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In this paper, we explore the potential of neural networks for making space weather

predictions based on near-Sun observations. Our second goal is to determine the

extent to which coronal polarimetric observations of erupting structures near the Sun

encode sufficient information to predict the impact these structures will have on Earth.

In particular, we focus on predicting the maximal southward component of the magnetic

field (“−Bz”) inside an interplanetary coronal mass ejection (ICME) as it impacts the Earth.

We use Gibson & Low (G&L) self-similarly expanding flux rope model (Gibson and

Low, 1998) as a first test for the project, which allows to consider CMEs with varying

location, orientation, size, and morphology. We vary 5 parameters of the model to

alter these CME properties, and generate a large database of synthetic CMEs (over

36k synthetic events). For each model CME, we synthesize near-Sun observations,

as seen from an observer in quadrature (assuming the CME is directed earthwards),

of either three components of the vector magnetic field, (Bx,By,Bz) (“Experiment 1”),

or of synthetic Stokes images, (L/I,Az,V/I) (“Experiment 2”). We then allow the flux

rope to expand and record max{−Bz} as the ICME passes 1AU. We further conduct

two separate machine learning experiments and develop two different regression-based

deep convolutional neural networks (CNNs) to predict max{−Bz} based on these two

kinds of the near-Sun input data. Experiment 1 is a test which we do as a proof of

concept, to see if a 3-channel CNN (hereafter CNN1), similar to those used in RGB image

recognition, can reproduce the results of the self-similar (i.e., scale-invariant) expansion

of the G&L model. Experiment 2 is less trivial, as Stokes vector is not linearly related to B,

and the line-of-sight integration in the optically thin corona presents additional difficulties

for interpreting the signal. This second CNN (hereafter CNN2), although resembling CNN1

in Experiment 1, will have a different number of layers and set of hyperparameters due

to a much more complicated mapping between the input and output data. We find that,

given three components of B, CNN1 can predict max{−Bz} with 97% accuracy, and for

three components of the Stokes vector as input, CNN2 can predict max{−Bz} with 95%,

both measured in the relative root square error.

Keywords: coronal mass ejection, initiation and propagation, convolutional neural network (CNN), Gibson and Low

model, interplanetary CMEs, spectropolarimetric data classification
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1. INTRODUCTION

Geomagnetic storms are powerful disturbances in Earth’s
magnetosphere, which become increasingly more important as
our technologies develop. The technological progress increases
the quality of our lives and our understanding of world around
us, yet it renders us increasingly more dependent on electricity,
telecommunications, satellites, and air transportation. These are
some of the areas most impacted by the geomagnetic storms
(National Research Council, 2008; Eastwood et al., 2017). While
the well-known Carrington event has resulted, in 1859, in some
damage to telegraph lines and spectacular auroras seen as far
as Hawaii (Cliver and Dietrich, 2013), an event of a similar
magnitude happening today would be devastating for themodern
civilization (National Research Council, 2008; Baker, 2013).

The mitigation efforts depend on our ability to predict the
strength and the duration of a storm before it happens, in order
to take costly, yet necessary protective measures. These include
redirecting air traffic, taking measures to protect the power grid,
or preparing for inevitable disturbances in telecommunications
(e.g., Knipp and Gannon, 2019).

Geomagnetic storms are often caused by the collision of
Earth’s magnetic field with clouds of magnetized plasma, which
are typically of solar origin. The strength of a storm crucially
depends on the strength of the magnetic field in the cloud, and
also on its orientation with respect to the Earth’s own magnetic
field. A large southward component of the magnetic field
(hereafter Bz < 0) will result in stronger storms than if the field
had a comparable northward component (Bz > 0). These clouds
are associated with coronal mass ejections (CMEs), the eruptive
phenomena observed on the Sun (Webb and Howard, 2012).

The ability to predict the strength of geomagnetic storms,
consequently, relies on our ability to detect a CME as it departs
the Sun, to predict whether Earth will lie on its way, and to predict
its properties at the moment of its encounter with Earth (Kilpua
et al., 2019). Typically, after a CME is detected, simulations of its
propagation through interplanetary space are needed to predict
its further evolution as an interplanetary CME, or ICME (e.g.,
Arge et al., 2004; Manchester et al., 2017).

CMEs are magnetic in nature (e.g., Chen, 2011; Bak-Stȩślicka
et al., 2013; Forland et al., 2013); hence, near-Sun observations
sensitive to the strength of a magnetic field are needed to
determine the properties of a particular erupting structure. To
obtain magnetic information, measurements of spectral line
profiles of polarized light must be obtained. Unfortunately, many
existing observations of magnetic field regard only the solar
photosphere and chromosphere, while the CMEs are observed
in the solar corona. As the corona is significantly dimmer than
the solar surface in visible/infrared light, observations of CMEs
in these wavelengths require a coronagraph to occult the disk of
the Sun.

The spectropolarimetric measurements generally include four
Stokes parameters (I,Q,U,V) (unpolarized intensity, intensity
in two directions of a linear, and intensity of a circular
polarization, respectively) at several locations along a spectral
line. These carry information about the magnetic field in the
emitting plasma. In solar photospheric observations (e.g., Schou

et al., 2012), the Stokes vector can be inverted (e.g., Ruiz
Cobo and del Toro Iniesta, 1992) to obtain components of
the magnetic field, (Bx,By,Bz), at the solar photosphere. But
in coronal observations, the inversion is greatly complicated
by the fact that corona is optically thin; the observed signal is
integrated not over a relatively small range of heights, like in
photospheric observations, but over hundreds of megameters.
Nevertheless, although the direct inversion of Stokes data in
the corona is complicated, we often observe clear signatures of
magnetic structures, consistent with existing models of CMEs, in
coronal spectropolarimetric measurements (Gibson, 2015). This
introduces the possibility of using such observations to diagnose
the magnetic field at the core of the CME at its origins at the
Sun. We note, however, that because the observations are at the
limb of the Sun, the CME being diagnosed would be aimed at
a right angle to the observer. Ideally, one would want to make
the limb observations from an instrument placed in quadrature
with respect to the Sun-Earth line. Such an instrument does not
yet exist but the usefulness of it can be explored with the use
of synthesized observations for example using forward modeling
(Gibson et al., 2016).

