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The near-Earth plasma sheet is the source for electrons in the inner magnetosphere.

The coupling between the solar wind and the near-Earth plasma sheet is dominated

by non-linear processes, making any relationship difficult to infer. We report on the

development of a neural network to capture the non-linear behavior between solar wind

variations and the response of energetic electron flux in the plasma sheet. To train

the neural network algorithm, we developed a data set with inputs from solar wind

monitoring spacecraft. The targets come from three probes of the Time History of Events

and Macroscale Interactions during Substorms mission as the spacecraft traversed the

plasma sheet from years 2008–2019. Preliminary findings during the development of the

neural network model show that tuning input parameters based on previously known

physical properties is conducive to improving model performance.

Keywords: neural network, plasma sheet, solar wind, machine learning, keV electron flux, deep learning, feature

engineering, space weather

1. INTRODUCTION

The fluxes of <200 keV electrons in the Earth’s inner magnetosphere constitute the seed population,
which is critically important for radiation belt dynamics. It is through cyclotron resonance with
the electrons of energies between a few and tens of keV (Kennel and Petschek, 1966; Kennel and
Thorne, 1967; Li et al., 2008, 2012) that chorus waves are generated outside the plasmapause
in association with the injection of Plasma Sheet (PS) electrons into the inner magnetosphere
(Tsurutani and Smith, 1974; Meredith et al., 2002). Whistler mode chorus waves play an important
role in accelerating the seed electron population to relativistic energies in the outer radiation belt
(Horne et al., 2005; Chen et al., 2007). Moreover, low-energy electrons (electrons with energies
less than about 100 keV) are responsible for hazardous space weather phenomena such as surface
charging (Garrett, 1981; Davis et al., 2008). The electron flux of low energies varies significantly with
geomagnetic activity and even during quiet time periods. The source of the low-energy electrons
is the PS. Much of the behavior of the PS is driven by variations in the solar wind (SW) and
interplanetary magnetic field (IMF) upstream of Earth’s bow shock (e.g., Aubry and McPherron,
1971; Nishida and Lyon, 1972; Tsutomu and Teruki, 1976; Terasawa et al., 1997; Wing et al., 2005;
Nagata et al., 2008; Cao et al., 2013). It is therefore an important challenge to understand the
distribution of energetic plasma entering the inner magnetosphere, as dependent upon SW driving.

Several studies have examined the link between SW variations and PS particles. For example,
Borovsky et al. (1998) found that there are several PS properties that are highly correlated with
upstream SW. Namely, the density, temperature, and total pressure of the PS are highly correlated
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with density, velocity, and dynamic pressure of the SW,
respectively. Tsyganenko and Mukai (2003) used Geotail and
Advance Composition Explorer (ACE) (Stone et al., 1998) data
to develop an empirical model for PS ions dependent upon
SW driving. Luo et al. (2011) additionally used Geotail and
ACE to investigate the PS electron population with an empirical
model for electron fluxes with energy >38 keV. Their model
achieved good performance compared to observations; yet, it
had limitations. Not being able to measure below 38 keV
and using integrated flux made it impossible to accurately
describe the behavior of electrons with lower energy. More
recently, Dubyagin et al. (2019) estimated PS differential electron
fluxes from Maxwellian and Kappa distribution functions
derived from plasma moments obtained using an empirical
model developed by Dubyagin et al. (2016). They found
that for thermal and superthermal energies (.1 keV) the
estimations are accurate within a factor of two. Yet, for
higher energy (≥10 keV), the estimates of electron flux diverge
by more than an order of magnitude from observations.
They suggest that to obtain a realistic representation of
PS electrons at these energies, a flux based model should
be developed.

