Kievsky, A., Rosati, S., Viviani, M., Marcucci, L. E., and Girlanda, L.
(2008). A high-precision variational approach to three- and four-
nucleon bound and zero-energy scattering states. J. Phys. G 35:063101.
doi: 10.1088/0954-3899/35/6/063101

Kikuchi, T., Motobayashi, T., Iwasa, N., Ando, Y., Kurokawa, M., Moriya, S., et al.
(1998). Further measurement of the 7Be(p,γ)8B cross section at low energies
with the coulomb dissociation of 8B. Eur. Phys. J. A 3, 213–215.

Kräwinkel, H., Becker, H. W., Buchmann, L., Görres, J., Kettner, K. U., Kieser, W.
E., et al. (1982). The 3He(α,γ)7Be reaction and the solar neutrino problem. Zeit.
Phys. A 304, 307–332. doi: 10.1007/BF01421513

Kukulin, V. I., Neudatchin, V. G., Obukhovski, I. T., and Smirnov, Y. F. (1983).
Clusters as Subsystems in Light Nuclei. Braunschweig: Vieweg.

Kumar, R., and Bonaccorso, A. (2012). Interplay of nuclear and coulomb
effects in proton breakup from exotic nuclei. Phys. Rev. C 86:061601.
doi: 10.1103/PhysRevC.86.061601

La Cognata, M., Spitaleri, C., Mukhamedzhanov, A. M., Irgaziev, B., Tribble, R. E.,
Banu, A., et al. (2008). Measurement of the 20 and 90 kev resonances in the
18O(p,α)15N reaction via the trojan horse method. Phys. Rev. Lett. 101:152501.
doi: 10.1103/PhysRevLett.101.152501

Lane, A. M., and Thomas, R. G. (1958). R-matrix theory of nuclear reactions. Rev.
Mod. Phys. 30, 257–353. doi: 10.1103/RevModPhys.30.257

Leonard, D. S., Karwowski, H. J., Brune, C. R., Fisher, B. M., and Ludwig,
E. J. (2006). Precision measurements of 2H(d,p)3H and 2H(d,n)3He total
cross sections at big bang nucleosynthesis energies. Phys. Rev. C 73:045801.
doi: 10.1103/PhysRevC.73.045801

Li, Q., Görres, J., deBoer, R. J., Imbriani, G., Best, A., Kontos, A., et al. (2016). Cross
section measurement of 14N(p, γ)15O in the cno cycle. Phys. Rev. C 93:055806.
doi: 10.1103/PhysRevC.93.055806

Liccardo, V., Malheiro, M., Hussein, M., Carlson, B., and Frederico, T. (2018).
Nuclear processes in astrophysics: Recent progress. Eur. Phys. J. A 54:221.
doi: 10.1140/epja/i2018-12648-5

Liu, Q. K. K., Kanada, H., and Tang, Y. C. (1981). Microscopic study of
3He(α, γ)7Be electric-dipole capture reaction. Phys. Rev. C 23, 645–656.
doi: 10.1103/PhysRevC.23.645

Longland, R., Iliadis, C., Champagne, A., Newton, J., Ugalde, C., Coc, A.,
et al. (2010). Charged-particle thermonuclear reaction rates: I. monte
carlo method and statistical distributions. Nucl. Phys. A 841, 1–30.
doi: 10.1016/j.nuclphysa.2010.04.008

Marcucci, L. E. (2018). Recent progress in ab-initio studies of nuclear reactions
of astrophysical interest with a ≤ 3. J. Phys. Conf. Series 981:012019.
doi: 10.1088/1742-6596/981/1/012019

Marcucci, L. E., Schiavilla, R., and Viviani, M. (2013). Proton-proton weak
capture in chiral effective field theory. Phys. Rev. Lett. 110:192503.
doi: 10.1103/PhysRevLett.110.192503

