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Of the three main types of binaries detectable through ground-based gravitational
wave observations, black hole-neutron star (BHNS) mergers remain the most elusive.
While candidates BHNS exist in the triggers released during the third observing run of
the Advanced LIGO/Virgo collaboration, no detection has been confirmed so far. As
for binary neutron star systems, BHNS binaries allow us to explore a wide range of
physical processes, including the neutron star equation of state, nucleosynthesis, stellar
evolution, high-energy astrophysics, and the expansion of the Universe. Here, we review
some of the main features of BHNS systems: the distinction between disrupting and
non-disrupting binaries, the types of outflows that BHNS mergers can produce, and the
information that can be extracted from the observation of their gravitational wave and
electromagnetic signals. We also emphasize that for the most likely binary parameters,
BHNS mergers seem less likely to power electromagnetic signals than binary neutron
star systems. Finally, we discuss some of the issues that still limit our ability to model and
interpret electromagnetic signals from BHNS binaries.
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1. INTRODUCTION

The first observation by the LIGO-Virgo collaboration (LVC) of gravitational waves (GWs) coming
from merging black holes (Abbott et al., 2016, GW150914) and neutron stars (Abbott et al., 2017c,
GW170817) made GW astrophysics a reality. Since then, the LVC has confirmed an additional 9
binary black holes (BBH) (Abbott et al., 2019), with dozens of other systems announced in public
alerts!. BBH mergers were also discovered by an independent search pipeline used on publicly
available LVC data (Venumadhav et al., 2019). Most recently, an event that may have been a second
binary neutron star (BNS) merger was reported by the LVC (Abbott et al., 2020, GW190425)2.
BNS and black hole-neutron star (BHNS) systems play an especially interesting role in this
new field of astrophysics. By observing neutron star mergers, we gather information about the
equation of state of neutron stars (Flanagan and Hinderer, 2008; Abbott et al., 2018), about
the origin of heavy elements produced through r-process nucleosynthesis (Freiburghaus et al.,
1999; Drout et al., 2017; Pian et al., 2017), and about the expansion rate of the Universe (Abbott
et al,, 2017b; Hotokezaka et al., 2019). Neutron star mergers also power at least a subset of short
gamma-ray bursts (SGRBs) (Abbott et al., 2017a), as well as UV/optical/infrared kilonovae (Li and
Paczynski, 1998; Roberts et al., 2011; Chornock et al., 2017; Coulter et al., 2017; Cowperthwaite
et al., 2017; Evans et al., 2017; Nicholl et al., 2017; Soares-Santos et al., 2017; Villar et al., 2017), and

!Public alerts from the LVC are available online at https://gracedb.ligo.org/.
2GW190425 has observed masses that could also plausibly be explained as a very low mass BHNS merger, if ~ (2—3)Mg
black holes exist.
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radio emission from ultra-relativistic jets and mildly relativistic
outflows (Nakar and Piran, 2011; Hotokezaka et al., 2016; Mooley
et al,, 2018). The event rates of BNS and BHNS mergers remain
however very uncertain (Abadie et al., 2010; Belczynski et al,
2016; Abbott et al., 2020). Only two potential BNS mergers have
been officially confirmed so far, and no BHNS mergers, even
though a number of candidates can be found within the LVC’s
public alerts.

The evolution of BHNS binaries can be divided into three
main phases: a millions-of-years long inspiral during which the
two objects slowly lose energy and angular momentum to GW
emission; a merger phase lasting about 1 ms and resulting in
either the tidal disruption of the neutron star (see Figure 1) or
its plunge into the black hole; and, for disrupting systems only,
a seconds-long post-merger phase during which more matter
is ejected or accreted onto the black hole. These three phases
happen on widely different timescales, and involve different
physical processes and observable signals. In this manuscript, we
will review each stage of a BHNS’s evolution in turn, and discuss
important properties of the associated GW and electromagnetic
(EM) signals.