Considering the limitations of previous empirical
relationships to model plasma sheet properties from SW,
an alternative method is to utilize machine learning (ML). ML
is viable in the present era, yet there are challenges regarding the
utility of using so-called “black- or gray-box” ML techniques.
(e.g., Camporeale, 2019). We have a sufficiently large amount
of observations (more than two 11-year solar cycles) of the
SW and PS, and we have the necessary modern computational
resources to process this amount of data. Bortnik et al. (2016)
described a ML method to predict the value of some observable
in the inner magnetosphere dependent upon a set of inputs
and their time history. Using the methodology described by
Bortnik et al. (2016), Chu et al. (2017) developed a neural
network model of electron density in the inner magnetosphere
with inputs of spacecraft location and time history of several
geomagnetic indices. In a similar study, Zhelavskaya et al. (2017)
used geomagnetic indices but included SW parameters as inputs
to neural networks. They found their neural networks that
included a combination of SW parameters and geomagnetic
indices performed the best. Yue et al. (2015) used Support
Vector Regression ML to develop an inner PS pressure model,
during substorm growth phases only, based on inputs of SW
dynamic pressure, sunspot number, Cross Polar Cap Potential,
and the Auroral Electrojet Index. Their ML model was able to
predict the observed pressure in the near-Earth PS during the
substorm growth phase. In the present work, we used ML to
develop an electron flux-based empirical model of the near-Earth
PS during all times, using only the time history of upstream
SW plasma and IMF parameters. The purpose of this brief
report is to (1) establish that a machine learned model can, with
some skill, predict the electron flux in the PS from SW input
drivers only, and (2) demonstrate that using large amounts of
data in a machine learning model is not as useful as using a
limited dataset while applying established physical knowledge
as inputs.

2. METHODS

We used a feed-forward neural network (NN) to investigate the
response of 1–200 keV energy electrons in the near-Earth PS to
variations in the SW upstream of Earth’s bow shock. There are
two versions of a NN, which we label as Version 1 and Version
2, that we will describe. In both versions, there is an input layer,
two hidden layers, and an output layer. The differences in both
versions involve the number and types of inputs, the number
of nodes in each hidden layer, and the amount of underlying
physical information included as input.

2.1. Data Description
The data that were used in this study come fromOMNI (King and
Papitashvili, 2005) and Time History of Events and Macroscale
Interactions during Substorms (THEMIS) (Angelopoulos, 2008).
OMNI combines upstream SW measurements and calculated
derivations for several plasma parameters. Measurements from
multiple Lagrange L1 spacecraft have been combined and
propagated to the assumed Earth’s bow shock at approximately
15 Earth radii (RE). An advantage of OMNI data, rather than data
directly from the source spacecraft, is its continuity over several
decades and multiple spacecraft. Each THEMIS satellite carries
an Electrostatic Analyzer (ESA) (McFadden et al., 2008) and
Solid State Telescope (SST) (Angelopoulos et al., 2008), which
combined measure electrons in the energy range from a few eV
to a fewMeV. All OMNI and THEMIS data were obtained via the
NASA Goddard Space Physics Data Facility.

2.1.1. Version 1 Target Data

The target data are PS electron flux of energies between
approximately 1–200 keV. The THEMIS Science Team has
combined measurements from the ESA and SST instruments
into a single data product called GMOM (Ground combined
MoMents). Altogether, there are 46 energy channels in the
GMOM data set ranging from about 5 eV to ∼300 keV. We
chose 17 energy channels of electron flux between 1 and 200
keV because this energy range is most correlated with the
generation of chorus waves and with spacecraft surface charging.
The approximate energy of each channel is shown in Table 1.
The log10 of the energetic flux values make up the target
vector, Ey (Equation 1a), which has 17 entries, one for each
energy channel. Although there are several methods for filtering
spacecraft observations to the PS (e.g., Roziers et al., 2009;
Dubyagin et al., 2016), we adopt the method used by Ruan et al.
(2005) that uses only a single criterion of plasma β ≥ 1. The
β ≥ 1 criterion follows from average properties of the central PS
described by Baumjohann et al. (1989).

All of the data that we use for training the neural networks are
from three probes, THEMIS-A, -D, and -E. The spacecraft have
a nominal spin rate of 3 s, and thus have flux data with nominal
time cadence of the same. However, electron flux enhancements
resulting frommagnetotail processes occur onminute time scales
(e.g., Bame et al., 1967). We down-sampled the GMOM flux data
to 1 min by taking the mean of intervals closed on the left and
open on the right. From all observations marked by the THEMIS
mission team with a good data quality flag from 1 February 2008
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TABLE 1 | Comparison of architecture and test metrics for Version 1 and Version

2 neural networks.

