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In a recent proposal we applied methods from constructive QFT to derive a Hamiltonian
Renormalization Group in order to employ it ultimately for canonical quantum gravity. The
proposal was successfully tested for free scalar fields and thus a natural next step is to test
it for free gauge theories. This can be done in the framework of reduced phase space
quantization which allows using techniques developed earlier for scalar field theories. In
addition, in canonical quantum gravity one works in representations that support
holonomy operators which are ill defined in the Fock representation of say Maxwell or
Proca theory. Thus, we consider toy models that have both features, i.e. which employ
Fock representations in which holonomy operators are well-defined. We adapt the coarse
graining maps considered for scalar fields to those theories for free vector bosons. It turns
out that the corresponding fixed pointed theories can be found analytically.
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1. INTRODUCTION

The construction of interacting four-dimensional Quantum Field Theories (QFTs) is an interesting
and fundamentally important problem in modern physics. Despite several attempts it has not been
satisfactorily completed as of today (Wightman and Gårding, 1964; Osterwalder and Schrader, 1973;
Osterwalder and Schrader, 1975; Glimm and Jaffe, 1987; Froehlich, 1978; Rivasseau, 2000; Jaffe and
Witten, 2000). Due to several challenges along the way, preliminary computations are often done in
the presence of finite infrared and ultraviolet cut-offs, most prominently in the framework of Lattice
Gauge Theories (LGT) (Creutz, 1983; Hashimoto et al., 2017). Especially considering approaches
toward Quantum Gravity, it motivated proposals where the discretization of space(-time) was
assumed to be fundamental (Loll, 1998; Giesel and Thiemann, 2007; Bahr and Dittrich, 2009; Bahr
and Dittrich, 2009; Dupuis et al., 2012; Loll, 2019). This allowed to make a wide range of predictions
by performing computations using established tools from LGT, see for example (Kogut and Susskind,
1975; Bahr et al., 2017; Dapor and Liegener, 2018; Glaser and Steinhaus, 2019; Han and Liu, 2020).

However, as it is not yet experimentally supported whether these discrete structures are
fundamental, one can independently ask if they can be understood as coarse graining of some
underlying continuumQFT and–of course–the construction of such a QFT is in itself an aspirational
goal. A possible avenue for this comes in the form of inductive limits (Kadison and Ringrose, 1986;
Janas, 1988; Saunders, 1998; Thiemann, 2007). This presents a construction by which a QFT
described by a Hilbert space H supporting a Hamiltonian operator Ĥ can in principle be obtained
from a consistent family of discretized theories described by a Hilbert space HM supporting a
Hamiltonian ĤM where M labels the different discretization scales. The necessary condition for the
existence of such an inductive limit is that there exists a family of isometric injection maps JM→M′

:
HM →HM′

forM <M′ in the sense ofM′ describing finer resolution thanM. JM→M′
must be subject
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to a certain compatibility condition in order to enable the
reconstruction of the inductive limit Hilbert space H and to
allow an interpretation of the HM as restrictions of H to coarse
resolution M. Similarly, there exists a condition for a family of
quadratic forms ĤM which guarantees the existence of a
corresponding limit quadratic form Ĥ on H.

In a recent series of paper (Lang et al., 2018a; Lang et al.,
2018b; Lang et al., 2018c; Lang et al., 2018d) we introduced a
Hamiltonian formulation of the renormalization group which is
rather close in methodology to density matrix renormalization
(Brothier and Stottmeister, 2019; Brothier, 2019; Stottmeister
et al., 2020) and projective renormalization (Okołow, 2013;
Kijowski and Okołow, 2017; Lanéry and Thiemann, 2017a;
Lanéry and Thiemann, 2017b; Lanéry and Thiemann, 2018;
Lanéry, 2018; Lanéry, 2016; Yamasaki, 1985) which in turn are
based on the seminal ideas of Wilson, Kadanov and Fisher
(Fisher, 1974; Wilson, 1975; Kadanoff, 1977). The proposal is
motivated by formulations of the renormalization group in the
covariant setting (Fisher, 1974; Wilson, 1975; Kadanoff, 1977;
Wilson and Kogut, 1974; Peter, 1998) which can be reformulated
in Hamiltonian terms using Osterwalder-Schrader
reconstruction and in fact gives rise to a natural flow of
inductive structures and Hamiltonian quadratic forms (Lang
et al., 2018a; Lang et al., 2018b). That the direct Hamiltonian
Renormalization Group delivers the correct results has been
demonstrated for the case of the massive, free scalar field in
arbitrary dimensions (Lang et al., 2018b; Lang et al., 2018c; Lang
et al., 2018d). The next challenge for this program is its extension
to gauge theories, as the most interesting models of modern
physics are phrased in this language, e.g. QCD. In this paper, we
perform the firsts steps in this direction by considering a toy
model which is a certain deformation of the reduced Hamiltonian
of Maxwell theory. The deformation consists in adding a Proca
like mass term to higher powers of the Laplacian in order that the
Fock space defined by that Hamiltonian supports holonomy
operators, which are exponentials of the connection smeared
along one-dimensional curves. The motivation for considering
such theories comes from an approach to canonical quantum
gravity (Thiemann, 2007; Rovelli, 2004) for which holonomies
play a fundamental role and are promoted to well defined
operators upon quantisation.

