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Magnetosheath jets are transient, localized dynamic pressure enhancements found

downstream of the Earth’s bow shock in the magnetosheath region. Using a pre-existing

database of magnetosheath jets we train a neural network to distinguish between jets

found downstream of a quasi-parallel bow shock (θBn < 45o) and jets downstream of

a quasi-perpendicular bow shock (θBn > 45o). The initial database was compiled using

MMS measurements in the magnetosheath (downstream) to identify and classify them

as “quasi-parallel” or “quasi-perpendicular,” while the neural network uses only solar

wind (upstream) measurements from the OMNIweb database. To evaluate the results,

a comparison with three physics-based modeling approaches is done. It is shown that

neural networks are systematically outperforming the other methods by achieving a

∼ 93% agreement with the initial dataset, while the rest of the methods achieve around

80%. The better performance of the neural networks likely is due to the fact that they use

information from more solar wind quantities than the physics-based models. As a result,

even in the absence of certain upstream properties, such as the IMF direction, they are

capable of accurately determining the jet class.

Keywords: magnetosheath jets, neural networks, solar wind, machine learning, bow shock

1. INTRODUCTION

1.1. Magnetosheath Jets
The magnetosphere, surrounding the Earth, offers protection from plasma flows originating from
the Sun traveling at supersonic speeds. Initially, the solar wind particles interact with the Earth’s
bow shock and are decelerated into subsonic velocities, moving into the magnetosheath region.
The interaction between the solar wind and the Earth’s bow shock can in principle be modeled
through the Rankine–Hugoniot relations, assuming an 1D, time stationary shock (Baumjohann
and Treumann, 2012). However, there are phenomena too complex to be precisely described by the
current theoretical framework. This complexity arises mainly from the geometry of the bow shock
and the rapid changes in the InterplanetaryMagnetic Field (IMF). A phenomenon that is generated
in the interaction of the solar wind with the bow shock is the so called “magnetosheath jet.” These
jets are usually described as localized enhancements of dynamic pressure in the magnetosheath
plasma and are attributed to a velocity or a density increase or in most cases an increase of both
(e.g., Amata et al., 2011; Archer et al., 2012; Plaschke et al., 2018).

For magnetosheath jets, several terms and definitions are used in the literature (Plaschke et al.,
2018). In this work, we use the term “magnetosheath jet” or simply “jet” to describe an enhancement
of the dynamic pressure above the background magnetosheath level, using a time-moving average
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window of ±10 min for the dynamic pressure (e.g., Archer and
Horbury, 2013; Gunell et al., 2014; Gutynska et al., 2015; Karlsson
et al., 2015; Raptis et al., 2019). When an enhancement higher
than two times the background level is observed, a jet is registered
to a list of events.

While jets have been observed since 1998 (Němeček et al.,
1998), there are still several open questions regarding their
origin, their morphology, and their exact generation mechanism
(Plaschke et al., 2018). The predominant generation mechanism
connects jets to bow shock ripples found at the quasi-parallel bow
shock (Hietala et al., 2009; Hietala and Plaschke, 2013). Other
phenomena that are possibly connected to jet generation may be
the so called SLAMS (Short Large Amplitude Structure) that are
foreshock phenomena characterized by very large magnetic field
amplitudes and plasma density enhancements (Schwartz et al.,
1992). It has been hypothesized that SLAMS can pass through
the bow shock ripples and contribute to a density enhancement
that would result in an overall increase of the dynamic pressure
(Karlsson et al., 2015).

Jets are of great interest for the field of space physics and space
weather. It has been suggested that they are connected to various
phenomena such as the radiation belts (Turner et al., 2012; Xiang
et al., 2016) and throat aurora (Han et al., 2017). Recently it
has been shown that by interacting with the magnetopause, jets
can trigger magnetopause reconnection (Hietala et al., 2018),
which may excite surface eigenmodes (Archer et al., 2019)
or even contribute to direct plasma penetration through the
magnetopause (Karlsson et al., 2012). Furthermore, they appear
to be occurring in other planets of our solar system and in
astrophysical shocks (Giacalone and Jokipii, 2007; Plaschke et al.,
2018).

Magnetosphere

Earth

Quasi-perpendicular

Shock

FIGURE 1 | Sketch of the bow shock and its different configuration in the Earth’s environment. An Interplanetary Magnetic Field (IMF) with an angle, approximately 45◦

with the normal at the nose of the bow shock is assumed. As a result, a quasi-perpendicular (θBn > 45) shock takes place on the left part of the image and a

quasi-parallel (θBn < 45) on the right. The instabilities caused by the reflected ions in the Qpar case create the so called ion foreshock which changes drastically the

properties between the Qpar shock and the Qperp one.

An important factor that creates an intrinsic classification to
shock transitions and therefore to both themagnetosheath region
and the jets, is the angle (θBn) between the bow shock normal
vector (n̂) and the IMF (B), as depicted in Figure 1. Due to the
differences in the bow shock formation and in particle dynamics
explained below, quasi-perpendicular (Qperp) shocks (θBn > 45)
exhibit a sharp transition between the upstream flow and the
downstream plasma, followed by a less turbulent magnetosheath
region (Fuselier, 2013; Wilson, 2016). On the other hand, for
quasi-parallel (Qpar) shocks (θBn < 45), the transition is harder
to define and the downstream plasma is irregular and strongly
turbulent. The source of the different properties of each region is
the dynamic behavior of solar wind particles going through the
shock transition. In the case of the Qpar shock, reflected ions can
travel far upstream, interact with the incoming solar wind flow
and cause a number of instabilities leading to wave growth. This,
in turn, creates a foreshock region which is absent in the case of
Qperp shocks where the reflected particles, due to their gyration
around the magnetic field, are quickly returned back to the shock
and hence do not travel as far back upstream. This results in a
less turbulent environment both upstream and downstream of
the Qperp bow shock (Schwartz and Burgess, 1991; Balogh and
Treumann, 2013).

For the generation of Figure 1, the bow shock and
magnetopause model by Chao et al. (2002) are used. The
parameters used are Bz = −0.22 (nT), Pdyn = 2.15 (nPa),
Mms = 6.09 and β = 2.20. These values correspond to the
average conditions of the solar wind for the periods that a Qpar
or a Qperp jet was found.