Neural network models comparison

Characteristic Version 1 Version 2

Physical Considerations

Plasma sheet location β ≥ 1 β ≥ 1, MLT

SW time resolution 30 min 5 min

SW time history 8 h 4 h

SW parameters VX ,VY ,VZ , |V|

BX ,BY ,BZ , |B|

Pdyn, n, T,E,β

BY ,BZ , |V|, n

Solar cycle period Solar minimum Declining phase

Number of inputs 208 174

Number of examples ∼650K ∼280K

1st hidden layer

Number of nodes 624 (208 × 3) 522 (174 × 3)

Activation fn ReLU ReLU

2nd hidden layer

Number of nodes 1,248 (624 × 2) 1,044 (522 × 2)

Activation fn ReLU ReLU

Output layer

Number of outputs 17 17

Activation linear linear

Train target std. dev. 1.31 1.29

Test target std. dev. 1.41 1.39

Loss function Mean squared error

Optimization Adam; batch size: 50

Apprx. energies 1.3, 2.2, 3.9, 6.7, 11.7, 20.2

of channels 27, 28, 29, 30, 31, 41

used (in keV) 52, 65.5, 93, 139, 203

Test Metrics

Bias −0.05 0.15

Extremes 0.46 0.36

PE (skill) 0.76 0.80

MSE (loss) 0.47 0.38

MAE 0.51 0.44

Association 0.43 0.69

sMAPE 90% 80%

SSPB −30% 20%

MSA 151% 110%

Orange cells highlight characteristics that were expected to be advantageous toward

modal performance. Blue cells highlight the metrics with the better test score of the two

model versions. PE, prediction efficiency; MSE, mean squared error; MAE, mean absolute

error; SSPB, symmetric signed percentage bias; sMAPE, symmetric mean absolute

percentage error; MSA, median symmetric accuracy.

through 31 July 2019, we selected those that occurred when the
spacecraft were between −9RE ≥ XYGSM ≥ −11RE, had a
measured plasma β ≥ 1, and were on the night side [between
magnetic local times (MLTs) 18-06]. The spatial region chosen
does not relate to any static structure in the magnetosphere.
Rather, we presume that varying characteristics in the PS at these
locations will be captured by the model since they are dependent

upon SW driving. Combining observations that fit these criteria
from all three spacecraft yielded around 830,000 one-minute
observations. Note that not all of these were used in training due
to missing data in the input data set, which is described next.

2.1.2. Version 1 Input Data

The inputs to the Version 1 NN are OMNI data from −0.5 to
−8 h of each event identified in the target data set. Following
evidence that the magnetosphere acts as a low-pass filter of
the SW (Ilie et al., 2010), we used 30-min averaged OMNI
data. Creating the input vector for each event is shown in
Equations (1b) and (1c). We assumed a time delay of τ = 30
min to account for the time that it would take variations in
the upstream SW to have an effect in the magnetotail. Thirteen
OMNI parameters were used: SW proton number density, three
velocity components and flow speed as well as IMF geocentric
magnetic BX, BY, BZ, and |B|. Derived parameters included are
SW proton temperature, electric field, dynamic pressure, and
plasma beta. A full investigation quantifying the importance of
these SW input drivers to PS electron flux is underway, however,
such an investigation is beyond the scope of this brief report.
As a preconditioning step, the values of each OMNI parameter
were scaled to the range [−1, 1] by dividing all observations by
the observed absolute maximum value between 2008 and 2019
for that particular parameter. With inclusion of these parameters
and their time history, each input vector had 208 features. For
each input vector Exi, if there were any missing data, that input
vector and its associated 1-min output vector Eyi were discarded
from the database. Approximately 26% of training examples were
removed due to missing data, reducing the total number from
about 830,000 to 613,952. We intentionally did not randomize
our training and testing sets due to the time series nature of
the observations in the PS. Rather, we selected February 2008 to
February 2018 as the training data and March 2018 to July 2019
as the test data.