Motobayashi, T., Iwasa, N., Ando, Y., Kurokawa, M., Murakami, H., Gen, J. R.,
et al. (1994). Coulomb dissociation of 8B and the 7Be(p,γ)8B reaction at low
energies. Phys. Rev. Lett. 73, 2680–2683. doi: 10.1103/PhysRevLett.73.2680

Motobayashi, T., Takei, T., Kox, S., Perrin, C., Merchez, F. K., Ieki, D. R.,
et al. (1991). Determination of the astrophysical 13N(p,γ)14O cross section
through the coulomb dissociation method. Phys. Lett. B 264, 259–263.
doi: 10.1016/0370-2693(91)90345-Q

Mukhamedzhanov, A. M., Gagliardi, C. A., and Tribble, R. E. (2001). Asymptotic
normalization coefficients, spectroscopic factors, and direct radiative capture
rates. Phys. Rev. C 63:024612. doi: 10.1103/PhysRevC.63.024612

Mukhamedzhanov, A. M., and Rogachev, G. V. (2017). Radiative capture reactions
via indirectmethods. Phys. Rev. C 96:045811. doi: 10.1103/PhysRevC.96.045811

Mukhamedzhanov, A. M., Tribble, R. E., and Timofeyuk, N. K. (1995). Possibility
to determine the astrophysical s factor for the 7Be(p,γ)8B radiative capture
from analysis of the 7Be(3He,d)8B reaction. Phys. Rev. C 51, 3472–3478.
doi: 10.1103/PhysRevC.51.3472

Navrátil, P., and Quaglioni, S. (2011). Ab initio many-body calculations
of deuteron-4He scattering and 6Li states. Phys. Rev. C 83:044609.
doi: 10.1103/PhysRevC.83.044609

Navrátil, P., and Quaglioni, S. (2012). Ab Initio many-body calculations of the
3H(d,n)4He and 3He(d,p)4He fusion reactions. Phys. Rev. Lett. 108:042503.
doi: 10.1103/PhysRevLett.108.042503

Navrátil, P., Roth, R., and Quaglioni, S. (2010). Ab initio many-body calculations
of nucleon scattering on 4He, 7Li, 7Be, 12C, and 16O. Phys. Rev. C 82:034609.
doi: 10.1103/PhysRevC.82.034609

Neff, T. (2011). Microscopic calculation of the 3He(α, γ )7Be and 3H(α, γ )7Li
capture cross sections using realistic interactions. Phys. Rev. Lett. 106:042502.
doi: 10.1103/PhysRevLett.106.042502

Nollett, K. M. (2001). Radiative α-capture cross sections from realistic nucleon-
nucleon interactions and variational monte carlo wave functions. Phys. Rev. C
63:054002. doi: 10.1103/PhysRevC.63.054002

Parker, P. D., and Kavanagh, R. W. (1963). He3(α, γ)Be7 reaction. Phys. Rev. 131,
2578–2582. doi: 10.1103/PhysRev.131.2578

Pudliner, B. S., Pandharipande, V. R., Carlson, J., Pieper, S. C., and Wiringa, R. B.
(1997). Quantum monte carlo calculations of nuclei with a < 7. Phys. Rev. C
56:1720. doi: 10.1103/PhysRevC.56.1720

Rauscher, T., Thielemann, F. K., and Kratz, K. L. (1997). Nuclear level density
and the determination of thermonuclear rates for astrophysics. Phys. Rev. C
56, 1613–1625. doi: 10.1103/PhysRevC.56.1613

Raynal, J. (1972). Computing as a Language of Physics, Trieste 1971. Vienna: IAEA.
281.