BHNS systems cover a high-dimensional and largely
unconstrained parameter space. Our priors for the properties
of black holes and neutron stars in BHNS binaries come from
their observation in other types of binary systems or from
theoretical considerations, and are accordingly quite uncertain.
While most neutron stars observed in BNS systems have masses

in the [1.2 — 1.6] M range (Ozel et al, 2012), more massive
neutron stars exist, up to at least ~ 2M¢ (Demorest et al., 2010;
Antoniadis et al., 2013). Most galactic black holes have masses
of [5 — 15] Mg (Ozel et al.,, 2010), but black holes observed
through GWs are often more massive (Abbott et al, 2019).
Whether black holes can be formed within the “mass gap”
between the most massive neutron stars and ~ 5M¢ also remains
an important open question. The magnitude and orientation of
black hole spins are unknown, and while most BHNS binaries are
expected to have negligible eccentricities (Peters and Mathews,
1963), eccentric BHNS binaries cannot entirely be ruled out and
have evolutions very distinct from circular binaries (Stephens
et al, 2011). Obtaining reliable models for the observable
signals powered by BHNS binaries across this vast parameter
space can be difficult, yet the dependence of these signals in
the properties of BHNS binaries is what allows us to extract
valuable information from observations. In this review, we
mostly consider circular binaries, leaving as free parameters the
masses MyspH of the compact objects, their dimensionless spins
X ns.pr- and the equation of state of dense nuclear matter, which
sets the radius Rys of a given neutron star.

2. BINARY INSPIRAL

From an observational point of view, the millions of years of GW
driven inspiral that eventually result in the merger of a BHNS
binary constitute an extended dark age between the supernova

&

(bottom left), and circularization into an accretion disk (bottom right).

FIGURE 1 | Time evolution of a disrupting BHNS binary, including: onset of mass accretion (top left), unstable mass transfer (top right), evolution into a long tidal tail
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explosion that created the neutron star and the bright GW and
EM emissions that accompany the merger. Ground-based GW
detectors, such as LIGO and Virgo only become sensitive to
BHNS binaries seconds to minutes before merger. Most of our
efforts thus focus on understanding the very end of the inspiral.
To first order, the GW-driven inspiral of BHNS binaries proceeds
as for black holes of the same masses and spins. GW detectors are
mostly sensitive to the chirp mass

(MnsMpn)®/®

[ S LA 1
7 (Mpy + Mxs)'/3 ()

of a system, while individual mass measurements suffer from
large statistical errors for all but the brightest events. As for
BNS systems, the main observable effect of the finite size of
neutron stars before merger is the acceleration of the GW-driven
inspiral due to tides (Flanagan and Hinderer, 2008): large neutron
stars merge earlier than more compact stars. GW detectors are
primarily sensitive to the resulting change in the phase of the GW
signal. To first order, that change is linear in the dimensionless
tidal deformability parameter (Hinderer et al., 2010), defined for
BHNS systems as

32 MI%IS(MNS + 12Mpy) ks
39 (Mns+Mpu)®  Clg

A= (2)

with Cns = MnsG/(Rnsc?) the compaction of the neutron star,
and k; its dimensionless I = 2 Love number. Both k; and
Rys depend on the equation of state of nuclear matter inside
the neutron star. Unfortunately, A becomes very small when
MpgH > Mxs. As a result, finite size effects in BHNS mergers are
expected to be detectable only for close-by events involving low-
mass black holes (Lackey et al., 2014). The usefulness of BHNS
binaries for the determination of the neutron star equation of
state largely depends on the event rate of BHNS mergers that
involve low-mass black holes. The existence of black holes within
the supposed “mass gap” would be particularly convenient in that
respect. For reference, recent results from the LVC (Abbott et al.,
2018), NICER (Miller et al., 2019; Riley et al., 2019), and joint
analysis of both datasets (Landry et al., 2020; Raaijmakers et al.,
2020) find Rys ~ (10.5 — 14.5) km, with variations due to the
chosen astrophysical data, equation of state model and maximum
NS mass.