Eyi = log10
[

eflux1, . . . , eflux17
]

(1a)

ξ =
[

BX ,BY ,BZ , |B|,VX ,VY ,VZ , |V|,E, n,T, Pdyn,β
]

(1b)

Exi =
[

ξ̄tyi−τ , ξ̄tyi−τ−1t , . . . , ξ̄tyi−1T

]

(1c)

In Equations (1b) and (1c), ξ̄ is the 30-min averaged ξ , τ =
30min is a time delay, tyi is observation time of Eyi, 1t = 30min,
and 1T = 8h.

2.1.3. Version 2 Training Data

Based on physical understanding of the behavior of PS electrons
to SW driving, we made changes to the input dataset. The
Version 1 NN uses 30-min averaged OMNI data. However, 1–
200 keV energy electron flux in the near-Earth PS can vary
on timescales of minutes. By averaging out the smaller scale
variations using the 30-min averaged SW, we had neglected to
include information that could potentially increase the accuracy
of the training. Moreover, many previous studies (e.g., Newell
et al., 2007), have identified SW and IMF parameters that tend
to influence the response of the magnetosphere, typically in some
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functional form. These studies have shown the most import
contribution to magnetosphere response to be a combination of
n, V , BY , and BZ (e.g., Newell et al., 2007; Balikhin et al., 2010).

In the Version 2 NN, we restrict our input to include
only these four parameters. The PS responds to solar wind
variations through an increase in dayside reconnection and
dynamic pressure, allowing plasma and energy to enter Earth’s
magnetosphere where it is stored in the magnetotail. The release
of this stored energy both increases Earthward plasma flow
and magnetic flux in the near-Earth PS, leading to increased
energetic electron flux there. We chose these four parameters
as indicators of how much reconnection and dynamic pressure
will be impacting the dayside magnetosphere. We note that three
of these parameters—V , BY , and BZ—have long been shown to
be an accurate predictor of energy input from the SW to the
magnetosphere (e.g., Perreault and Akasofu, 1978).

2.1.3.1. Version 2 input data
For Version 2, we alter the input data to include only the four
parameters from section 2.1.3. These parameters are averaged
to 5 min and restricted to a time history of −0.5 to −4 h. To
them, we add two inputs related to the spacecraft position. In
a similar manner described by Bortnik et al. (2016), we encode
spacecraft location by including the magnetic local time (MLT).
For the purposes of this study only, we made a simplification
that the characteristics of the PS within ±1 RE in radial distance
at 10 RE are approximately consistent. Similar to the Version
1 input vector, the OMNI parameters that are included start at
t0 − 30min. The Version 2 input data is shown in Equation 2.
Each input vector has 174 features; there are 172 OMNI inputs
(4 parameters · (240−25) min/5 min) and 2 position inputs. The
creation of the target vectors was unchanged.

φ =
MLT

24
2π ξ = [BY ,BZ , |V|, n] (2a)

Exi =
[

ξ̄tyi−τ , ξ̄tyi−τ−1t , . . . , ξ̄tyi−1T , cosφi, sinφi

]

(2b)

In Equation 2, ξ̄ is the 5-min averaged ξ , τ = 30min is a time
delay, tyi is observation time of Eyi, 1t = 5min, 1T = 4h, and
MLT is the magnetic local time of the spacecraft when each of the
i observations were recorded. Unlike the Version 1 OMNI inputs,
data in Version 2 were not scaled to the range [−1, 1]. Similar to
the Version 1 input data, if there were any missing OMNI data
in an input vector, then we discarded that (Exi, Eyi) example from
the dataset. Since it is more likely to have missing data when
averaging over 5 min than when averaging over 30 min, a much
larger number, about 66%, of training examples were excluded
in the Version 2 data. After removing examples with missing
data, there were 282,294 total training examples remaining. As
with Version 1, 10% of the examples were reserved for testing.
The date ranges for Version 2 data are training: February 2008–
August 2015 and testing: September 2015–May 2017. We note
that these are not the same training/testing periods that were
used for the Version 1 model. We discuss this discrepancy and
its consequences in section 4.