Reifarth, R., Erbacher, P., Fiebiger, S., Göbel, K., Heftrich, T., Heil, M.,
et al. (2018). Neutron-induced cross sections. Eur. Phys. J. Plus 133:424.
doi: 10.1140/epjp/i2018-12295-3

Richter, W., Brown, B. A., Signoracci, A., and Wiescher, M. (2011). Shell-model
studies of the rp reaction 25Al(p,γ)26Si. Prog. Part. Nucl. Phys. 66, 283–286.
doi: 10.1016/j.ppnp.2011.01.021

Robertson, R. G. H. (1973). Proton capture by 7Be and the solar neutrino problem.
Phys. Rev. C 7, 543–547. doi: 10.1103/PhysRevC.7.543

Rolfs, C., and Rodney, W. S. (1988). Cauldrons in the Cosmos. Chicago, IL: The
University of Chicago Press.

Rose, H. J., and Brink, D. M. (1967). Angular distributions of gamma rays in
terms of phase-defined reduced matrix elements. Rev. Mod. Phys. 39, 306–347.
doi: 10.1103/RevModPhys.39.306

Sabourov, K., Ahmed, M.W., Canon, S. R., Crowley, B., Joshi, K., Kelley, J. H., et al.
(2004). Experimental and theoretical study of the 2H(Ed,γ )4He reaction below
Ec.m. = 60 keV. Phys. Rev. C 70:064601. doi: 10.1103/PhysRevC.70.064601

Satchler, G. R. (1983). Direct Nuclear Reactions. Oxford: Oxford University Press.

Frontiers in Astronomy and Space Sciences | www.frontiersin.org 14 April 2020 | Volume 7 | Article 9

https://doi.org/10.1016/j.physletb.2010.12.032
https://doi.org/10.1016/0370-1573(81)90131-9
https://doi.org/10.1103/PhysRevC.100.035805
https://doi.org/10.1103/PhysRevC.82.065803
https://doi.org/10.1016/S0375-9474(96)00418-6
https://doi.org/10.1143/PTPS.62.90
https://doi.org/10.1143/PTPS.192.1
https://doi.org/10.1086/190005
https://doi.org/10.1103/PhysRevC.30.1962
https://doi.org/10.1088/0034-4885/74/9/096901
https://doi.org/10.1086/173612
https://doi.org/10.1103/PhysRevC.44.2195
https://doi.org/10.1016/0375-9474(93)90331-Q
https://doi.org/10.1088/0954-3899/35/6/063101
https://doi.org/10.1007/BF01421513
https://doi.org/10.1103/PhysRevC.86.061601
https://doi.org/10.1103/PhysRevLett.101.152501
https://doi.org/10.1103/RevModPhys.30.257
https://doi.org/10.1103/PhysRevC.73.045801
https://doi.org/10.1103/PhysRevC.93.055806
https://doi.org/10.1140/epja/i2018-12648-5
https://doi.org/10.1103/PhysRevC.23.645
https://doi.org/10.1016/j.nuclphysa.2010.04.008
https://doi.org/10.1088/1742-6596/981/1/012019
https://doi.org/10.1103/PhysRevLett.110.192503
https://doi.org/10.1103/PhysRevLett.73.2680
https://doi.org/10.1016/0370-2693(91)90345-Q
https://doi.org/10.1103/PhysRevC.63.024612
https://doi.org/10.1103/PhysRevC.96.045811
https://doi.org/10.1103/PhysRevC.51.3472
https://doi.org/10.1103/PhysRevC.83.044609
https://doi.org/10.1103/PhysRevLett.108.042503
https://doi.org/10.1103/PhysRevC.82.034609
https://doi.org/10.1103/PhysRevLett.106.042502
https://doi.org/10.1103/PhysRevC.63.054002
https://doi.org/10.1103/PhysRev.131.2578
https://doi.org/10.1103/PhysRevC.56.1720
https://doi.org/10.1103/PhysRevC.56.1613
https://doi.org/10.1140/epjp/i2018-12295-3
https://doi.org/10.1016/j.ppnp.2011.01.021
https://doi.org/10.1103/PhysRevC.7.543
https://doi.org/10.1103/RevModPhys.39.306
https://doi.org/10.1103/PhysRevC.70.064601
https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org
https://www.frontiersin.org/journals/astronomy-and-space-sciences#articles