At least two factors will affect the ability of coronal
spectropolarimetric measurements to provide a good predictor
of geomagnetic storms. First, since the corona is optically
thin, spectropolarimetric measurements of linearly and circularly
polarized light diagnose magnetic field strength and geometry
in a weighted line-of-sight integral that must be inverted
to obtain magnetic field. Second, evolution between the Sun
and Earth will change the erupting structure in ways that
will not be captured in the measurement obtained in its
early stages in the solar atmosphere. The purpose of this
work is to investigate how good of a predictor such coronal
signatures are for the strength of the associated geomagnetic
storm at the Earth if machine learning algorithms are used,
bypassing the need for inversions of line-of-sight integrated
spectropolarimetric signals, and also bypassing computationally
expensive simulations of how ICMEs propagate through the
interplanetary space.

In this paper, the first factor is examined by the following
two machine learning experiments. A particular model of a CME
called G&L (Gibson and Low, 1998), described in section 2, is
used for generating input and output data in both experiments.
The total of 36,288 different configurations of magnetic flux
ropes are generated over the 5D space of parameters that control
morphology, shape, and position. We then generate two kinds
of synthetic near-Sun input data, at the time prior to eruption:
either three components of the magnetic field (Bx,By,Bz) on a
slice at the central meridian (“Experiment 1”), or the Stokes linear
and circular polarization normalized by intensity (L/I,Az,V/I),
integrated along the line of sight (“Experiment 2”). (Note that

L/I =
√

(Q/I)2 + (U/I)2 and Az = − 1
2atan(U,Q) contain the

same information asQ andU normalized by I.) We also generate
synthetic 1AU output data, common for both experiments:
as the flux rope expands, we record the maximal southward
component of the magnetic field (hereafter max{−Bz}) within
the ICME flux rope as it impacts the Earth and drives
the storm.
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In Experiment 1, a binary classifier using fully connected
feedforward neural network (FNN), is constructed to determine
whether the ICME is launched in such a direction as to impact
Earth (a “storm” or a “no storm” prediction), based on an
input image of one of the three magnetic field components. We
further refer to this network as FNN1. For those ICMEs classified
as a “storm,” we further construct a 3-channel convolutional
neural network (CNN), which inputs all three components of the
magnetic field, and has the objective to predict max{−Bz} at 1AU.
We further refer to this network as CNN1.

Based on the optimistic results from CNN1, we perform
a separate Experiment 2 with synthetic spectropolarimetric
data. As these data are of a different nature, we create a new
set of neural networks, independent from Experiment 1, but
with similar type architectures. For this experiment, the input
data are pre-eruption near-Sun coronal spectropolarimetric
measurements. Another binary classifier, hereafter FNN2,
uses spectropolarimetric data in different combinations
(only circularly polarized light, only linearly, and all three
components), to make, as in Experiment 1, a “storm” / “no
storm” prediction. Next, a new CNN, hereafter CNN2, is
constructed in the similar fashion as in Experiment 1. It is again
run on those events classified as a “storm,” and uses all three
components of the Stokes data, to predict max{−Bz}. In this way,
we take into account the line of sight weighting of the observable
quantity, and also consider the different diagnostic potential of
circularly vs. linearly polarized light.

The paper is structured as follows. In section 2, we describe the
G&L model used for synthesizing the data and describe in detail
the parameters which were varied. In section 3, we describe the
synthetic input and output data, and the architecture of neural
networks which we constructed for each experiment. In section 4,
we report the results of each experiment and demonstrate that in
both cases of input data, both networks could make successful
predictions. Finally, in section 5 we discuss the implication of
the results and outline the path for future development of this
machine learning application.

2. ANALYTIC CME MODEL USED FOR
TRAINING AND TESTING CNN

We use a CME model called G&L (Gibson and Low, 1998)
to build a database of erupting flux ropes with varying
characteristics. G&L is an analytical 3D magnetohydrodynamic
(MHD) model with a spheromak-like magnetic flux rope1

embedded in a bipolar background magnetic field and radially
symmetric background hydrostatic atmosphere. The bubble
which contains the flux rope expands self-similarly with time,
modeling the propagation of a CME through the interplanetary
space.While the self-similar expansion is a rather idealizedmodel
of CME propagation, the current work is meant to prepare the
framework for the next step of the project. In the next step,

1(A specific analytical solution for a toroidal flux rope embedded in a spherical

shell, which is a common object of study, e.g., in laboratory plasma research and

in solar physics, e.g., Hagenson and Krakowski , 1987; Gibson and Low, 1998;

Borovikov et al., 2017, etc.)

FIGURE 1 | Examples of various initial G&L configurations. Blue and green

lines are magnetic field lines sampling the magnetic structure of the

G&L spheromak, shown here with different combinations of parameters for

angular size, topology, orientation. The solar surface is shown in thin black

lines for reference.

TABLE 1 | Ranges of the G&L parameters.

Parameter Notation Min Max Nsteps
a

Front height f 1.3R⊙ 2.5R⊙ 6

Angular size � 10◦ 45◦ 8

Topology τ1 0.5 min(4.1, τ1,max)
b 6c

Orientation σ 0◦ 330◦ 12

Latitude θ −0.8�/2 0.8�/2 9

aUniform steps for all parameters.
bSee section 2.3 for description.
cSee note on coupling of the parameters in section 2.2.1.

we will keep the structure of the project, but instead of a self-
similar expansion, will use results from more realistic MHD
simulations (Merkin et al., 2016) of ICME propagation, which
will nonetheless use the same G&L flux ropes as initial condition.
This is further explained in section 5.