2.2. Neural Network Description
A NN has the proven ability to fit any non-linear function
between two sets of variables (Hornik et al., 1989). While we can
be confident that some ambient SW plasma eventually finds its
way to the PS, all of the non-linear methods involved for how
it arrives there are not completely understood (e.g., Wing et al.,
2014). To capture the unknown non-linear processes, we used the
machine learning tool of a NN as a statistical mapping between
upstream SW and PS observations.

2.2.1. Version 1 Neural Network

The Version 1 NN used an input layer, two hidden layers, and
an output layer. The number of nodes in each hidden layer is
based on a multiple of the number of inputs to that layer. The
first hidden layer has 624 nodes, which is the number of inputs
times three, and the second hidden layer has 1,248 nodes, which
is 624 times two. All neurons in both layers are activated using
the rectified linear unit function (ReLU, defined in Equation 3).
In the output layer, a linear activation function is used to render
the log of the flux values.

ReLU : f (x) =

{

0, x < 0

x, x ≥ 0
(3)

2.2.2. Version 2 Neural Network

Wemade modifications to the NN by modifying both the inputs,
targets, and NN architecture. See section 2.1.3.1 for descriptions
of how the inputs were modified from the Version 1 model. The
NN architecture modifications fromVersion 1 to Version 2 are as
follows. The number of inputs to the Version 2 model is 174. The
first hidden layer has 522 nodes, which is three times the number
of inputs. The second hidden layer has 1,044 nodes which is twice
the number of nodes in the first hidden layer. As in the Version 1
model, all nodes in both hidden layers are activated using ReLU,
and the output layer is activated using a linear function.

2.3. Neural Network Training
We utilized Keras with Tensorflow (Abadi et al., 2015) software
for our NN training. Weights and biases were updated
using a loss function of mean squared error (MSE) and the
Adam optimization algorithm (Kingma and Ba, 2014) with
hyperparameters set to α (learning rate) = 0.001, β1 = 0.9,
β2 = 0.999, and ǫ = 10−7. Although MSE was calculated using

all 17 energy channels in the Ey− and Êy-vectors, the weights and
biases for each channel were updated independently. For both
versions, we stopped training when it was detected that the test
loss had stopped decreasing after three consecutive epochs. This
occurred after ten epochs for both versions.We trained both NNs
in batches of 50 training examples, resulting in several thousand
updates per epoch.

Figure 1 shows the training loss and test skill for both Version
1 and Version 2 neural networks. In Figures 1A–D, the black
line was calculated using training data and the red line was
calculated using the test data. Figure 1A is the MSE of predicted
output vector vs. observed electron flux channels calculated after
each epoch of training for model Version 1. We define a single
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FIGURE 1 | Training and test loss and skill for the two different model configurations. Panels (A,B) show the loss and skill metrics after each epoch of training the

Version 1 model. Panels (C,D) show the same as (A,B) except they are from the Version 2 model.

epoch of training to be a complete pass through all training
data. The curves do not look “smooth” because the weights were
updated after each batch of 50 training examples and the loss
was only recorded after each complete epoch (11,052 batches
per epoch in Version 1 and 5,082 batches per epoch in Version
2). Figure 1B shows the skill of the model calculated after each
epoch. Model skill was determined using the prediction efficiency
(PE) metric, which was calculated as unity minus the ratio of
the MSE to the observed variance. Figures 1C,D show the loss
and skill of the Version 2 model for both train and test data
after each epoch of training. In Version 1, the final training loss
was 0.34, and the final training skill was 0.76. In Version 2, the
training loss and skill are similar to Version 1, at 0.33 and 0.80,
respectively. The test loss for both versions have final values of
0.47 for Version 1, and 0.38 for Version 2. The final test skill
between the two versions are Version 1 PE is 0.76 and Version
2 PE is 0.80.

3. RESULTS

We have calculated several model-observation metrics for the
two neural networks in order to evaluate their performance.

Each metric was calculated using the data designated as
test for both versions. Observations include the full set
of Ey, and model output, Êy, is obtained by applying the
trained weights and biases to the test inputs, Ex. The bottom
section of Table 1, labeled Test section, shows all of the
test metrics calculated for both versions of the NN. We
use several different metrics for a more comprehensive
model comparison (e.g., Liemohn et al., 2018). The first
five (“Bias” through “MAE”) are calculated using the log of
flux values and the last four (“Association” through “MSA”)
are calculated using actual flux values. We highlighted in
blue the metric between the two versions that more closely
represents the observations. For all metrics calculated except
Bias and Extremes, the Version 2 NN outperforms the
Version 1 NN.