Classifying jets into different categories is vital to investigate
the possibility of different generation mechanisms. As discussed
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TABLE 1 | Solar wind quantities used as input to the neural network.

Name Unit

Alfven Mach Number (MA) −

Magnetosonic Mach Number(Mms) −

Absolute Electric Field (|E|) [mV/m]

Beta Plasma Parameter (β) −

Kinetic Energy density (Ekin) [nJm−3 ]

Proton Temperature (T ) [K]

Proton Density (n) [cm−3]

Proton Absolute Velocity (|V|) [km/s]

Absolute Magnetic Field (|B|) [nT]

Magnetic Field X-component (Bx ) [nT]

Magnetic Field Y-component (By ) [nT]

Magnetic Field Z-component (Bz ) [nT]

above, there is no consensus regarding the generation of jets.
By classifying jets to different bow shock configurations one
can investigate both the jet properties and the associated solar
wind to determine if any of the suggested mechanism apply
to these subset of jets or even indicate new class-specific
generation mechanisms.

1.2. Neural Networks
Neural Networks (NN) are widely used machine learning (ML)
tools that are often employed to perform classification and
regression tasks. Neural Networks were first introduced in 1943
(McCulloch and Pitts, 1943) and have been used for such
tasks since at least 1958 (Rosenblatt, 1958). The basic principle
behind NNs is that when provided with enough data, they are
capable of adjusting their internal parameters in an optimal
way to perform a specific task related to the data given. By
iteratively parameterizing, and thus training, a neural network
with error minimization techniques, it has been shown that
when presented with unknown data the network is capable of
accurately performing its trained task (Bishop, 1995). Lately,
multi-layered (deep) neural networks have been used in various
applications due to their ability to accurately model complex,
and potentially unknown, relationships (Goodfellow et al., 2016;
Samarasinghe, 2016).

In the last years, machine learning techniques, including
neural networks, have been employed in heliospheric physics
and space weather (Camporeale et al., 2018a,b). Their spectrum
of application is quite broad, tackling many problems that
traditional statistics or physics-based modeling techniques
struggle with. Many applications of neural networks focus on
predictive tasks such as the forecasting of solar flares (Florios
et al., 2018; Jonas et al., 2018), Coronal Mass Ejections (CMEs)
(Bobra and Ilonidis, 2016), CME arrival time (Liu et al., 2018),
and geomagnetic indices (Boberg et al., 2000; Wintoft et al.,
2017; Chandorkar and Camporeale, 2018). Other applications
focus on space environment characterization (Shin et al., 2016;
Aminalragia-Giamini et al., 2018), wave recognition (Balasis
et al., 2019), and the classification of the solar wind (Camporeale
et al., 2017).

In this work, we apply neural networks for a supervised
learning classification task. In particular, to classify
magnetosheath jets using solar wind measurements and
compare the results with physics-based models. The main goal
of this study is to classify jets between those originating from
quasi-parallel shock transitions and those originating from
quasi-perpendicular ones. By doing so, we determine whether
machine learning techniques can outperform physics-based
models in this task and investigate the potential connection
between solar wind conditions and each jet class. Finally, as
detailed below, we use parts of a pre-classified dataset of jets
(Raptis et al., 2019) which we evaluate by investigating the
agreement of each method with the initial classification.

2. DATA

2.1. OMNIweb—Solar Wind (Upstream)
Data
For the upstream conditions, which correspond to the input of
the neural network, data from the OMNI database are used,
available at https://omniweb.gsfc.nasa.gov/form/omni_min_def.
html. The OMNI data mainly originate from the ACE spacecraft
that resides in the Sun-Earth L1 point (Stone et al., 1998) and
are automatically time-shifted to the Earth’s bow shock nose.
The time-shifted data have an 1-min resolution and take into
account the bow shock location and shape (King and Papitashvili,
2005). The solar wind measurements are associated with every
jet as later described, resulting in a dataset of equal length to
the number of jets. This dataset is then used as input to the
neural networks, consisting of the 12 physical quantities shown
in Table 1.

2.2. MMS—Magnetosheath (Downstream)
Data and Jet Database
In this work, we use a list of jets initially presented in Raptis
et al. (2019). The dataset is created using in-situ measurements
from the Magnetospheric Multiscale (MMS) mission during
11/2015–03/2019. For the downstream conditions and for the
initial creation of the jet dataset various plasma moment and
magnetic field parameters are used. The magnetic field data are
taken from the fluxgate magnetometer (FGM) (Russell et al.,
2016) and ion data are taken from the fast plasma investigation
(FPI) (Pollock et al., 2016). Finally, the position of MMS during
each jet is registered in GSE coordinates, using as unit the
Earth radius (RE = 6, 371km). This dataset provides a list of
well-characterized and pre-classified jets. These are used for the
training and the evaluation of the NN system, where the class of
the jets serves as the desired classification output.

All the jets are required to satisfy a criterion of
minimum dynamic pressure compared to the background
magnetosheath plasma:

Pdyn = mpniV
2
i ≥ 〈PMSH〉20min (1)

where the angular brackets indicate an average using a 20 min
time moving window. mp is the proton mass, ni the ion number
density, and Vi the ion velocity.
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After each jet has been registered to the database, a
classification algorithm is applied to determine its class. Themain
feature of the initial classification is that it uses in-situ MMS
measurements to determine whether the jet originated from a
quasi-parallel or a quasi-perpendicular bow shock configuration.
This methodology was preferred over using solar wind data to
calculate θBn for several reasons. Firstly, to avoid the errors
that are generated in time-lagging procedures such as the one
taking place in OMNIweb database (Mailyan et al., 2008; Case
and Wild, 2012). Furthermore, due to the 1-min resolution
of the database, short time scale variations of the IMF are
consequently undetectable. Finally, the jets are detected in the
whole magnetosheath region. As a result, a time-shift on the

TABLE 2 | Main properties of the classes of magnetosheath jets.