A given G&L solution depends on a large number of analytical
and empirical parameters (Gibson et al., 2016). For the purpose
of this study, we choose to vary 5 parameters most relevant to the
shape, topology, and position of the flux rope These parameters
are: height of the front of the CME, its angular width, the
“topology” parameter, the rotation about the Sun-to-1-AU line
that passes through the center of the CME, and latitude from
which the CME is launched. The further sections describe the
parameters in detail. Several of the solutions from the database
are shown in Figure 1. The ranges of each parameter are further
listed in Table 1.

2.1. Size and Initial Height Parameters
The original Gibson and Low (1998) defined the geometry
of the embedded spheromak through the following three
parameters. The bubble of radius r0 was located at a distance
x0 from the origin (Sun’s center), and the subsequent stretching
transformation r → r + a was applied in spherical coordinates,
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FIGURE 2 | Flux rope which correspond to different values of the stretching parameter a. Left: a < 0, middle: a = 0, right: a > 0. The exact values are a = −0.5R⊙,

a = 0R⊙, and a = 0.8R⊙, respectively. The values of the other parameters used in this illustration are: f = 1.95R⊙, � = 50◦, σ = 90◦, and θ = 0◦.

FIGURE 3 | The coordinates used in the model. The Sun-Earth line is along x̂

axis. The dotted lines show the location of the “key” points along x̂ axis, from

left to right: back of the bubble A, back end of the minor axis B, major axis C,

front end of the minor axis D, and front of the bubble E.

where a = const is a stretching parameter, constant for the entire
domain. Further, in the FORWARD suite which we use for the
calculations (Gibson et al., 2016), r0 and x0 were replaced by two
parameters which are more directly related to observations: the
angular size of the bubble �, defined as tan(�/2) = r0/x0, and
the height of the front of the bubble f = x0+ r0−a. By definition
in the model, all points for which r ≤ a are fixed at the origin
(r = 0) and stay in the origin during the self-similar expansion.
The resulting solution has a spherical bubble for a = 0, teardrop-
shaped bubble for a > 0, and umbrella-shaped bubble for a < 0,
as shown in Figure 2.

2.2. Topology/Stretching Parameter
In this study, we introduce a new parameter to replace a, which is
more directly related to the topology of the over-the-limb portion
of the flux rope: τ1. Consider the coordinates shown in Figure 3,

with ẑ normal to the plane of the solar equator, and the flux rope
propagating radially along x̂ axis along the Sun-Earth line.

We notice that there are several geometrically special points
along x̂ axis, shown in Figure 3. E.g., consider point A which is
the back end of the bubble (or closest to the origin). If the value
of a is such that xA > R⊙ (or x0 − r0 − a > R⊙)

2, then the
entire spheromak is above solar surface (called the photosphere),
and field lines are generally infinite, wrapping infinitely about
the core of the spheromak. If a is such that xA < R⊙, but
xB > R⊙, then some portion of the bubble will be under the
solar surface prior to “eruption”; for the purpose of the study
we keep track of this portion during the self-similar expansion
and do not include this portion in the calculations of the strength
of geomagnetic storm. The coronal portion of the bubble will
contain spheromak-like field lines, as well as field lines which
begin and end at the solar surface—the overall configuration will
appear as a spheromak suspended in sheared-arcade of field lines.
Similarly, xB < R⊙ < xC would create an apparent classical
flux-rope configuration (e.g., Gold and Hoyle , 1960; Fan and
Gibson, 2003), in the sense that both footpoints of field lines are
anchored at the photosphere, but the field lines wrap around a
common arch-like axis and have dips which potentially could
support cool prominence material (Fan and Liu, 2019). Further,
xC < R⊙ < xE would mean that all field lines above the r = R⊙
surface are arches and the overall coronal portion would appear
to be a sheared arcade.

For the purpose of this study, we ignore the portion of the
flux rope which is underneath the solar surface prior to eruption
(see section 3 for detail on how is this implemented in the output

data.) The parameter τ1 = 2
(f−1)(k+1)
k(f+a)

, where k = tan(�/2) =

r0/x0, is an empirical dimensionless parameter related to how
many special points are above the photosphere. For example,
τ1 < 0means that all special points are below r = R⊙, 0 < τ1 < 1
means one of these points is above r = R⊙, etc, and τ1 > 4
means the entire bubble is above the surface3. Note that τ1 is also
related to the shape of the bubble: decreasing τ1 while keeping
constant f and � will make the bubble more teardrop-stretched.
For example, Figure 2 shows, from left to right, solutions for
τ1 ≈ 4.1, 3.2, 2.2, with 5, 4, and 3 special points above the surface

2We hereafter assume a system of units in which R⊙ = 1.
3To see this, one could express both τ1 and the coordinates of the special points via

x0, r0, and a: τ1 =
x0−a−1
r0/2

+ 2; xA = x0 − r0 − a, etc.
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respectively. Varying τ1 allows us to sample qualitatively different
magnetic configurations, including, for example, the classical flux
rope (2 ≤ τ1 ≤ 3) and the toroidal spheromak (τ1 ≥ 4).
Observational evidence for different topologies including simple
flux ropes (Bak-Stȩślicka et al., 2013) and spheromaks (Dove
et al., 2011) have been found in polarimetric observations of
coronal cavities, known to be precursors of CMEs (Gibson, 2015).