Bias is calculated as mean
(

Êy
)

− mean
(

Ey
)

. Version 1 has

a slight negative bias of −0.05 and Version 2 has a larger,
positive bias of 0.15. The Extremes are the ratio of the range
of model flux to the range of observed flux. An Extreme score
of 1 would indicate that the model output perfectly captures
the observed range of flux values. Since the Version 1 score
of 0.46 is closer to unity than the Version 2 score of 0.36, we
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can infer that the Version 1 model is better at capturing the
range of observed flux values than Version 2. PE and MSE are
defined in section 2.3, and for both, Version 2 outperforms
Version 1. In training, the algorithm was attempting to minimize
MSE on the training data, and PE was monitored to impede
overfitting (see section 2.3). The MSE of Version 1 is 0.47
and the MSE of Version 2 is 0.38. The Version 2 PE of 0.80
is an improvement over the Version 1 PE of 0.76. We use
Mean Absolute Error (MAE) as a second measure of the spread
of the deviation between observed and modeled values. The
Version 1 MAE is 0.51 and the Version 2 MAE is 0.44. If we
take the square root of MSE to obtain the Root Mean Square
Error (RMSE), then RMSE and MAE have the same units,
in this case log10

(

cm−2s−1sr−1
)

. RMSE is larger than MAE
for both models, which reveals that it is likely that there is
a substantial spread of modeled flux values compared to the
observed values.

The remaining metrics that are described were calculated
using actual flux values. With Association, we use the standard
textbook r2 value commonly used for regression analysis. Our
interpretation of Association is that the Version 1model captures
only 43% of the variance in the observed fluxes, while the Version
2 model is capturing nearly 70% of the variance in observed
fluxes. The symmetric mean absolute percent error (sMAPE)
ranges from 0 to 200 percent. The Version 1 model has a sMAPE
of 90% and the Version 2 model has a sMAPE of 80%. The
signed symmetric percent bias (SSPB) and the median symmetric
accuracy (MSA) are twometrics described byMorley et al. (2018)
that provide a more robust comparison of flux values that vary
by orders of magnitude. SSPB is calculated using the median
value of the log of flux, rather than the mean of the log of flux.
Consistant with the Bias calculated using the mean of the log of
flux values, The SSPB for Version 1 is negative, at −30% and the
SSPB for Version 2 is positive at 20%. The fact that the absolute
SSPB is lower for Version 2 than Version 1 implies that there
is larger spread in the Version 1 modeled values than in the

Version 2 modeled values compared to the observed values. This
is consistant with the comparison of MAE and RMSE described
in the previous paragraph. Despite the name, the MSA is a
measure of error, and the values of MSA for Version 1 and
Version 2 models indicates that there is less error in the Version
2 model. A percent error of 100% would imply that on average,
there is a factor of two in the discrepancy between the observed
flux and the modeled flux. The Version 2 NN achieves a MSA of
110%, which is better than the Version 1 MSA of 151%.

The comparison of observed to modeled electron flux using
observations from the test data and modeled output from both
versions of the NN is shown in Figure 2. Figure 2A shows the
scatter for the Version 1 NN and Figure 2B shows the scatter for
the Version 2 NN. The Version 1 scatter diagram shows a higher
number of points overall than the Version 2 scatter diagram,
because there was a larger amount of data in the Version 1
dataset (see section 2.1.2). The black diagonal dash-dotted line is
a hypothetical ideal perfect correlation between observation and
model. For both model versions, the scatter shows a clustering of
the densest points close to the black line. The Version 2 model
shows a larger portion of the points closer to the black line.
Figure 2 is a general picture of model output and observational
comparisons, and we are hesitant to draw conclusions regarding
the behavior of plasma sheet electrons from it.