Jet’s class Characteristics

Qpar High energy ion flux, low temperature anisotropy, high magnetic

field standard deviation

Qperp Low energy ion flux, high temperature anisotropy, low magnetic

field standard deviation

Boundary Change between Qpar properties to Qperp or Vice Versa

Encapsulated Change from Qperp properties to Qpar and back to Qperp

associated solar wind values is required for every jet in order to
take into account the time it took for every jet to travel inside the
magnetosheath. This procedure itself is difficult to be accurately
implemented and it would further increase the uncertainty of
the method.

The initial dataset, therefore, relies on properties found in
the magnetosheath plasma regions. In particular, the algorithm
uses thresholds on ion temperature anisotropy that is found
to be lower in Qpar plasma than in Qperp (Anderson et al.,
1994; Fuselier et al., 1994). It also takes advantage of the fact
that the magnetic field’s standard deviation is observed to be
higher in the Qpar plasma than in the Qperp (Formisano and
Hedgecock, 1973; Luhmann et al., 1986). Finally, the main
difference between the Qpar and Qperp plasma regions is the
high energy ion population in the ion foreshock which only exists
in the Qpar bow shock (Gosling et al., 1978; Fuselier, 2013).
As a result, in-situ measurements of temperature anisotropy,
magnetic field standard deviation, and high energy ion flux
were used. A summary of the basic characteristics of each
class is shown in Table 2. From these classes, the only ones
used in this work are the Qpar (N = 860) and Qperp
(N = 211) jets.

In Figure 2, an example of MMS measurements for a quasi-
parallel and a quasi-perpendicular jet is shown.
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FIGURE 2 | Left: An example of a quasi-parallel (Qpar) magnetosheath jet. Right: An example of a quasi-perpendicular (Qperp) jet. From top to bottom, ion dynamic

pressure, ratio of the ion dynamic pressure to the background level, ion velocity, ion number density, magnetic field components, ion energy spectrogram and parallel

and perpendicular components of ion temperature. The red vertical line shows the peak of dynamic pressure for each jet, blue vertical lines indicate the start and end

point of the jet. Finally, the green lines indicate a period of time before and after the jet equal to 1 min, respectively. The velocity and magnetic field components along

with the position of the spacecraft are given in GSE coordinates.
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3. METHODOLOGY

3.1. Input Determination
For both the physics-based modeling and the neural networks, it
is necessary to provide an input that corresponds to the same time
intervals in order to have a consistent comparison. The choice
of the input is nontrivial, since, as discussed in the previous
section, the availability of measurements and their association to
jets contains multiple errors and uncertainties. Several possible
inputs were examined, by either taking average or maximum
values of the conditions found within a 5, 10, or 15 min period
of the jet. It was found that taking average solar wind conditions
starting from 5 min before the jet up to the jet observation time
provided the highest agreement to the initial classification in all
presented methods. As a result, the solar wind measurements
(Xu) used for each jet are defined as:

Xu =
1

6

5
∑

i=0

(

Xtjet−i1t

)

(2)

where, tjet is the time the jet was observed byMMS,1t is equal to
60 s and subscript u refers to X being an upstream quantity.

It should be noted that while the input described in Equation
(2) provided the highest agreement with the initial database,
it still has its limitations. Specifically, this input choice means
that jets found very far away from the bow shock nose or
with extremely high or low velocities will potentially not be
characterized correctly.

3.2. Evaluating Jet Class With
Physics-Based Modeling
In order to provide a baseline to compare the results from the
neural networks, we use three different physics-based models to
estimate the θBn angle and distinguish between Qpar and Qperp
magnetosheath jets.

3.2.1. Cone Angle Approximation
A simple approach to estimate θBn is through the cone angle:

θcone = arccos

(

|Bu,x|

|Bu|

)

(3)

where, Bu,x is the x component of the upstream magnetic field
and Bu is the IMF vector. θcone is identical to θBn at the subsolar
point of the bow shock.

By calculating the cone angle, we classify the available jets. For
θcone < 45 a jet is classified as Qpar while for θcone > 45 it is
classified as Qperp. This method should in principle work for
the majority of the jets that are found close to the subsolar point.
However, the number of the jets that are in very close proximity
to the subsolar point (|Y ,ZGSE| < 2RE) is quite small (Qpar: 151/
Qperp: 108). As a result, we expect this method to perform poorly
for jets found close to the flanks of the magnetosheath.

3.2.2. Coplanarity Method
Another set of methods used is the so called coplanarity methods.
There is a variety of methods based on the coplanarity theorem

(e.g., Paschmann and Daly, 1998). In our case, the simplest
version ofmagnetic field coplanaritymethod provides the highest
agreement with the initial dataset and is the one shown in
this work.

Starting from Rankine–Hugoniot relations we can derive the
normal vector of the bow shock as:

n̂ = ±
(Bd × Bu) × 1B

| (Bd × Bu) × 1B|
(4)

In our case, the upstream (IMF) magnetic field was taken as the
average value from 5 min before the observation of the jet to
the time the jet was observed (Equation 2). On the other hand,
the downstream (magnetosheath) magnetic field was taken as the
average value of ±2.5 min before and after the jet measurement
by MMS.

This approximation should in principle be less accurate for
jets found very far away from the bow shock since the jump
conditions refer to points close to the shock. Furthermore, jets
found at the flanks are also prone to errors since the upstream
solar wind measurements are time-lagged to the bow shock nose
and therefore characterize the subsolar region.

3.2.3. Bow Shock Modeling
Another method to calculate θBn requires a model of the bow
shock and an approximation of the origin of each jet.

Assuming that the jet does not get significantly accelerated or
decelerated during its lifetime in the magnetosheath, one can use
the maximum velocity vector (V) to propagate the jet backwards
in time and find its point of origin at the bow shock. For the
modeling of the bow shock, the model described by Chao et al.
(2002) was used. It should be noted that this procedure is prone
to several errors. To begin with, the position of the modeled
bow shock may have a significant error compared to the real
position (Merka et al., 2003; Turc et al., 2013). Furthermore,
the assumption that the velocity is constant may introduce more
errors. To derive a realistic bow shock model, we use the average
associated solar wind conditions starting from 10 min before
the jet up to 5 min after its observation by MMS. After we
approximated a point of origin for each jet, the angle between
the normal vector of that point and the IMF was calculated.