Lastly, we notice that the value of τ1 for which a = 0 and the
bubble is spherical is τ1,max = 2(f−1)(k+1)/(kf ).We do not use
solutions for a < 0, or equivalently, of τ1 > τ1,max, as they are
deemed unphysical4. In addition, choices of τ1 > 4 result in a flux
rope bubble that hovers above the photosphere at t = 0. Coronal
cavity CME precursors tend tomaintain somemeasure of contact
with the photosphere—although, for highly stretched, teardrop-
shaped bubbles some hovering is observed (e.g., Forland et al.,
2013). Therefore, we cap the range of τ1 by the smallest of two
values: τ1 < min(4.1, τ1,max) ensuring that none of the bubbles
are in either the unphysical a < 0 regime, nor too far from the
photosphere before the eruption. Note that this implies that the
parameter space is not uniform in τ1: for each pair of (f ,�), the
range of τ1 is calculated independently, and uniform steps in τ1
are taken in that range.

2.2.1. Coupling of the Parameters
The three parameters described above, f ,�, and τ1, are secondary
in the sense that they have been introduced and can be expressed
through the primary parameters which define properties of the
spheromak in the G&L model, x0, r0, and a:

f = x0 + r0 − a,
tan(�/2) = k = r0/x0,

τ1 = x0−a−1
r0/2

+ 2.
(1)

However, the secondary parameters can be more easily related
to the observed properties of CMEs (e.g., x0 is the location of the
spheromak’s center before the stretching has been applied, and the
resulting position of the bubble would in general be different.) To
make our study more useful for future work in CME predictions,
we invert the system (1) and express primary parameters through
the secondary ones:

x0 = (f + a)/(k+ 1),
r0 = k(f + a)/(k+ 1),
a = (f − k− 1− (τ1 − 2)(k+ 1))/k.

(2)

We then vary the secondary parameters, in the ranges shown in
Table 1, calculate the primary parameters through (2), and use
these as the input to the G&L model.

2.3. Orientation and Latitude Parameters
The orientation of the spheromak’s core, with respect to the
Earth’s North, is an important parameter for determining the
strength of the geomagnetic storm. We vary parameter σ that
defines rotation of the bubble about the radial direction. Figure 4

4In Gibson and Low (1998), the stretching parameter a is introduced in MHD

equations as the additional gravity term. Therefore, a < 0 will physically mean

a gravity force directed away from the Sun’s center.

shows several solutions with varying σ .

The last parameter that we vary is the starting latitude of
the CME, θ . Since the subsequent expansion is self-similar, the
direction of propagation is radial and a CME remains within the
same solid angle at all times. The Sun-Earth line is along x̂, so
CMEs launched at θ > �/2 with respect to the equator will
miss Earth completely, and θ ≈ �/2 will have a vanishingly
small effect on Earth. As we show later, the CNN is taught to
determine which CMEs will result in a “storm,” and which will
result in “no storm” at the Earth. We adjust σ range so that about
82% of all CMEs result in a “storm” at the Earth, in the sense of
max{−Bz} > 10−7.7G ≈ 2× 10−3nT.

3. NEURAL NETWORKS: DATA AND
ARCHITECTURES

Two experiments are conducted, each with two neural networks
(NNs)—a feedforward fully connected neural network (FNN)
and a 3 channel convolutional network (CNN) that can also
accept 1 or 2 channels of data. For each experiment, these NN
are different. Hence, there are a total of 4 separate NNs. The
FNN acts as a binary classifier, determining whether there is a
“storm”5 or a “no storm.” Both CNN1 in Experiment 1 andCNN2

in Experiment 2 perform a non-linear regression to estimate
max{−Bz} inside the flux rope as it impacts Earth and drives the
storm, for those events classified as “storms.” The big difference
between the experiments is 1) the input data and 2) the NN
architectures, due to a change in the characteristics of the input
data. Both will be discussed in the following subsections. We
refer the readers who are not familiar with FNN and CNN to
textbooks and overview articles on the topic (e.g., Svozil et al.,
1997; Goodfellow et al., 2016; Yamashita et al., 2018). All code
was programmed inMATLAB package “Deep Learning Toolbox”
(The MathWorks , 2019).

For both experiments, the output data are the same—the
maximal negative (southward) amplitude of the Bz component in
the flux rope at 1AU:max{−Bz(t)}, which serves as a proxy for the
strength of the geomagnetic storm. It is calculated as follows. The
flux rope was allowed to expand self-similarly, and time profile of
Bz(t, r = 1AU) was stored, starting from the time the expanding
bubble first encounters the r = 1AU sphere, and ending at
the time when the plasma elements which were at r = 1R⊙ at
t = 0 first encounter the r = 1AU sphere. Note that the plasma
elements which were under the solar surface prior to eruption are
excluded from the time series; as the rate of expansion is known,
this is a trivial task. We do this to emulate the eruption of only a
portion of the spheromak geometry.

Since the non-zero values of max{−Bz} range from 10−7.7G to
10−3G, we work in a log10 scale. The distribution of the output,
log10{max{−Bz}}, is shown in Figure 5. Not shown in the figure
(due to dwarfing the distribution) is a spike at 0 of 6517 samples
(18% of the total number of samples) corresponding to CMEs
that miss the Earth. For values less than 10−6.3G, there are less

5In the sense of max{−Bz} > 10−7.7G ≈ 2× 10−3nT
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FIGURE 4 | Flux ropes rotated by a different amount σ about the direction of propagation (in this case, x̂). From left to right: σ = 0◦, 42.4◦, 84.7◦.

FIGURE 5 | Distribution of log 10(|max{−Bz}|) values, where max{−Bz} is in G.

than 40 samples in each histogram bin, resulting in a long tail of
the distribution. Due to the low sample size, the CNN will not be
able to make adequate predictions in this regime.

Regardless of the experiment:

1. The data were separated into 2 vectors, grouped by “storm”
(max{−Bz} > 10−7.7G; 82% of the data) and “no storm”
(max{−Bz} < 10−7.7G; 18% of the data).

2. The pointers to those two groups were randomly permuted,
thus shuffling the data.

3. Two-thirds of the pointers were used for training, and one-
third for testing, maintaining the 82 to 18% ratio of “storm” to
“no storm” in both the training and testing data.