Descouvemont Nuclear Reactions of Astrophysical Interest

Schümann, F., Typel, S., Hammache, F., Sümmerer, K., Uhlig, F., Böttcher,
I., et al. (2006). Low-energy cross section of the 7Be(p,γ)8B solar fusion
reaction from the coulomb dissociation of 8B. Phys. Rev. C 73:015806.
doi: 10.1103/PhysRevLett.73.015806

Spitaleri, C., La Cognata, M., Lamia, L., Pizzone, R. G., and Tumino, A. (2019).
Astrophysics studies with the trojan horse method. Eur. Phys. J. A 55:161.
doi: 10.1140/epja/i2019-12833-0

Tamagaki, R. (1968). Repulsive core of effective alpha-alpha potential and the pauli
principle. Suppl. Prog. Theor. Phys. E68, 242–258. doi: 10.1143/PTPS.E68.242

Thielemann, F., Eichler, M., Panov, I., and Wehmeyer, B. (2017). Neutron star
mergers and nucleosynthesis of heavy elements. Ann. Rev. Nucl. Part. Sci. 67,
253–274. doi: 10.1146/annurev-nucl-101916-123246

Thompson, D. R., LeMere, M., and Tang, Y. C. (1977). Systematic investigation
of scattering problems with the resonating-group method. Nucl. Phys. A 286,
53–66. doi: 10.1016/0375-9474(77)90007-0

Thompson, I., and Nunes, F. (2009). Nuclear Reactions for Astrophysics: Principles,
Calculation and Applications of Low-Energy Reactions. Cambridge: Cambridge
University Press.

Thompson, I. J. (2010). NIST Handbook of Mathematical Functions. Cambridge:
Cambridge University Press.

Tian, Y., Pang, D. Y., and Ma, Z. Y. (2018). Effects of nonlocality of
nuclear potentials on direct capture reactions. Phys. Rev. C 97:064615.
doi: 10.1103/PhysRevC.97.064615

Tombrello, T. A. (1965). The capture of protons by 7Be. Nucl. Phys. 71, 459–464.
doi: 10.1016/0029-5582(65)90733-9

Tombrello, T. A., and Parker, P. D. (1963). Direct-capture model for
the He3(α, γ)Be7 and T(α, γ)Li7 reactions. Phys. Rev. 131, 2582–2589.
doi: 10.1103/PhysRev.131.2582

Tribble, R. E., Bertulani, C. A., Cognata, M. L., Mukhamedzhanov, A. M., and
Spitaleri, C. (2014). Indirect techniques in nuclear astrophysics: a review. Rep.
Prog. Phys. 77:106901. doi: 10.1088/0034-4885/77/10/106901

Tumino, A., Spartá, R., Spitaleri, C., Mukhamedzhanov, A. M., Typel, S.,
Pizzone, R. G., et al. (2014). New determination of the 2H(d,p)3H and
2H(d,n)3He reaction rates at astrophysical energies. Astrophys. J. 785:96.
doi: 10.1088/0004-637X/785/2/96

Tumino, A., Spitaleri, C., Cherubini, S., Gulino, M., La Cognata, M., Lamia,
L., et al. (2013). New advances in the trojan horse method as an

indirect approach to nuclear astrophysics. Few Body Syst. 54, 745–753.
doi: 10.1007/s00601-013-0690-5

Tumino, A., Spitaleri, C., Mukhamedzhanov, A. M., Typel, S., Aliotta, M.,
Burjan, V., et al. (2011). Low-energy fusion reactions via the trojan
horse method. Phys. Lett. B 700, 111–115. doi: 10.1016/j.physletb.2011.
05.001

Typel, S., and Baur, G. (2003). Theory of the trojan-horse method. Ann. Phys. 305,
228–265. doi: 10.1016/S0003-4916(03)00060-5