3.3. Evaluating Jet Class With Neural
Networks
For the input of the neural networks, several inputs associated to
each jet were tested. For every jet 12 solar wind measurements
were used (Table 1) and were associated to it (Equation 2). From
the initial number of jets (860 Qpar/211 Qperp) we exclude jets
that contain corrupted data in any of the input that was used in
the neural network (Table 1). As a result, the final dataset consists
of 759 Qpar jets and 196 Qperp jets.

The neural network architecture, algorithm, and back-end
training procedure were implemented in Python by using
TensorFlow library version 2.0.0 (Abadi et al., 2015). One of the
main problems of the neural network application is the treatment
of the class imbalance. We are dealing with a problem where
the majority class (Qpar jets) is roughly ∼ 80% of the whole
dataset. Class imbalance is a non-trivial problem to optimize in
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Input Layer ∈ ℝ¹² Hidden Layer ∈ ℝ²⁰ Hidden Layer ∈ ℝ²⁰ Output Layer ∈ ℝ²

(1) Qpar jet
(2) Qperp jet

...

...

...

Rest of  Hidden layers (Table 4)

FIGURE 3 | Basic architecture of the neural network used for the classification of the jets. The input layer shows all the quantities that were used in the neural network

method. To avoid having too many nodes and neurons shown, the rest of the hidden layers are given in Table 3. The visualization was done by using a publicly

available tool (LeNail, 2019) and editing its output.

machine learning and there is no ideal solution for it (Goodfellow
et al., 2016; Brownlee, 2020). In order to tackle this problem
we utilized the imbalanced-learning library (Lemaître et al.,
2017), and used under-sampling and up-sampling techniques. In
particular, we used ClusterCentroid under-sampling and SMOTE
up-sampling methods on the majority of the trials (Chawla et al.,
2002). It should be noted, that both under-sampling and up-
sampling techniques did not increase the average accuracy of
the neural network significantly. Another direct way to tackle
the class imbalance problem in the training procedure is to
implement a weight factor in the update of the weights and
biases to compensate for the differences in the classes found in
the training samples. As a result, a weighted factor was used for
updating the parameters of the network when the minority class
(quasi-perpendicular jets) is introduced to the network.

For the optimizer of the gradient descent algorithm, we used
the Adamoptimizer as implemented in the Keras library (Chollet,
2015) with a smaller learning rate of α = 0.0001 while the
rest of the parameters were left at their default status. Since the
neural network is tackling a binary classification problem, the
error function used for the back-propagation is the binary cross-
entropy loss function. In all trials and in the final architecture we
also used the batch normalization technique (Ioffe and Szegedy,
2015) and parametric rectified linear units (PReLu) (He et al.,

TABLE 3 | Basic architecture of the neural network used for the classification task.

Layer Neurons

Input 12

Fully connected 20

Batch normalization −

Fully connected 40

Batch normalization −

Fully connected 60

Batch normalization −

Fully connected 40

Batch normalization −

Fully connected 20

Batch normalization −

Output 2

2015) in the hidden layers of the network. The final architecture
of the network is shown in Figure 3 and described in Table 3.

3.4. Validation Method
For the training of a neural network we have chosen to use 80% of
the jets, leaving 20% available to test the accuracy of the network.
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To ensure that the results are not biased from a specific
division of the data into training and test sets, the process is
repeated multiple times. At each iteration, the training/testing
division is made randomly resulting in different subsets.
Using this method, the architecture remains the same, while
allowing a reasonable sampling of the, otherwise immense,
space of divisions of the data into training and testing. This
method is then used to evaluate the stability of the NN
classifier. From each iteration, the classifying score can be
calculated and the overall mean accuracy, as well as the
standard deviation of the results, are direct evidence of the
system’s performance. In the following section results from
this iterative process are shown where 100 iterations have
been used.

An additional method used for the validation of the
classification results is the “leave-one-out” method which
produces independent classification results for each and every
sample. This method is very useful when dealing with datasets
of small size as it can give a good measure of the system’s
performance in terms of correctly classified and miss-classified
cases (e.g., Aminalragia-Giamini et al., 2020). With this
procedure, a neural network is trained with all the available data
apart from one sample which is “left out.” After training, this one
sample is input as a test set of size 1 and its class is evaluated by
the network. This process iteratively evaluates all samples, setting
a different one apart each time, and thus requires the training
of a neural network as many times as the total number of jets,
here N = 955. After its completion, this process produces 955
classification results where in each case only the sample tested did
not participate in the training and every other available sample
was used to produce the results. Finally, a single accuracy score
can be calculated for each class which is indicative of the overall
performance. The presented results of the “leave-1-out” method
are the average results of three independent runs using this
validation technique.

4. RESULTS

4.1. Neural Network
An example plot of the neural network training is shown in
Figure 4. The test accuracy (left) increases until ∼ 200 epoches
and as expected the test loss (right) decreases in a respective
trend. Beyond the ∼ 200 epoch point, no significant changes
were observed. After using a validation set to determine the best
number of epoches and batch size, we decided to use 250 epoches
with a batch size equal to 100 training samples per iteration.
Finally, the 80/20 training/testing division of the data results in
absolute numbers in 607 Qpar jets and 157 Qperp jets for training
and 152 Qpar jets and 39 Qperp jets for testing.

The classification results from 100 iterations with the random
training/testing division for neural networks are shown in
Figures 5, 6. Figure 5 shows the individual classification scores
for Qpar and Qperp jets where it is seen that in both cases high
scores with a mean accuracy of∼ 98.2 and∼ 88.9% are achieved,
respectively. Specifically for the Qpar jets, the scores are tightly
clustered in the ∼ 95 − 100% range showing minimal standard
deviation between iterations. On the other hand, the results of
Qperp jets have a higher standard deviation, with accuracy scores
ranging from ∼ 75 − 100%. This could be due to the number of
jets per class not being balanced, which provides more available
information for the neural network regarding the majority class
(Qpar). As a result, the testing set used for each iteration contains
fewer samples which makes it possible to get worse training and
test splits on each iteration. Another possible explanation is that
on top of the class imbalance, due to the way Qpar and Qperp
shocks form,most of Qperp jets occurmuch closer to the subsolar
region compared to Qpar jets. As discussed previously,∼ 50% of
Qperp jets are close to the subsolar region and the other half are
further away toward the flanks. As a result, a split of data can
make the result vary heavily if the training and test sample are
not equally distributed.
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FIGURE 4 | Example of the training procedure for a neural network run. Left: Accuracy vs. number of epoches. Right: cross-entropy loss vs. number of epoches.