4. The input observations (be it magnetic field components
of Stokes parameters) are in the solar equator plane in
quadrature with Earth, along the ŷ direction. The field of views
(FOVs) are identical in both experiments (x ∈ [1.0, 2.6]R⊙,
z ∈ [−0.8, 0.8]R⊙). The observer is located at infinite distance

from the origin, so that the lines-of-sight are parallel to each
other for all image pixels.

5. The architecture of the FNN in each experiment remained the
same regardless of the input data. However, for each different
type of input the FNN was retrained, as the numerical values
of the weights and bias is dependent on the type of input data
(e.g., (L/I,Az), or V/I).

6. The FNN were run on an Intel CORE i7 9th generation CPU
with 16 GB of RAM. The CNNwere run on aNVIDIAQuadro
P6000 GPU with 24 GB GDDR5X.

3.1. Experiment 1: Input Data
The G&L model is run to generate a total of 36288 magnetic
3D magnetic flux ropes that span a 5D parameter space (see
Table 1). Two thirds (24192 flux ropes, 19847 “storm” + 4345 “no
storm”) were used for training the machine learning algorithms
and one third (12096 = 9923 “storm” + 2173 “no storm”) was
used for testing the quality of the predictions. For Experiment 1,
a single input sample showing a slice of all three magnetic field
components Bx, By, and Bz , is given in the left panel of Figure 6,
represented by a slice of the 3D datacube at the y = 0 plane. At
present, no instrument can provide such input off the solar limb,
but this Experiment is by design but a sanity-check test for the
overall machine-learning pipeline.

Although Figure 6 shows gray-scale images, the input for
Experiment 1 are 64 × 64 matrices of magnetic-field values
in Gauss. While We are using the concept of image pattern
recognition architectures (but with regression) to see if we
can, instead of the byte-scaled images, use matrices that have
values of a coronal magnetic field or its corresponding Stokes
parameters that, for example, can range continuously from
0.7235 to 3.52513×10−5 to -0.764515. Further, for both FNNs we
convert the input from a 64× 64 matrix into a 4096× 1 vector.

For the training of the FNN for Experiment 1 (hereafter
FNN1), only one of these magnetic field components should be
needed as an input (given as a 4069 × 24192 matrix); this is
because, in this experiment, FNN1 is a binary classifier for a
self-similar mapping—which means that due to the underlying
symmetry of the solution, the number of variables is reduced.
For training of the CNN for Experiment 1 (hereafter CNN1),
we use all 3 channels as input (given as a 64 × 64 × 3 matrix),
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FIGURE 6 | Left: an example of input for Experiment 1, three components of

the magnetic field evaluated in the y = 0 plane, which is equivalent to an

observation in quadrature to Earth. (This is akin to a vector magnetogram

observed in the quadrature in the (x, y = 0, z) plane.) Right: an example of

input for Experiment 2, three synthetic spectropolarimetric images, as they

would appear to the same observer. These data are for f = 2.1R⊙, � = 35◦,

σ = 180◦, τ1 = 3.38, θ = 7◦. The field of view (FOV) is the same in all panels:

x ∈ [1.0, 2.6]R⊙, z ∈ [−0.8, 0.8]R⊙.

since although we still have a self-similar mapping, we are trying
to estimate a number, max{−Bz}, to at least one decimal place
of accuracy that varies over 5 orders of magnitude, not just (1,
“storm”) or (0, “no storm”) as in FNN2. Note that CNN1 predicts
the output that is simply a scaled-down version of the input,
evaluated at a point. CNN1 is simply finding this scaling or
mapping, which is what NNs are very good at.

3.2. Experiment 1: FNN and CNN
Architecture
The first network, FNN1, is an FNN with one hidden
layer. Its architecture is given in Figure 7 and its properties
are listed below. The figure is generated by the simple
command “view [(name of the NN)]” in MATLAB’s
Deep Learning Toolbox.

1. FNN1 has an input of a vector 4096 by 1, representing either
the Bx, By, or Bz component of a GLOW flux rope.

2. It has 1 hidden layer with 10 neurons. In the Figure 7, the box
with “w” and the box with “b” represent the weights and the
biases for that layer, respectively.

3. The hyperbolic tangent curve in the hidden layer box
indicates that we are using a tanh activation function.
Approximating a binary classifier, where the probabilities
fall between certain ranges, is easier with combinations of
tanh(x) than the more popular piecewise linear functions
(ReLu, e.g., Glorot et al., 2011) that is used in more
complex NN.

4. The hidden layer is then connected to the output layer
that uses a soft-max activation function, to calculate the
probabilities of the ICME being a “storm” or “no storm,”
represented by the graph with red dots.

5. Lastly, the cross-entropy loss function is used to measure the
performance of the network against the true labels.

6. The stochastic gradient descent as the optimization algorithm.
7. The network was trained for 500 epochs.
8. MATLAB’s feedforwardnet in the Deep Learning Toolbox

was used.

The final output is a probability p, 0 ≤ p ≤ 1. For this paper, we
assume that if p ≥ 0.8 then the output is classified as a “storm”;
if p ≤ 0.2 it is a “no storm”; if 0.2 < p < 0.8 we assume the
network was unable to classify the output (in other words, the
results are inconclusive).

All the “storms” correctly identified by the feedforward
network are then passed into CNN1 for measuring the strength
of log10{max{−Bz}} of the passing CME. The architecture of
CNN1 for Experiment 1 is given in Figure 8 with its properties
listed below. The figure is generated by the simple command
“analyzeNetwork([name of the NN]) ” in MATLAB’s
Deep Learning Toolbox.

1. The first layer is an image input layer of 3 channels (that is,
the values of Bx, By, Bz near the Sun). Consequently, it has
dimension of 64× 64× 3.

2. There are two 2D convolutional layers, the first with 8 16× 16
filters, the second with 20 8 × 8 filters. CNN1 is a shallow
network due to the fact that we are simply mapping the
magnetic field to a self-similar counterpart.