Additionally, it can be difficult to unequivocally determine that
a given GW signal is powered by a BHNS merger. In the absence
of an EM signal, our main method to determine the nature of
merging compact objects is to use their inferred masses, and to
assume that any object below a fixed threshold mass is a neutron
star. This clearly introduces an untested astrophysical prior in the
interpretation of the data. It can also be difficult to determine
whether a system is a high mass ratio BHNS system or a more
symmetric BBH system with the same chirp mass (Hannam et al.,
2013)3. Furthermore, if black holes are commonly formed with

3If we allow for primordial black holes within the same mass range as neutron stars,
low-mass BHNS mergers can also mimic BNS systems, even if we observe an EM
counterpart (Hinderer et al., 2019).

large spins misaligned with the orbital angular momentum of
the binary, BHNS binaries may experience significant orbital
precession. As the GW templates currently used by detection
pipelines do not take orbital precession into account, this could
lead to the loss of a significant fraction (~30%) of BHNS
systems (Harry et al., 2014), with an observational bias toward
the detection of non-processing systems. Analysis of the observed
population of BHNS binaries thus require careful consideration
of observational biases and of the probabilistic nature of the
characterization of a signal as a BHNS system.

Finally, we note that the availability of reliable GW templates is
crucial to the analysis of merger events. In that respect, significant
progress have been made in recent years on precessing waveform
models (Schmidt et al., 2012; Hannam et al., 2014; Pan et al.,
2014; Smith et al., 2016; Khan et al., 2019; Varma et al., 2019),
which may be of particular importance for BHNS systems, and
on the inclusion of tidal effects in waveform models (Lackey
et al., 2014; Bernuzzi et al., 2015; Hinderer et al., 2016; Dietrich
et al, 2017; Nagar et al., 2018). Recent high-accuracy numerical
simulations of BHNS inspirals (Foucart et al., 2019) show
reasonable agreement between tidal models and simulations,
except for rapidly spinning neutron stars. It should however be
noted that state-of-the art simulations still have numerical errors
at the level of ~10-20% of the phase difference between BBH
and BHNS waveforms, which puts a limit on how far waveform
models can be tested in practice.

3. MERGER DYNAMICS

The merger of a BHNS binary follows one out of two
potential pathways: either the neutron star is disrupted by
the tidal field of the black hole, leading to mass ejection
and the formation of an accretion torus around the black
hole; or the neutron star plunges into the black hole
whole. Qualitatively, the physical processes leading to these
two potential outcomes are well-understood (Lattimer and
Schramm, 1976). As the binary spirals in, the neutron star
first reaches either the radius of the innermost stable circular
orbit (ISCO) of the black hole Risco, or the disruption
radius Rg. Roughly speaking, disruption happens if Rgs 2
Risco, ie., if the neutron star is tidally disrupted outside
of the ISCO. This division between disrupting and non-
disrupting systems creates two classes of events with very distinct
observational properties.

Qualitatively, if the neutron star is treated as a test mass
and the black hole spin is aligned with the orbital angular
momentum of the binary, the ISCO radius scales as Risco =
f(xsa)GMpH /c2, with f a function ranging from 1 to 9 and
decreasing for increasing (prograde) spins (Bardeen et al., 1972).
For large mass ratios and in Newtonian physics, the disruption
radius scales as Rgis ~ k(Mgp/Mns)'/?Rys, with k a numerical
constant with a mild dependence on the equation of state and the
black hole spin (Fishbone, 1973; Wiggins and Lai, 2000). From
these simple scalings, we deduce that disruption will be favored
for (a) low-mass black holes; (b) prograde black hole spins; and
(c) large neutron star radii.
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FIGURE 2 | Maximum value of the mass ratio Mgy /Mns for which a BHNS system will disrupt as a function of the neutron star radius Rys and aligned component of
the dimensionless black hole spin g, assuming Mys = 1.35M¢, (Foucart et al., 2018). Results for other Mys can be obtained by looking at the disruption condition
at constant Cng = GMys/(RnsC?).