The results were stabilized for an epoch number of ∼ 250. Blue lines show the behavior of the training subset while orange lines show that of the testing subset.

Frontiers in Astronomy and Space Sciences | www.frontiersin.org 7 June 2020 | Volume 7 | Article 24

https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org
https://www.frontiersin.org/journals/astronomy-and-space-sciences#articles


Raptis et al. Neural Network Classification of Jets

20 40 60 80 100
94

95

96

97

98

99

100

Q
p
a

r 
C

la
s
s
if
ic

a
ti
o

n
 A

c
c
u

ra
c
y
 (

%
)

mean=98.2%, stdev=1.1%

Mean Acc Qpar

20 40 60 80 100
70

75

80

85

90

95

100

Q
p
e

rp
 C

la
s
s
if
ic

a
ti
o

n
 A

c
c
u

ra
c
y
 (

%
)

mean=88.9%, stdev=4.8%

Mean Acc Qperp

FIGURE 5 | Accuracy of the neural network for 100 different iterations. Left: Results of the quasi-parallel class. Right: Results of the quasi-perpendicular class. The

training of the shown neural networks includes the IMF vector.
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FIGURE 6 | Accuracy of the neural network for 100 random initialization of training/test set, with every point being one iteration. The x-axis represents the accuracy in

quasi-perpendicular class and ranges from 70 to 100%. On the other hand, the y-axis shows the accuracy in the quasi-parallel class and ranges from 94 to 100%.

Special indication of the leave one out result is marked in green color. The training of the shown neural networks includes the IMF vector.

Figure 6 shows the resulting pairs of Qperp accuracy vs. the
Qpar accuracy for each of the 100 iterations. It is seen that the
distributions of the independent iterations does not exhibit any
specific structure but appears random. This is important and
gives confidence in the NN results since it is common in binary
classification problems, such as this one, to have a competing
classification problem; i.e., the higher the score for one class the
lower the score for the other. This is not the case here and the
differences in the respective scores appear to stem only from the
random division of training/testing subsets.

Finally, in Figure 6 the classification score from the leave-one-
out process can be seen with Qpar and Qperp scores equal to ∼

96.7 and∼ 88.2%, respectively. The leave-one-out process scores
lie close to the mean of both the Qpar and the Qperp scores,
while being slightly lower in both cases.We can speculate that the
small differences may originate from the differences between the
two types of validation methods. First of all, the class imbalance
and the fact that resampling methods utilized in this case had
to increase the dataset to a larger number of samples, could
enhance the effect of class imbalance, decreasing the accuracy
of the network. Furthermore, for the leave-one-out method, a
validation set of 10% was used to check at which point the epoch
training should be stopped. This was necessary since optimizing
the epoch number or the batch size, while training with all but
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TABLE 4 | Accuracy of each method used per class.

Class NN - age

(%)

NN - leave-1-out

(%)

θcone

(%)

Coplanarity

(%)

Bow shock

model (%)

Qpar 98 97 61 81 74

Qperp 88 88 94 79 86

Mean 93 93 77.5 80 80

The neural network accuracy is taken as the average performance of the 100 random

iterations as shown in Figures 5, 6.

one jet is time consuming and outside the scope of this work. As
a result, the difficulty in optimizing the hyper-parameters of the
neural network for the leave-one-out case may have had a slight
impact on the overall accuracy of the method.

4.2. Comparison of Neural Networks to
Physics-Based Models
We now compare the classification scores obtained from
the neural networks with the respective scores from the
physics-based models. As seen in Table 4, neural networks
outperform the physics-based modeling methods in reproducing
the classification of the jets in the dataset.

The simple approximation of the cone angle (Equation 3)
performs very well for the Qperp class, achieving the highest
score of all the methods with an accuracy of ∼ 94% surpassing
that of the neural networks. On the other hand, the cone angle
method clearly underperforms in theQpar class having the lowest
score of all methods with an accuracy of only ∼ 61%. These
results show that the cone angle approximation is not well-suited
for this problem. This is expected since a large portion of jets were
not found in close proximity to the subsolar region.

The coplanarity method (Equation 4) performs almost equally
well for the two classes with accuracy scores of ∼ 81 and ∼ 79%
for the Qpar and Qperp classes, respectively. The accuracy scores
are quite high demonstrating it is an appropriate and accurate
method for this problem. However, in both classes, it is heavily
outperformed by the neural networks.

Finally, using a bow shock model to calculate the θBn presents
an in-between case of the other two physical methods. The
accuracy scores of ∼ 74 and ∼ 86% for the Qpar and
Qperp classes, respectively, are good classification scores with
a high tendency to misclassify jets as Qperp, though not as
strong as in the cone-angle method. However, this method is
also outperformed in both classes by the neural networks. It
is interesting to note that the three physics-based methods all
have mean scores, for both classes, close to ∼ 80% implying
possibly an inherent limitation due to the fact that for upstream
information they only use the IMF vector. This is not true for the
neural networks which can accept all the available information.

4.3. Neural Networks Without IMF (Bu)
Input
After establishing the advantage of the neural network method
when providing the upstream magnetic field vector (Bu), we
investigate the performance of NNs even in the absence of the, in

TABLE 5 | Accuracy of each method used per class.

Class NN - age

(%)

NN - leave-1-out

(%)

θcone

(%)

Coplanarity

(%)

Bow shock

model (%)

Qpar 95 95 61 81 74

Qperp 87 86 94 79 86

Mean 91 91 77.5 80 80

In this case, the magnetic field components were not included in the training procedure

of the neural network method. The neural network accuracy is taken as the average

performance of 100 individually trained networks as shown in Figures 7, 8.

principle, vital information of themagnetic field orientation. This
was done to see whether the neural network can still perform well
without the IMF input that is necessary for all the other physics-
based models. It should be noted, that we still used the absolute
magnetic field (|B|) as input to the NN. As a result, the input
in these runs consists of all the parameters shown in Table 1,
except the last three which are the components of the magnetic
field vector.