3. Each convolutional layer is followed by a ReLU activation
function (Glorot et al., 2011).

4. Each ReLu layer is followed by a maxpooling layer,
taking the maximum value from each 2 × 2 pixel
region, resulting in a reduction of the matrix by a
factor of 4.

5. The last layer is a fully connected layer which gives a
prediction for log10{max{−Bz}}.

6. The error, compared to ground truth, is calculated by the
root mean square error function and optimized through
backpropagation with the Adam optimizer (Kingma and Ba,
2014).

7. The output values were normalized using a linear translation
to between 0 and 1.

8. It was trained on 100 epochs.
9. A batch size of 567 was used.
10. The initial learn rate was set at 0.001.
11. The learning rate schedule was a piecewise drop with a learn

rate drop of 0.75 and a learn rate drop period of 6.
12. An L2 Regularization of 10−4 was added.
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FIGURE 7 | The feedforward fully connected network (FNN) used in Experiment 1 (FNN1). The letters “w” and “b” denote weights and biases, respectively; the full

description of the scheme is given in the itemized list in section 3.2.

FIGURE 8 | The 9 layer architecture of the convolutional neural network (CNN) constructed for Experiment 1 (CNN1) with the number of activations per layer and total

number of learnable weights and bias in the convolutional layers and fully connected layer.

3.3. Experiment 2: Input Data
For Experiment 2, the input data are synthetic
spectropolarimetric data corresponding to the magnetic
fields generated for Experiment 1. A single input sample of the
36,288 synthetic Stokes observables is shown in the right panel of
Figure 6. Although Figure 6 shows gray-scale images, the input
for Experiment 2 are 64× 64 matrices of the Stokes vector values
in the same FOV and with the same resolution as Experiment
1. We use FORCOMP (CLE) package (Judge and Casini , 2001)

of FORWARD suite (Gibson et al., 2016) in SolarSoft IDL
(Freeland and Handy, 1998), to synthesize the components of
the Stokes vector, (I,Q,U,V). In this work we use an alternative
vector, which is derived from the Stokes vector: (I, L,Az,V). We
further focus on the last three components of it, normalized
by the intensity I, (L/I,Az,V/I). L/I =

√

(Q/I)2 + (U/I)2 and
Az = − 1

2atan(U,Q) contain the same information as Q and U.
We find this representation more useful because it describes the
linear polarization in terms of magnitude (L/I) and polarization
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FIGURE 9 | The feedforward fully connected network used in Experiment 2 (FNN2) The full description of the scheme is given in the itemized list in section 3.4.

angle (Az). In particular, it allows us to plot the polarization
angle with respect to the local vertical (solar radial coordinate)
and show how linear polarization is rotated in the presence of
magnetic field. It also lets us immediately identify regions of
highly reduced linear polarization associated with van Vleck
angles and magnetic nulls (Gibson, 2018).

In this experiment, we are mapping observables measured
in one space (Stokes data) to those measured in another space
(magnetic field strength). The input and output data is no longer
related by a mere scaling factor as in Experiment 1. Therefore,
we will use either linearly polarized light (L/I,Az), or circularly
polarized light (V/I), or the combination of the two, as various
input data into the FNN constructed for Experiment 2 (hereafter
FNN2) to understand the contribution of each to the results.
Those that are classified correctly as “storms” are then inputted
into the CNN architecture for Experiment 2 (hereafter CNN2).

3.4. Experiment 2: FNN and CNN
Architecture
The fact that the functional mapping with the NNs is no longer
self-similar and consequently, we do not have a reduction in the
variables, will alter how we set up the architecture, requiring
more degrees of freedom. In addition, we are passing the original
G&L data through a highly non-linear model to synthesize Stokes
images from the full-MHD variables, and yet we still expect
CNN2 to map back to the original max{−Bz} output of the
G&L model.

The architecture of FNN2 for Experiment 2 is given in
Figure 9. All the properties are the same as for FNN1 from
Experiment 1, except for those enumerated below.

1. FNN2 has an input of a vector 4096×1, 8192×1, or 12, 288×1,
depending on whether we are inputting V/I, (L/I,AZ), or all
three channels.

2. It has 1 hidden layer but now with 20 neurons.
3. There is a L2 regularization added with a parameter of 5e-4.
4. It was trained for 1,500 epochs.

As in Experiment 1, those events classified correctly as “storms”
(i.e., the above mentioned p ≥ 0.8) are then inputted into CNN2.

The architecture of CNN2 is given in Figure 10 and its properties
are listed below.

1. In the case for the Stokes parameters, the input layer can either
be of size 64× 64× 1, 64× 64× 2, or 64× 64× 3, depending
on how many channels we are using.

2. There are now three 2D convolutional layers, the first with 10
16 × 16 filters, the second with 64 8 × 8 filters, and the third
with 128 4× 4 filters.

3. The initial random weights for each convolutional layer are
defined using He initialization (He et al., 2015).

4. Each convolutional layer is followed by a ReLU activation
function (Glorot et al., 2011).

5. Each ReLu layer is followed by a maxpooling layer, taking the
maximum value from each 2 × 2 pixel region, resulting in a
reduction of the matrix by a factor of 4.

6. The last layer is a fully connected layer which gives a
prediction for log10{max{−Bz}}.

7. Again, the error was calculated by the root mean square error
function and optimized with the Adam optimizer (Kingma
and Ba, 2014).

8. Again, the output values for training were normalized using a
linear translation to between 0 and 1.

9. V/I wasmultiplied by 103 so that it would be of the same order
of magnitude as L/I and Az for training.

10. It was trained on 160 epochs.
11. A batch size of 735 was used.
12. The initial learn rate was set at 0.0015.
13. The learning rate schedule was a piecewise drop with a learn

rate drop of 0.75 and a learn rate drop period of 10.
14. An L2 Regularization of 3× 10−4 was added.