A more quantitative understanding requires general
relativistic simulations (Duez et al, 2008; Etienne et al.,
2009; Chawla et al., 2010; Kyutoku et al., 2010; Foucart et al.,
2012; Kawaguchi et al, 2015). Simulations tell us that for
quasi-circular binaries, mass transfer is always unstable. We
can also predict which systems disrupt (see Figure 2), and for
disrupting systems how much mass remains outside of the black
hole after disruption (Pannarale et al, 2011; Foucart, 2012;
Foucart et al., 2018)—typically a few tenths of a solar mass.
While these predictions were first made for systems with aligned
black hole spins, simulations also show that for misaligned
black hole spins, simply using in fitting formulae the aligned
component of the black hole spin or replacing the ISCO radius
by the radius of the innermost stable spherical orbit (ISSO)
provides reasonably accurate predictions (Foucart et al., 2013b;
Stone et al., 2013; Kawaguchi et al., 2015). Overall, the outcome
of a BHNS merger can be predicted with reasonable accuracy as
a function of just three dimensionless parameters: the symmetric
mass ratio n = MnsMpn /(Mxs 4+ Mgn)?, the aligned component
of the dimensionless black hole spin x|, and the neutron star
compaction Cys (Foucart et al., 2018). However, these models do
not apply to systems with large eccentricities: partial disruption
of the neutron star is then possible (Stephens et al., 2011), and we
do not have reliable predictions for the outcome of the merger
in the larger-dimensional parameter space of eccentric BHNS
systems. There have also been too few simulations to robustly
characterize binaries with rapidly rotating neutron stars.

For non-disrupting BHNS systems, the merger ends the
interesting part of the evolution. The GW signal is practically

identical to a BBH system with the same component masses
and spins (Foucart et al., 2013a; Lackey et al., 2014), there is
neither mass ejection nor accretion disk, and we do not expect
detectable post-merger EM signals. In the rest of this review, we
will thus focus on the more interesting disrupting BHNS systems.
However, disrupting systems may very well be a small minority
of the observed BHNS binaries. Even a relatively low mass black
hole (Mpy ~ 7Mg) requires a moderate-to-high black hole
spin x| 2 (0.2—0.7) to disrupt neutron stars with equations
of state compatible with GW170817. The BBH systems detected
so far have black holes of high mass and/or low spin (Abbott
et al., 2019; Venumadhav et al, 2019) that would be highly
unlikely to disrupt neutron stars—though the rapidly spinning
BH candidate reported in Zackay et al. (2019) provides some
hope for the existence of disrupting BHNS binaries. While we
should be ready for a population of disrupting BHNS mergers,
we should acknowledge that the idea that most BHNS mergers
undergo tidal disruption is currently disfavored.

Disrupting BHNS systems provide us with a wealth of
additional information. First, the GW signal is cut off when
disruption occurs, at a frequency feyr ~ (1—1.5) kHz that depends
on the equation of state of the neutron star. The inclusion
of that cut-off frequency in waveform models (Lackey et al,
2014; Pannarale et al., 2015) can help constrain the equation of
state of neutron stars, complementing the information provided
by the tidal dephasing (Lackey et al, 2012; Lackey et al,
2014). Second, a disrupting BHNS binary typically ejects a few
percents of a solar mass of material. The ejection of neutron-
rich matter at mildly relativistic speeds is extremely important
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to the study of BHNS and BNS mergers: as the ejecta expands
into the surrounding interstellar medium, it undergoes r-process
nucleosynthesis, forming many of the heavy elements observed
today on Earth. The outcome of the r-process is not, however,
unique: more neutron-rich ejecta (approximately, with <~25%
protons) forms heavier r-process elements than more neutron-
poor ejecta (Wanajo et al., 2014; Lippuner and Roberts, 2015).
This matters if we wish to understand nucleosynthesis in the
Universe, but also to understand the properties of the observable
optical/infrared kilonovae powered by radioactive decays in the
ejecta. If heavier r-process elements are produced, the opacity of
the ejecta increases, causing the kilonova to be dimmer, of longer
duration, and shifted from the optical to the infrared (Kasen
etal., 2013). Kilonova signals also contain information about the
mass, velocity, composition, and geometry of the ejecta (Barnes
and Kasen, 2013; Kawaguchi et al, 2016). Thus, if we can
connect the ejecta properties to the parameters of the binary,
we can use kilonovae observations to complement and cross-
check GW observations of BHNS systems. In BHNS system, the
merger ejecta, or dynamical ejecta, has fairly well-constrained
properties. It is cold, very neutron-rich (~ 5% protons), and
moves at an average velocity v ~ (0.1—0.3)c. It is also quite
different from the dynamical ejecta of BNS mergers: there is
more mass ejection in disrupting BHNS binaries, the ejecta is
very asymmetric, and there is no neutron poor component to
the ejecta that may power an optical kilonova. Fits to the result
of numerical simulations have provided us with relatively robust
predictions for its mass (Kawaguchi et al., 2016) and asymptotic
velocity (Kawaguchi et al., 2016; Foucart et al., 2017) that can
be used to develop kilonovae models. While higher accuracy
predictions for the properties of the dynamical ejecta would
certainly be useful in the long term, this phase of the evolution
is quite well-understood when compared to the formation and
evolution of post-merger remnants.