4. DISCUSSION

The Version 1 model assumes no a priori knowledge about which
quantities in the SW are important contributions to near-Earth
PS variations. We made this choice in order to allow the NN
to appropriately weight any parameters or combinations thereof
that might have been overlooked by previous SW-magnetosphere
coupling studies. There is a longer time history of the SW that
is used in Version 1 than Version 2. The Version 1 NN is also
trained on more than twice as many training examples than
Version 2. These factors might suggest that the Version 1 NN

FIGURE 2 | Scatter density correlation of modeled vs. observed electron flux at all 17 energy channels for (A) the Version 1 model and (B) the Version 2 model. The

comparison for both models was performed on the data reserved for testing.
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would produce more accurate output than the Version 2 NN.
However, despite the assumed advantages of the Version 1model,
the Version 2 model outperforms the Version 1 model in most
model-data comparison metrics calculated (see Table 1). We
propound that Version 2 outperforms Version 1 because of two
modifications that were made based on physical information.

The first modification toward incorporating physical
information relates to the time resolution of the inputs. When
deciding to use 30-min averaged SW inputs, we used evidence
that the magnetosphere acts as a low-pass filter of SW variations
(e.g., Ilie et al., 2010). However, there is evidence that some
higher time resolved information contained in the SW effects the
PS (Lyons et al., 2009; Wang et al., 2017). Additionally, much
of the behavior in the PS occurs on cycles of a few hours, i.e.,
substorm activity (e.g., Hones, 1972). By reducing the SW time
history to 4 h, we neglect information that is likely relevant to
predicting the electron flux in the PS. Others have found time
delays of 6 h (Nagata et al., 2008) and 8 h (Borovsky et al., 1998)
between SW/IMF variations and PS response. Even though the
Version 2 model does not consider delays longer than 4 h, it still
outperforms Version 1.

The second item of physical information that we introduced
to the input set is the spatial distribution of observed electron
flux. It is widely observed that there is a dawn-dusk asymmetry
of electron fluxes in the PS (e.g., Walker and Farley, 1972;
Lui and Rostoker, 1991; Sarafopoulos et al., 2001; Imada et al.,
2008). We would expect both a higher flux and a larger number
flux enhancements in the post local midnight, dawn section of
the PS. Moreover, Wang et al. (2007) demonstrated that the
spatial distribution of electrons within the PS is correlated with
varying SW parameters. Wang et al. (2011) additionally show
that the distribution of electron flux can be characterized by
MLT as electrons drift closer toward the inner magnetosphere.
Therefore, treating the PS as uniform in electron flux at a single
radial distance, as modeled by the Version 1 NN, is physically
inappropriate. By including the spacecraft location as an input
for the Version 2 model, we are encoding the physical knowledge
that the variation of electron flux is dependent upon spatial
location within the PS.

Both model versions were trained using periods of the
solar cycle that include quiet and active periods: Version 1,
solar minimum through the declining phase and Version 2,
solar minimum through solar maximum of solar cycle 24.
However, Version 1 was tested on a period of solar quiet (solar
minimum) and Version 2 was tested with data during a solar
active period (declining phase). While we might expect the
model to perform better during quiet SW conditions, this is
not what we see when comparing Version 1 to Version 2.
Moreover, there is not a substantial difference in the variance of
training and testing target data between Versions 1 and 2. The
Version 1 target data has standard deviations of 1.31 and 1.41
log10

(

cm−2s−1sr−1
)

for train and test sets, respectively, while
the Version 2 target data has standard deviations of 1.29 and
1.39 log10

(

cm−2s−1sr−1
)

, respectively. This further indicates that
including physical information is more important than using a
larger amount of data when training these neural networks.

5. CONCLUSION

In summary, this study showed that including additional physical
understanding, even while reducing the data set and inputs
in other ways, improved the quality of the NN predictive
capability. With neural networks, tracing the contribution from
inputs to outputs is difficult, hindering interpretability of
results, i.e., determining which inputs contributed to which
output, or finding a functional mapping between inputs
and outputs. Azari et al. (2020) showed that incorporating
physical knowledge into ML additionally improves scientific
interpretability along with performance for certain models.
Development of a robust NN model of PS electron flux from SW
input using additional physical understanding shows promise for
improving performance.
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