4. RESULTS

4.1. Experiment 1
This first experiment is a proof of concept. Essentially, using
Bxyz near Sun as inputs and predicting Bz at 1AU means we
are simply trying to teach NNs to predict a simple scaling of a
number. If we can not succeed in this, then we cannot even hope
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FIGURE 10 | Twelve layer architecture of CNN2 with the number of activations per layer and total number of learnable weights and bias in the convolutional layers and

fully connected layer.

to replace the G&L model output at the Earth with model output
from MHD CME solar wind models, nor can we hope to predict
the strength of magnetic field in passing ICMEs from coronal
spectropolarimetric observations, as is done in Experiment 2
(albeit using synthetic observations).

We compare the results of the first (predictor, “storm” / “no
storm”) NN against random guesses. Table 2 shows the outcome
of random guessing: a guess was phrased (with probability of
the outcomes weighted by their known ratio in the data), then
an outcome was selected. The numbers in Table 2 can be easily
calculated analytically as follows. ConsiderN events, out of which
qN are storms, and (1−q)N are not storms (0 ≤ q ≤ 1). Suppose
the random guesser knows the value of q a priori, but makes
predictions at random, weighted by q. It will classify qN events
as storms. However, if predictions are truly random, amongst
these qN events the fraction of actual storms will still be q;
therefore, a random guesser will correctly predict a storm for
q2N events, and will make false positive prediction for (1− q)qN
events; likewise, the amount of events correctly predicted as not
storms and the amount of false negatives would be (1− q)2N and
q(1 − q)N respectively. In our case, q = 9923/12096 ≈ 0.82. A

successful FNN prediction must result in a table more diagonal
than Table 2.

Tables 3–5 show the results when only one of the components
was taken as input. Using either of the three components, the
predictor-based FNN1 can predict the outcome (“storm” / “no
storm”) significantly better than a random guess. The Bz input
produces the best predictions for the output, which is hardly
surprising. The Bx input results in the worst prediction of the
three (but still significantly better than a random guess). This
could be caused by the fact that the ŷ and ẑ components of the
flux rope are coupled by the orientation parameter σ , while the
x̂ component is independent of both. However, even in the case
of using Bx as input to the binary classifier, the ROC curve (a
statistical tool to give the diagnostic ability of a binary classifier)
gives excellent results with an AUC (area under curve) of 0.95
(a perfect predictor would have AUC=1, that is a zero false
positive rate) as shown in Figure 11.

We further examine the efficiency of CNN1, the regression,
for predicting the strength of the storm. We use the outcome of
the FNN1 classifier based on Bx component as an input since,
as is evident from the previous paragraph, it proves the most
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FIGURE 11 | The ROC (Receiver Operator Characteristic) curve for the binary

classifier FNN1 with Bx input. An AUC > 0.9 is considered excellent.

TABLE 2 | No FNN, random guess (weighted by storm:no storm ratio).

P
P
P
P
P
P

Reality

Prediction
Storm No storm Inconclusive

Storm 67.3% (8,140) 14.7% (1,783)
—

No storm 14.7% (1,783) 3.2% (390)

Hereafter, the values are reported as: “A% (B),” where A is percentage of the total 12096

events, and B is the actual number of events.

TABLE 3 | Experiment 1: FNN1 using Bx only.

P
P
P
P
P
P

Reality

Prediction
Storm No storm Inconclusive

Storm 76.3% (9,228) 1.6% (191)
7.7% (933)

No storm 2.3% (274) 12.2% (1470)

TABLE 4 | Experiment 1: FNN1 using By only.

P
P
P
P
P
P

Reality

Prediction
Storm No storm Inconclusive

Storm 79.1% (9,572) 2.1% (259)
1.5% (184)

No storm 2.0% (242) 15.2% (1,839)

challenging scenario for the first NN, and, consequently, the
results based on By and Bz are expected to supersede it. The
results, shown in Figure 12, demonstrate that the predictions are
successful, which ultimately means that the NN pipeline is overall
working well.

4.2. Experiment 2
The first part of the experiment is to understand how well the
binary classifier performs if the input is (a) only linearly polarized
light, (b) only circularly polarized light, and (c) using both,

TABLE 5 | Experiment 1: FNN1 using Bz only.

P
P

P
P
P
P

Reality

Prediction
Storm No storm Inconclusive

Storm 80.7% (9,758) 1.0% (121)
0.6% (68)

No storm 0.9% (111) 16.8% (2038)

comparing to random choice shown in Table 2. Recall that the
output of the classifier is a number p (where 0 ≤ p ≤ 1)
indicating a probability, and we interpret p ≥ 0.8 as a storm,
p ≤ 0.2 as no storm, and 0.2 < p < 0.8 as inconclusive, the
results are given in Tables 6–8. First, notice that the input of
just (L/I,Az) gives results that are worse than if the guess was
random. Also note that approximately 30% of the results (3570
of 12096) are inconclusive. Secondly, when using only V/I as an
input, the true positives could be determined to within 93.5%,
the true negatives to within 73%, and only 7% of the cases are
inconclusive. By using all 3 Stokes components, we get a slight
improvement of ≤ 1% which could easily be considered within
the noise of the classifier. However, what is impressive is that
if the ROC is plotted for the case where we use all the 3 Stokes
components, as seen is in Figure 13, the AUC is 0.99.

The second part of this experiment takes those samples
that correctly classified as storms and run them through the 3
channel CNN2 to predict the strength of the storm. Figure 14
shows the results both in histogram form and as scatter plots
of ground truth vs. prediction. First, note that just considering
the V/I inputs from the binary classification results in a
histogram that seems to overall fit the true data (blue) rather
well (except for maybe accruing larger sample sizes for peak
values around 10−4.25 G). However, the scatter plot shows that
the slope is not quite unity and there is a slight bias to
overpredict values of max{−Bz} < 10−4 G. In this case, the
Pearson correlation coefficient is 0.95. If instead we use CNN2

trained on the data from the binary classifier that includes all 3
channels (L/I,Az,V/I), we see that the bias is corrected and the
predictions line up perfectly with the ground truth. The Pearson
correlation coefficient in this case is 0.98.