Typel, S., Wolter, H. H., and Baur, G. (1997). Higher-order
effects in the coulomb dissociation of 8b into 7Be+P.
Nucl. Phys. A 613, 147–164. doi: 10.1016/S0375-9474(96)0
0415-0

Volkov, A. B. (1965). Equilibrium deformation calculations of the
ground state energies of 1p shell nuclei. Nucl. Phys. 74, 33–58.
doi: 10.1016/0029-5582(65)90244-0

Wiescher, M., Käppeler, F., and Langanke, K. (2012). Critical reactions in
contemporary nuclear astrophysics. Ann. Rev. Astron. Astrophys. 50, 165–210.
doi: 10.1146/annurev-astro-081811-125543

Wildermuth, K., and Tang, Y. C. (1977). A Unified Theory of the Nucleus.
Braunschweig: Vieweg.

Yagi, K. (1962). Analysis of elastic scattering of protons by o18 and
the energy levels of f19. J. Phys. Soc. Japan 17:604. doi: 10.1143/JPSJ.
17.604

Zhang, X., Nollett, K. M., and Phillips, D. R. (2018). Models, measurements, and
effective field theory: Proton capture on 7Be at next-to-leading order. Phys. Rev.
C 98:034616. doi: 10.3952/physics.v58i1.3647

Conflict of Interest: The author declares that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2020 Descouvemont. This is an open-access article distributed under the

terms of the Creative Commons Attribution License (CC BY). The use, distribution

or reproduction in other forums is permitted, provided the original author(s) and

the copyright owner(s) are credited and that the original publication in this journal

is cited, in accordance with accepted academic practice. No use, distribution or

reproduction is permitted which does not comply with these terms.

Frontiers in Astronomy and Space Sciences | www.frontiersin.org 15 April 2020 | Volume 7 | Article 9

https://doi.org/10.1103/PhysRevLett.73.015806
https://doi.org/10.1140/epja/i2019-12833-0
https://doi.org/10.1143/PTPS.E68.242
https://doi.org/10.1146/annurev-nucl-101916-123246
https://doi.org/10.1016/0375-9474(77)90007-0
https://doi.org/10.1103/PhysRevC.97.064615
https://doi.org/10.1016/0029-5582(65)90733-9
https://doi.org/10.1103/PhysRev.131.2582
https://doi.org/10.1088/0034-4885/77/10/106901
https://doi.org/10.1088/0004-637X/785/2/96
https://doi.org/10.1007/s00601-013-0690-5
https://doi.org/10.1016/j.physletb.2011.05.001
https://doi.org/10.1016/S0003-4916(03)00060-5
https://doi.org/10.1016/S0375-9474(96)00415-0
https://doi.org/10.1016/0029-5582(65)90244-0
https://doi.org/10.1146/annurev-astro-081811-125543
https://doi.org/10.1143/JPSJ.17.604
https://doi.org/10.3952/physics.v58i1.3647
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org
https://www.frontiersin.org/journals/astronomy-and-space-sciences#articles

	Nuclear Reactions of Astrophysical Interest
	1. Introduction
	2. Cross Sections for Nuclear Astrophysics
	2.1. Scattering Wave Functions
	2.2. General Properties of Low-Energy Reactions
	2.3. Radiative-Capture Reactions
	2.4. Transfer Reactions
	2.5. Fusion Reactions
	2.6. Weak-Capture Cross Sections

	3. Reaction Models in Nuclear Astrophysics
	3.1. Microscopic Models
	3.2. The Potential Model
	3.3. The Phenomenological R-Matrix Method
	3.4. Indirect Methods
	3.4.1. The Trojan Horse Method
	3.4.2. Coulomb Dissociation
	3.4.3. The Asymptotic Normalization Coefficient (ANC) Method


	4. Applications
	4.1. Applications of Microscopic Models
	4.2. Applications of the Potential Model
	4.3. Applications of the R-Matrix Method

	5. Conclusion
	Author Contributions
	Funding
	References