4. POST-MERGER REMNANTS

In our description of the evolution of BHNS binaries, we have so
far only considered the effects of general relativity (GWs, ISCO,
...), of ideal hydrodynamics (tides and tidal disruption), and of
the nuclear equation of state of cold dense matter in neutrinoless
beta-equilibrium. During inspiral and merger, this is generally
sufficient to capture the most important observable features of
BHNS binaries. This changes dramatically after merger: as bound
matter from the disrupted neutron star begins to circularize,
mostly through hydrodynamical shocks and interactions between
the tidal tail and the forming accretion disk, magnetic fields
and neutrinos start to play an important role. Magnetic fields
and turbulent eddies will grow due to the Kelvin-Helmholtz
instability at the disk-tail boundary, heating the disk and driving
outflows (Kiuchi et al., 2015), while neutrinos cool the denser
regions of the disk and heat its corona (Lee et al., 2009; Deaton
et al., 2013; Janiuk et al., 2013; Foucart et al., 2015). Neutrino
absorption in the corona can drive a disk wind (Dessart et al.,
2009) and, more importantly, preferential absorption of electron
neutrinos over electron antineutrinos leads to an increase in the

ratio of protons to neutrons in the outflows (Foucart et al., 2015).
At later times the growth of the magnetorotational instability
leads to an increase in the strength of the magnetic field, angular
momentum transport and heating in the disk, accretion of matter
onto the black hole, and the production of mildly relativistic
outflows for multiple seconds after the merger (Fernandez and
Metzger, 2013; Siegel and Metzger, 2017; Fernandez et al., 2019).
Finally, depending on the large-scale structure of the magnetic
field after merger, continuous or more intermittent relativistic
jets may be produced ~0.1-1 s after merger (Paschalidis et al.,
2015; Siegel and Metzger, 2017; Ruiz et al., 2018; Christie et al.,
2019), potentially leading to the production of a SGRB.

Numerical simulations and theoretical models have made
important strides in the study of post-merger remnants over
the last decade, yet this remains by far the most uncertain
part of the evolution. A first problem is that only one
magnetohydrodynamics simulation has used sufficient resolution
to capture the growth of the Kelvin-Helmholtz instability at the
disk-tail boundary (Kiuchi et al., 2015), and it did not include
any treatment of the neutrinos. In the absence of cooling, it
predicted massive outflows from the forming disk (50% of the
disk mass, an amount comparable to the dynamical ejecta).
Lower-resolution simulations including neutrino cooling did
not observe significant outflows at this stage (Deaton et al,
2013; Foucart et al, 2015), but lacked the heating provided
by the Kelvin-Helmholtz instability. The physical answer lies
somewhere in between these two extremes, leaving a large
uncertainty regarding the mass of hot, mildly relativistic matter
that may be ejected during the circularization of the accretion
disk. This is particularly problematic because these early post-
merger outflows could be the main source of optical kilonovae
in BHNS systems.