A possible way to proceed is as follows: prior to quantization
one can transcend to the reduced phase space, where the Gauss
constraints have been implemented. Since the gauge-invariant
(transversal) modes can be treated as scalars, the tools from (Lang
et al., 2018a; Lang et al., 2018b; Lang et al., 2018c; Lang et al.,
2018d) become applicable. With them, it is possible to analytically
determine the fixed points which lead to the correct continuum
theory.

Another approach is to implement the Gauss constraint after
quantization. This involves adapting the coarse graining maps for
scalar fields to vector bosons. In particular, this involves smearing
the field against form factors rather than scalar smearing
functions. In this paper we will incorporate the latter feature
by considering a modification of Proca theory that allows for
holonomy operators. The actual solution of the Gauss constraint
after quantization combined with coarse graining will be subject

of a subsequent paper (Liegener and Thiemann, 2020). We will
introduce the necessary coarse-graining maps for this procedure
and present explicitly how fixed points can be computed in the
new setting.

The architecture of the article is as follows:
In Section 2 we follow the route of reduced phase space

quantization. The first Subsection 2.1 reviews the framework of
our version of the Hamiltonian Renormalization Group for scalar
fields to familiarize with the notation of this paper and to enable
comparison with (Lang et al., 2018a). We start by first looking at
“classical” discretisations and define injection and evaluation
maps between theories of different resolution. These
discretisations are built, e.g., with respect to cuboidal
tessellations of our spatial manifold. The second Subsection
2.2 introduces a U(1) toy model with Gauss constraint G(x),
which is highly inspired by free Maxwell electrodynamics. As an
alternative to implementing the Gauss constraint classically, one
may introduce a Master Constraint of the form M �
(1/2)∫ d3xK(x, x′)G(x)G(x) and promote it to an operator on
the Fock space with some positive kernel K(x, x′) analogously to
(Dittrich and Thiemann, 2006). Determining the physical Hilbert
space will reduce to the space of transversal modes. This is
equivalent to first fixing the gauge on the classical level and
then performing a reduced phase space quantization of the
transversal modes. As both methods lead to the same result,
we will employ here the latter strategy. In the third Subsection 2.3
we briefly recall how the tools from (Lang et al., 2018a; Lang et al.,
2018b; Lang et al., 2018c; Lang et al., 2018d) find application and
lead to the correct fixed points.

In Section 3 we go further into the direction of LGT: we are
interested in the connection integrated along edges of the
discretizing lattices. To bring this formulation close to (Lang
et al., 2018a), in Subsection 3.1 we define the discretized fields as
the continuum fields smeared against (distributional) form
factors. For refinement, we pick the factor 2 (i.e. M→ 2M)
simply for illustrative purposes. Extensions to any other factor
appear to be possible, and we will assume that their fixed points
are independent of the refinement choice (see the discussion in
(Lang et al., 2018c)). Similar to (Lang et al., 2018a; Lang et al.,
2018b), from studying the discretized theories we deduce of how
to define the discretized Hilbert spaces for the quantum theory
and the coarse graining maps JM→M′ between Hilbert spaces of
different resolution in the second Subsection 3.2. As the two
introduced coarse graining maps–called deleting kernel and
filling kernel–are fundamentally different, it is a priori not
clear how the renormalization group behaves with respect to
both of them and whether both produce physically viable fixed
points. To investigate this, we test both of them in Section 3.3,
where we study a gauge-variant version of the toy model from the
previous section–hence not relying on a reduced phase space
quantization. This model features a Proca like mass term and
higher powers of the Laplacian in order that holonomy operators
be well-defined in the Fock space defined by that Hamiltonian.
Hence, it gives first insights into theories allowing for holonomies
and their renormalization. The fixed points can be found
analytically after one adapts the coarse graining maps and
chooses a suitable discretization: While in the Fock
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representation induced by the continuum Hamiltonian
holonomy operators do exist, as a first step we do not express
the lattice approximants of the Hamiltonian in terms of lattice
holonomies in order to simplify the analysis. In future work
(Liegener and Thiemann, 2020), in order to test the
representation that is used in Loop Quantum Gravity, we aim
at expressing the lattice Hamiltonians in terms of holonomies as
well which makes the problem substantially more complicated as
then the theory will be self-interacting.