Similarly to the previous subsections, the results of the
random train/test splits are shown in Figures 7, 8. In Figure 7,
it can be seen that the average classification accuracy of both
Qpar (∼ 94.8%) and Qperp (∼ 87.1%) class remain high even
when the NN’s input does not contain directional information of
the IMF. Once more, the accuracy in the class of Qpar jets has a
lower standard deviation than the Qperp, while in both cases the
standard deviation has increased compared to the results shown
in Figure 5. Again, as shown in Figure 8, there is no specific
structure regarding the scores of each iteration, similarly to the
previous case reported in section 4.1. The leave-one-out result is
slightly lower than the average result of Qperp jets (∼ 85.7%),
while being the same as the average for the Qpar ones (∼ 94.7%).

4.4. Dependence of Solar Zenith Angle
After deriving a classification using all the presented methods,
a possible link between the misclassified jets and their position
in the magnetosheath is investigated. As discussed previously,
the solar wind measurements provided as input for all methods,
characterize the subsolar region and are not ideal for the
characterization of the flanks. As a result, we investigate if this
effect is shown in the classification results of each method.

In Figure 9, we present the probability of jets appearing for
difference solar zenith angles. There are 4 histograms per jet class
that correspond to the 4 presented methods of classifications. On
each histogram, there are 3 plots representing the total number
of jets (blue), the misclassified jets (red) and the normalized
misclassified cases (black). Figure 9A shows the results of the
Qpar jets while Figure 9B shows the Qperp jets. It can be seen
that most cases of misclassification occur for angles close to
the subsolar region (≤ 30◦). However, when looking at the
normalized misclassified rates (black line), it appears that when
taking into account the overall number of jets, the relative
misclassification rate is much higher close to the flanks (≥ 30◦).
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FIGURE 7 | Accuracy of the neural network for 100 different iterations. Left: Results of the quasi-parallel class. Right: Results of the quasi-perpendicular class. The

training of the shown neural networks does not includes the IMF vector.
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FIGURE 8 | Accuracy of the neural network for 100 random initialization of training/test set, with every point being one iteration. The x-axis represents the accuracy in

quasi-perpendicular class and ranges from 70 to 100%. On the other hand, the y-axis shows the accuracy in the quasi-parallel class and ranges from 88 to 100%.

Special indication of the leave one out result is marked in green color. The training of the shown neural networks does not include the IMF vector.

5. DISCUSSION AND CONCLUSIONS

From the results of the neural network application (Figures 5, 6,
and Table 4), it is clearly shown that neural networks are capable
of reproducing the results of the initial database with greater
accuracy than the alternative physics-based models.

The different results for eachmethod likely originates from the
different properties the associated solar wind values between the
Qpar and Qperp jets (Raptis et al., 2019). As shown in Figure 4 of
Raptis et al. (2019), the velocity of Qperp jets is much lower than
that of the Qpar jets, with the first having an average absolute
ion velocity of ∼ 100 km/s, while Qpar have ∼ 230 km/s.

Furthermore, it was shown that the average solar wind velocity
under which Qpar jets were found was 〈VSW,||Jets〉 ≈ 495 km/s
with a standard deviation of σ||,Jets = 96 km/s. On the other hand
for the Qperp jet, 〈VSW,⊥Jets〉 ≈ 400 km/s with σ⊥,Jets = 46 km/s.
These differences in the velocity of the jets can have a large effect
on the final results since they not only affect the input parameter
space (solar wind velocity) but also the association timing (5-min
average) differently for every class.

To begin with, the cone angle approximation is working
effectively only for the Quasi-perpendicular jets. This is most
likely because the majority of them were found close to the
subsolar region. Another reason could be that most Qperp jets
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FIGURE 9 | Histograms showing the relative position of jets in the magnetosheath (solar zenith angle). Blue lines represent the whole number of jets, Red show the

misclassified jets and black show the misclassified cases normalized over the whole number of jets. (A): Quasi-parallel jets (n = 860). (B): Quasi-perpendicular jets

(n = 211).
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TABLE 6 | Number of misclassifications grouped in different solar zenith angles for

every classification method.

Method [0 − 30]◦ [30 − 50]◦ [50 − 90]◦

Neural networks 33 12 3

Cone angle 248 147 16

Coplanarity 146 88 10

Bow shock model 174 97 15

have a lower average velocity (Raptis et al., 2019), that along
with the proximity to the subsolar region may make the 5-min
average values used for the modeling more accurate. The better
overall results of the bow shock modeling method originate from
the estimation of the bow shock normal vector n̂. By finding a
point of origin for each jet, many cases that were found closer to
the flanks of the magnetosheath region were correctly classified.
Finally, the coplanarity method, while still producing overall
worse results than the neural network, showed that a significant
part of the jets can be classified using this approach. As shown in
Figure 9, the majority of the jets, and especially Qperp jets occur
close to the subsolar region (≤ 30◦). However, in all the presented
methods the misclassified cases occur mainly close to the flanks.
This could originate from the poor characterization of OMNIweb
data regarding phenomena that occur close to the flanks. In
particular, OMNIweb has a poor capability of catching intervals
of quasi-radial IMF (Bier et al., 2014; Suvorova and Dmitriev,
2016). Under quasi-radial IMF there is a quasi-perpendicular
shock forming close to the flanks. As a result, Qperp jets found
close to the flanks are probably not characterized well enough by
the available solar wind measurements that were given as input
to all the methods.