Finally, we calculate the relative root square error for
the accuracy of predictions for both NNs. We use the
following definition:

E = 1−

√

n
∑

i=1
(4GT − 4NN)2

√

n
∑

i=1
42

GT

, (3)

where for brevity we denoted 4 = max{−Bz}, GT stands for
“ground truth,” and “NN” stands for “NN-predicted value.” We
find that, given three components of B near Sun, CNN1 can
predict max{−Bz} at 1AU at 97% accuracy (E = 0.97), and for
three components of the Stokes vector near Sun as input, CNN2

can predict max{−Bz} at 1AU with 95% accuracy (E = 0.95).
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FIGURE 12 | A histogram (blue is ground truth) and scatter plot, of ground truth vs. predictions of CNN1, when using the Bx component of magnetic field at the Sun

as input for the binary classifier FNN1 and then feeding the events labeled as “storms” into the 9 layer CNN1 to predict the value of max{−Bz}. The color bar indicates

the number of samples. The axes in the scatter plot are that of log10{max{−Bz}}, and in both plots the units of max{−Bz} are G.

TABLE 6 | FNN2 using L/I and Az only.

P
P
P
P
P
P

Reality

Prediction
Storm No storm Inconclusive

Storm 64.6% (7816) 0.6% (73)
29.5% (3570)

No Storm 2.4% (296) 2.8% (341)

TABLE 7 | FNN2 using V/I only.

P
P
P
P
P
P

Reality

Prediction
Storm No storm Inconclusive

Storm 76.7% (9283) 1.4% (168)
7.0% (850)

No Storm 1.7% (211) 13.1% (1584)

TABLE 8 | FNN2 using L/I, Az, and V/I.

P
P
P
P
P
P

Reality

Prediction
Storm No storm Inconclusive

Storm 77.6% (9390) 0.9% (103)
6.8% (819)

No Storm 1.3% (155) 13.5% (1629)

5. CONCLUSIONS

In this paper we have developed a machine learning
algorithm to set a baseline for testing the efficacy of coronal
spectropolarimetric measurements for predicting max{−Bz}
at the Earth. We have found that the circularly polarized light
maintains the crucial magnetic field information for making
a good prediction, at least for the simple model we examined.
This is not unexpected, as circular polarization is directly
related to the line-of-sight (in our case, By) field strength (see
Rachmeler et al., 2012, for further discussion). However, the

FIGURE 13 | The ROC (Receiver Operator Characteristic) curve for the binary

classifier FNN2 with all 3 Stokes components as input (L/I,Az,V/I). An AUC

> 0.9 is considered excellent.

polarization signal is a result of the line-of-sight integration
of the data, and disambiguation is required to derive the 3D
structure of the field. The ability of neural networks to perform
this disambiguation, which only yields information about By
signal, and then to form meaningful Bz predictions at a later
time, demonstrates that machine learning is a valuable asset
for space weather predictions. Linearly polarized light on its
own does not do so well, as it is not sensitive to the magnetic
field strength but only to its geometry. It nonetheless proves to
be important when considered in combination with circularly
polarized light. Indeed, the most accurate prediction arises when
all the components of the Stokes vector are included.
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FIGURE 14 | Two representations, histogram and scatter plot, of predictions of CNN2 vs. ground truth, on the subset of events which FNN2 has predicted was a

“storm.” Top: when using only circularly polarized light, V/I, as input to FNN2. Bottom: when using both linearly and circularly polarized light, (L/I,Az,V/I), as input to

FNN2. The color bar indicates the number of samples. Blue lines are ground truth in both histograms. The axes in the scatter plot are that of log10{max{−Bz}}, and in

all panels the units of max{−Bz} are G.

Full-MHD simulations of interplanetary CME evolution from
Sun to Earth are typically computationally expensive. CNN
allows us to explore a large space of CME models with different
characteristics to study which initial states result in the strongest
geomagnetic storm. The role of CNN in this case is, given either
magnetic field or the synthetic spectropolarimetric observables
of a CME near Sun in quadrature view, paired with max{−Bz}
values at Earth, to predict magnetic field inside a CME at later
time and therefore to facilitate the magnetic storm predictions.

This project could be considered as preparatory work for
future projects. Some of these could include, for example,
exploring near-Sun signatures of CMEs in other channels
(such as extreme ultraviolet), and in the addition to predicting
max{−Bz}, to also predict other parameters of the storm (such as
its duration).

In the introduction, wemention twomajor factors influencing
our ability to use near-Sun spectropolarimetric signatures of
CMEs for space weather predictions. Our work explicitly
addresses the first factor, i.e., the capability of the neural networks
to use near-Sun spectropolarimetric signatures for predicting
magnetic field strength in the erupting flux rope. The evolution
of the CME from Sun to Earth, i.e., the second factor mentioned
in the introduction, requires a model that can take into account
the changes of the structure as it interacts with the solar wind.
Provornikova et al. (2020, in preparation) will show an example
of such a simulation, as part of a project which is currently in
development (NASA award 80NSSC17K0685). The project will
yield a database of tens of thousands of MHD simulations, in
which various configurations of a G&L flux rope will be used
as inputs, along with realistic solar wind models (Arge et al.,
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2004), and their interaction will be modeled in MHD simulations
(Merkin et al., 2016). We tailored our input and output for
maximal compatibility with this project. Our plan is to follow up
the current work with an equivalent analysis using a large number
of MHD runs of CME propagation through the solar wind. By
doing this, we will be able to determine how much information
is retained even when non-ideal evolution of ICME in the solar
wind between Sun and Earth is taken into consideration.
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