In Section 4 we summarize our findings and conclude with
outlook for further research.

2. REDUCED PHASE SPACE
QUANTIZATION FOR ABELIAN GAUGE
THEORIES
We present a possible strategy to extend the framework of direct
Hamiltonian renormalization developed in (Lang et al., 2018a;
Lang et al., 2018b; Lang et al., 2018c; Lang et al., 2018d) to Abelian
gauge theories via reduced phase space quantization. For this
purpose, Subsection 2.1 gives a short review of the framework as
it was used for scalar fields. The second subsectionmotivates a toy
model in order to test the Hamiltonian renormalization. To keep
this preliminary study simple, we choose the Abelian gauge group
U(1) and define the classical, continuum Hamiltonian in
Subsection 2.2 such that it resembles free Maxwell
electrodynamics.1 The actual computation of the
renormalization group flow is completely analogous to (Lang
et al., 2018b; Lang et al., 2018c; Lang et al., 2018d) and we will
outline the general strategy in Subsection 2.3.

2.1. Review: Classical Discretisations of
Scalar Fields
We consider an infinite dimensional, conservative Hamiltonian
system defined on a globally hyperbolic spacetime of the form
R × σ. If the spatial manifold σ is not compact we introduce an
infrared (IR) cut-off R by restricting to smearing (i.e. test)
functions which are defined on a compact submanifold, e.g. a
torus σR :� [0,R]D if σ � RD. We will assume this cut-off R to be
implicit in all formulae below, but do not display it to keep them
simple.

The dynamical variables of the system are the scalar field
ϕ ∈ C∞(σ) and its canonical conjugated momentum πϕ, i.e.

{πϕ(y), ϕ(x)} � δD(x, y). We define their smearing against test
functions f ∈ L(σ), i.e. functions from σ toRwhose properties we
leave unspecified for the moment:

ϕ[f ] :� ∫
σ
dDxϕ(x) f (x),

πϕ[f ] :� ∫
σ
dDxπϕ(x) f (x).

(2.1)

Moreover, an ultraviolet cut-offM is introduced in the form of
some cell complex CM � {c(m)}m. The elements of the cell
complex are regions c(m) ⊂ σ such that c(m)∩ c(m′) � ∅ and
∪mc(m) � σ and there are only finitely many elements, i.e.
|CM|<∞. Knowledge of the c(m) can be translated into
knowledge of the indicator (or characteristic) functions χM(m) :
σ→ {0, 1} which are defined as

χM(m)(x) :� { 1, if x ∈ c(m) ∈ CM ,
0, else.

(2.2)

Once a cell complex CM is chosen, one can introduce
discretisations of the scalar field by restricting the observables
(with respect to which the field is probed) to finite spatial
resolution given by CM via the following choice of evaluation
map:

EM : L(σ)→ LM , (2.3)

f1fM(m) :� (EMf )(m) � ε−DM ∫
σ
dDxf (x)χM(m)(x),

with LM being the set of finite sequences with |CM |many elements
and εDM � ∫ dDxχM(m)(x) which we assume to be independent of
m in the following. On the other hand, given a fM : Z|CM | :�
{0, 1, . . . , |CM | − 1}→R we can embed it into the continuum via
an injection map:

IM : LM → L(σ), (2.4)

fM1(IMfM)(x) :�∑
m

fM(m)χM(m)(x) �: fM(⌊x⌋χM). (2.5)

We have introduced the map ⌊x⌋χM :� m such that
χM(m)(x) � 1, which is always well-defined due to the
properties of CM . Defined in this way, EM serves as the left
inverse of IM :

EM+IM � idLM . (2.6)

Turning toward comparing discretisations of different
resolutions with each other, we are mostly interested in
families of cell complexes {CM}M such that they define a
partially ordered and directed set. This can happen, e.g.,
with defining M <M′ iff ∀ c′(m′) ∈ CM′ there is c(m) ∈ CM

such that c′(m′) ⊂ c(m).2 It corresponds to viewing a
function defined on coarse resolution as a function of finer
resolution. Moreover, we restrict to finite partitions, meaning
in particular that the number of cells c′(m′) contained in any
c(m) is finite: NM′ ,M(m)<∞. (In (Lang et al., 2018b; Lang