The superiority of the neural network provides indirect
support to the initial dataset. This is achieved because the input
of the neural network was independent of the one used in
the initial classification. In particular, the initial database was
classified using only magnetosheath (downstream) data, while
the neural network input contained only solar wind (upstream)
information. According to Figure 9, the highest evaluation
accuracy was obtained for jets found in close vicinity of the
subsolar region. As already stated previously, the OMNIweb
database provides measurements that correspond to the subsolar
region and therefore are not ideal to characterize the flank
regions. Furthermore, the jets found very far from the bow
shock could have taken a longer time to propagate in the
magnetosheath region, making the choice of 5-min averaging
dubious. A better estimation of the jet travel time from the
bow shock to its observation point could possibly increase the
accuracy of all the presented methods. These results show that
the choice of using in-situ measurements for the determination
of jets’ class may indeed provide more accurate results while
not limiting the classification procedure to periods of times
that upstream data are available (Raptis et al., 2019). There
are many jets that were found far away from the subsolar
region (YGSE > 5RE) that were systematically misclassified by
the physics-based methods. However, a good portion of them

was correctly classified by the neural network approach. As
previously discussed, the main problem with jets that are found
at the flanks of the magnetosheath is that the measurements
taken from the solar wind do not accurately characterize this
region. Furthermore, the time propagation error along with
the error of the origin position is greatly enhanced the further
away a jet is found from the bow shock. Nevertheless, due to
the availability of such cases, the neural network was able to
recognize peculiar cases, “train” for them, and correctly identify
a significant portion of them. Table 6, shows the number of
misclassifications done per method grouped in three ranges,
these close to the subsolar region ([0 − 30]◦) these further away
from the subsolar ([30− 50]◦) and the ones far toward the flanks
of themagnetosheath ([50−90]◦). It is clear, that neural networks
not only outperform the rest of the methods in the regions where
jets are found more frequently but also in the not so common
cases of flank jets.

To increase the accuracy of the neural network, one could
in principle train two different NNs to tackle the different
characterization of subsolar jets and flank jets. Then by utilizing
ensemble learning methods, each network could work on
its appropriate dataset possibly providing superior combined
results. This task is not trivial since the boundary of where
a subsolar region starts and ends is not sharp. Furthermore,
depending on the properties of the jet, the association of solar
wind measurements is an extremely complicated task. In this
work, we used 5-min average values that while characterizing
the majority of the events, they may fail to do so if a jet
has very high velocities or if a significant part of its velocity
lies in the yz plane, which could mean that it traveled in the
magnetosheath for a longer period of time. All the above, along
with the determination of the rest of the classes, shown in
the presented database (Table 2) are planned to be done in
future studies.

From a physical point of view, the most interesting result is
perhaps the fact that neural networks maintained a very high
accuracy even in the absence of the directional information of
the IMF (Figures 7, 8 and Table 5). This could be interpreted
in several different ways. The most direct one is that the
neural networks take advantage of the fact that in the initial
database, the jets found in quasi-perpendicular plasma have
on average a lower velocity and density than the jets found
in the quasi-parallel magnetosheath. It is, however, not yet
fully understood if this is the result of an observational bias
or of a real physical mechanism (Raptis et al., 2019). The
observational bias here would be that for conditions of low
velocity and density, the threshold of finding a jet is easier
to be satisfied (Equation 1). This would in principle allow
jets that are found in the quasi-perpendicular plasma to occur
primarily under low velocity and density solar wind. On the
other hand, such a bias is not likely to fully explain the shown
results. The conditions under which Qperp jets are found could
originate from a physical process that makes Qperp jets more
likely to occur under specific solar wind conditions, regardless
of the IMF direction. If the latter is true, it means that an
investigation of solar wind classes (e.g., Habbal et al., 1997;
Camporeale et al., 2017) could give insight as to whether each
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jet class (Table 2) occurs under different conditions or if specific
conditions simply favor the formation of one class over the other.
A final possible explanation is that directional information of
the IMF is “hidden” in various quantities that were used for the
training of the neural network. This, in turn, would allow the
non-linear relationship generated by the network to accurately
find the correct class of the jets by utilizing such previously
undetectable information.

Neural Networks were shown to be a powerful method for
the classification of magnetosheath jets. They outperformed the
physics-based methods used in distinguishing between quasi-
parallel and quasi-perpendicular jets. The results here, also
indicate that upstream solar wind properties are sufficient to
predict the class of the jets even without including the magnetic
field vector. Last but not least, machine learning approaches, such
as this one, can be generalized and applied to several satellite
missions and space environments.
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et al. (2018). Jets downstream of collisionless shocks. Space Sci. Rev. 214:81.
doi: 10.1007/s11214-018-0516-3

Pollock, C., Moore, T., Jacques, A., Burch, J., Gliese, U., Saito, Y., et al. (2016).
Fast plasma investigation for magnetospheric multiscale. Space Sci. Rev. 199,
331–406. doi: 10.1007/s11214-016-0245-4

Raptis, S., Aminalragia-Giamini, S., Karlsson, T., and Lindberg, M. (2020).
Magnetosheath Jets (Qpar-Qperp) Classification [Data set]. Front. Astron.
Space Sci. doi: 10.5281/zenodo.3746592

Raptis, S., Karlsson, T., Plaschke, F., Kullen, A., and Lindqvist, P.-A. (2019).
Classifying magnetosheath jets using mms - statistical properties. Earth Space

Sci. Open Arch. 41. doi: 10.1002/essoar.10501493.2
Rosenblatt, F. (1958). The perceptron: a probabilistic model for

information storage and organization in the brain. Psychol. Rev. 65:386.
doi: 10.1037/h0042519

Russell, C., Anderson, B., Baumjohann, W., Bromund, K., Dearborn, D., Fischer,
D., et al. (2016). The magnetospheric multiscale magnetometers. Space Sci. Rev.
199, 189–256. doi: 10.1007/s11214-014-0057-3

Samarasinghe, S. (2016). Neural Networks for Applied Sciences and Engineering:

From Fundamentals to Complex Pattern Recognition. New York, NY: Auerbach
publications.