A second important source of uncertainty is the large scale
structure of the magnetic field after merger. Merger simulations
have produced jets when a strong dipolar magnetic field was
initialized outside of the neutron star before merger (Paschalidis
et al.,, 2015; Ruiz et al., 2018), but no simulation has resolved
the growth of a large-scale magnetic field from realistic initial
field strengths. On the other hand, simulations of post-merger
remnants show that the large scale structure of the magnetic
field has a significant impact on the jet power and the ejected
mass (Christie et al., 2019). This leaves us with important open
questions regarding the connection between SGRB properties
and the pre-merger characteristics of a BHNS binary, as well as
regarding the mechanism for the production of relativistic jets,
e.g., whether a strong magnetic field outside of the neutron star
leads to the production of a jet ~100 ms after merger (Paschalidis
etal,, 2015; Ruiz et al., 2018), or a dynamo mechanism within the
disk creates a jet later on Christie et al. (2019).

One reliable constant in post-merger studies of BHNS systems
is that a large fraction ~(15-50)% of the bound matter remaining
around the black hole after the disruption of a neutron star
is ejected in mildly relativistic outflows. There is, however, a
wide range of outflow mechanisms. We observe early outflows
(<1 s post-merger) due to turbulent heating at the disk-tail
interface (Kiuchi et al.,, 2015) and in the inner regions of the
disk (Siegel and Metzger, 2017; Fernandez et al., 2019), as well
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as delayed outflows due to viscous heating and recombination
of alpha-particles in the disk (Fernindez and Metzger, 2013;
Christie et al., 2019; Fernandez et al., 2019). The former have
highly uncertain masses, velocities and compositions, in part due
to uncertain initial conditions in the post-merger remnant, and
in part due to missing physics in the simulations (particularly
neutrino radiation transport). The latter are better understood:
they are relatively slow (v < 0.05¢), and formed of ~20-
30% protons.

As post-merger outflows in BHNS mergers have a total mass
roughly similar to that of the dynamical ejecta, they have a
large impact on the properties of BHNS-powered kilonovae.
Uncertainties in their mass (by a factor of 2-3), velocity, and
composition (neutron rich/neutron poor) are the main source
of error in the construction of theoretical models of BHNS
outflows today. A better understanding of the post-merger winds,
along with better nuclear models and improved understanding
of the heating rate of merger outflows (Barnes et al.,, 2016),
are critical to the production of reliable kilonova models for
BHNS binaries. Currently, models either ignore the post-merger
ejecta (Kawaguchi et al., 2016), take only some of the post-merger
outflows into account (Barbieri et al., 2020), or suffer from large
uncertainties due to our lack of understanding of the post-merger
ejecta (Andreoni et al., 2019; Coughlin et al., 2019).

Finally, let us comment briefly on our understanding of BHNS
binaries as engines for SGRBs. Relativistic jets have now been
produced in simulations of BHNS merger (Paschalidis et al.,
2015; Ruiz et al,, 2018)* and/or of their post-merger remnant
disks (Siegel and Metzger, 2017; Christie et al., 2019). We also
know that the properties of the jet depend on the large scale
structure of the post-merger magnetic field. However, connecting
that large scale structure to the pre-merger properties of the
system remains an important unsolved problem. It is unclear
whether observations or simulations will first constrain the
magnetic field structure of the remnant of a BHNS merger. At
the moment, the most reliable information that comes from the
joint observation of a SGRB and GW signal from a BHNS binary
is that the neutron star was disrupted.

5. DISCUSSION

With the advent of GW astronomy, the study of BHNS mergers
is undergoing a rapid transformation. More efforts are now
being directed toward the modeling and interpretation of multi-
messenger observations of binary mergers. It has also become
clear that the study of BHNS systems suffers from significant

4“Jets” here are outflow regions with large Poynting flux, that cannot reach Lorentz

factor of more than a few due to the limits of existing merger simulations.
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outflows, as well as by nuclear physics and radiation transport
uncertainties (Barnes et al., 2016). In particular, the large scale
structure of magnetic fields within and outside of the post-
merger accretion disk is not, at this point, well-constrained
by merger simulations, despite its large impact on post-merger
outflows and on the properties of SGRBs (Christie et al., 2019).
To make optimal use of upcoming multi-messenger observations
(or even non-detections), it is thus important to develop
improved kilonova and SGRB models, and properly characterize
model uncertainties.
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