Schwartz, S. J., and Burgess, D. (1991). Quasi-parallel shocks: a patchwork
of three-dimensional structures. Geophys. Res. Lett. 18, 373–376.
doi: 10.1029/91GL00138

Schwartz, S. J., Burgess, D., Wilkinson, W. P., Kessel, R. L., Dunlop, M., and
Lühr, H. (1992). Observations of short large-amplitude magnetic structures
at a quasi-parallel shock. J. Geophys. Res. Space Phys. 97, 4209–4227.
doi: 10.1029/91JA02581

Frontiers in Astronomy and Space Sciences | www.frontiersin.org 14 June 2020 | Volume 7 | Article 24

https://doi.org/10.1016/B978-0-12-811788-0.00009-3
https://doi.org/10.1016/S0964-2749(02)80212-8
https://doi.org/10.1613/jair.953
https://github.com/fchollet/keras
https://doi.org/10.1007/s11207-018-1250-4
https://doi.org/10.1029/JA078i019p03745
https://doi.org/10.1029/GM081p0107
https://doi.org/10.1029/94JA00865
https://doi.org/10.1086/519994
https://doi.org/10.1029/GL005i011p00957
https://doi.org/10.5194/angeo-32-991-2014
https://doi.org/10.1002/2014JA020880
https://doi.org/10.1086/310970
https://doi.org/10.1002/2016JA023394
https://doi.org/10.1109/ICCV.2015.123
https://doi.org/10.1103/PhysRevLett.103.245001
https://doi.org/10.1002/2017GL076525
https://doi.org/10.1002/2013JA019172
https://doi.org/10.5555/3045118.3045167
https://doi.org/10.1007/s11207-018-1258-9
https://doi.org/10.1029/2011JA017059
https://doi.org/10.1002/2015JA021487
https://doi.org/10.1029/2004JA010649
http://jmlr.csail.mit.edu/papers/v18/16-365.html
http://jmlr.csail.mit.edu/papers/v18/16-365.html
https://doi.org/10.21105/joss.00747
https://doi.org/10.3847/1538-4357/aaae69
https://doi.org/10.1029/JA091iA02p01711
https://doi.org/10.5194/angeo-26-2383-2008
https://doi.org/10.1007/BF02478259
https://doi.org/10.1029/2002JA009384
https://doi.org/10.1029/98GL50873
https://doi.org/10.1007/s11214-018-0516-3
https://doi.org/10.1007/s11214-016-0245-4
https://doi.org/10.5281/zenodo.3746592
https://doi.org/10.1002/essoar.10501493.2
https://doi.org/10.1037/h0042519
https://doi.org/10.1007/s11214-014-0057-3
https://doi.org/10.1029/91GL00138
https://doi.org/10.1029/91JA02581
https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org
https://www.frontiersin.org/journals/astronomy-and-space-sciences#articles


Raptis et al. Neural Network Classification of Jets

Shin, D.-K., Lee, D.-Y., Kim, K.-C., Hwang, J., and Kim, J. (2016). Artificial neural
network prediction model for geosynchronous electron fluxes: dependence
on satellite position and particle energy. Space Weather 14, 313–321.
doi: 10.1002/2015SW001359

Stone, C. E., Frandsen, A. M., Mewaldt, R., Christian, E., Margolies, D., Ormes, J.,
et al. (1998). The advanced composition explorer mission. Space Sci. Rev. 86,
1–22. doi: 10.1007/978-94-011-4762-0_1

Suvorova, A., and Dmitriev, A. (2016). On magnetopause inflation under radial
IMF. Adv. Space Res. 58, 249–256. doi: 10.1016/j.asr.2015.07.044

Turc, L., Fontaine, D., Savoini, P., Hietala, H., and Kilpua, E. K. J. (2013).
A comparison of bow shock models with cluster observations during
low alfvén mach number magnetic clouds. Ann. Geophys. 31, 1011–1019.
doi: 10.5194/angeo-31-1011-2013

Turner, D. L., Shprits, Y., Hartinger, M., and Angelopoulos, V. (2012). Explaining
sudden losses of outer radiation belt electrons during geomagnetic storms.Nat.
Phys. 8:208. doi: 10.1038/nphys2185

Wilson, L. III. (2016). “Low frequency waves at and upstream of collisionless
shocks,” in Low-Frequency Waves in Space Plasmas eds A. Keiling, D. H.
Lee, and V. Nakariakov (Hoboken, NJ: John Wiley & Sons, Inc.), 269–291.
doi: 10.1002/9781119055006.ch16

Wintoft, P., Wik, M., Matzka, J., and Shprits, Y. (2017). Forecasting KP from
solar wind data: input parameter study using 3-hour averages and 3-hour
range values. J. Space Weather Space Clim. 7:A29. doi: 10.1051/swsc/20
17027

Xiang, Z., Ni, B., Zhou, C., Zou, Z., Gu, X., Zhao, Z., et al. (2016). Multi-
satellite simultaneous observations of magnetopause and atmospheric losses of
radiation belt electrons during an intense solar wind dynamic pressure pulse.
Ann. Geophys. 34, 493–509. doi: 10.5194/angeo-34-493-2016

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2020 Raptis, Aminalragia-Giamini, Karlsson and Lindberg. This is an

open-access article distributed under the terms of the Creative Commons Attribution

License (CC BY). The use, distribution or reproduction in other forums is permitted,

provided the original author(s) and the copyright owner(s) are credited and that the

original publication in this journal is cited, in accordance with accepted academic

practice. No use, distribution or reproduction is permitted which does not comply

with these terms.

Frontiers in Astronomy and Space Sciences | www.frontiersin.org 15 June 2020 | Volume 7 | Article 24

https://doi.org/10.1002/2015SW001359
https://doi.org/10.1007/978-94-011-4762-0_1
https://doi.org/10.1016/j.asr.2015.07.044
https://doi.org/10.5194/angeo-31-1011-2013
https://doi.org/10.1038/nphys2185
https://doi.org/10.1002/9781119055006.ch16
https://doi.org/10.1051/swsc/2017027
https://doi.org/10.5194/angeo-34-493-2016
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org
https://www.frontiersin.org/journals/astronomy-and-space-sciences#articles

	Classification of Magnetosheath Jets Using Neural Networks and High Resolution OMNI (HRO) Data
	1. Introduction
	1.1. Magnetosheath Jets
	1.2. Neural Networks

	2. Data
	2.1. OMNIweb—Solar Wind (Upstream) Data
	2.2. MMS—Magnetosheath (Downstream) Data and Jet Database

	3. Methodology
	3.1. Input Determination
	3.2. Evaluating Jet Class With Physics-Based Modeling
	3.2.1. Cone Angle Approximation
	3.2.2. Coplanarity Method
	3.2.3. Bow Shock Modeling

	3.3. Evaluating Jet Class With Neural Networks
	3.4. Validation Method

	4. Results
	4.1. Neural Network
	4.2. Comparison of Neural Networks to Physics-Based Models
	4.3. Neural Networks Without IMF (Bu) Input
	4.4. Dependence of Solar Zenith Angle

	5. Discussion and Conclusions
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References