1In the previous work (Bahr et al., 2011) in addition to free scalar fields also free
gauge theories such as Maxwell theory and linearized gravity were renormalized.
While there are some similarities, the difference to the scalar field treatment of
(Lang et al., 2018b; Lang et al., 2018c; Lang et al., 2018d) and the present work is as
follows: First, while (Bahr et al., 2011) is concerned with the renormalization of
actions, we are concerned with renormalization of vacua, Fock representations and
Hamiltonians. Next, (Bahr et al., 2011) provides explicit formulae for 1 + 1
dimensions while we treat 1 + D dimensions for any D. Finally, (Bahr et al.,
2011) adapts the coarse graining map to the gauge symmetry while we perform a
manifestly gauge invariant reduced phase space quantization. With respect to the
latter issue, see also (Liegener and Thiemann, 2020).

2By demanding that it is a proper subset, we guarantee that there are multiple
elements in CM’ forming a partition of c(m).
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et al., 2018c; Lang et al., 2018d) it was NM′,M
(m) � 2D for all m

but this simplification is merely to ease computations.). For
the purpose of comparing different discretisations with each
other, one introduces a map between the discretisations with
respect to two cell complexes CM and CM′ called coarse
graining IM→M′ : LM → LM′ if M <M′. The coarse graining
map is a free choice of the renormalization group (RG)
process whose flow it drives, and its viability can be tested
only a posteriori. In (Lang et al., 2018b; Lang et al., 2018c;
Lang et al., 2018d) the main focus rested on choosing the
concatenation of evaluation and injection for different
discretisations as coarse graining:

IM→M′ � EM′+IM . (2.7)

However, let us mention that already in (Lang et al., 2018c)
also a second choice, called deleting kernel, was investigated: Let
M <M′ and choose for any m ∈ M a representative m′

o(m) ∈ M′

where c′(m′
o(m)) ⊂ c(m). Also, let r be a mapping such that

rm,m′
� δ

m′,m
′
o(m), i.e. selecting for m′ ∈ M′ the representative

m′
o(m) of the coarse cell c(m). Then(IDelM→M′ fM)(m′) � ∑

m ∈ M

NM′ ,M(m)fM(m)rm,m′ . (2.8)

In the quantum theory of free scalar fields both maps could be
used to build injections that led to physically viable fixed point
theories. However, it was only choice (2.7)which turned out to be
cylindrically consistent, i.e.

IM′+IM→M′ � IM . (2.9)

Basically, this means that injection into the continuum can be
done independently of the discretization on which we consider
the function to be defined, which is a physical plausible
assumption.

We finish this section by presenting two examples for possible
choices of cell complexes CM in case of the torus σR � [0,R]D:

(i)Discretization using regular cubes. The first example is the
choice employed in (Lang et al., 2018a; Lang et al., 2018b; Lang
et al., 2018c; Lang et al., 2018d) which introduced a cubic lattice
ofM ∈ N points in each direction and with spacing εM � R/M.
Then, the characteristic functions of CM take the following
form:

0χM(m)(x) �∏D
k�1

χM[mk](xk)with

χM[mk](xk) � { 1, if xk ∈ [εMmk, εM(mk + 1)),
0, else.

(2.10)

However, this is by far not the only possibility. In order to
demonstrate that nothing is special about the choice of
tessellation of σ, we will use in Section 3 the following cell
complexes:

(ii)Discretization using parallelepipeds. We consider
D-dimensional tessellations of the following form: at least
one axis of the parallelepiped is aligned with one of the
coordinate axes and a second axis of the parallelepiped
connects diametral corners of an elementary hypercube.
Then the remaining axes are either aligned with the
coordinate axes or explore all possibilities to connect
diametral corners of lower dimensional hypercubes. This
yields two possibilities in D � 2 and nine possibilities in
D � 3. We can formalize this as follows: Let i, j � 1, . . . ,D and

i,jχM(m)(x) :� ∫ dDyδ(yi − εMmi,∑
k≠ i
(yk − εMmk))(∏

k≠ i

χM[mk](yk))
×χM[mj](xj −∑

k≠ j
(xk − εMmk))(∏

k≠ j

δ(yk, xk)). (2.11)

In D � 2 the explicit form of the two possible parallelograms
reads:

1,1χM(m)(x) � 2,1χM(m)(x)
� χM[m2](x2)χM[m1 −m2](x1 − x2), (2.12)

1,2χM(m)(x) � 2,2χM(m)(x)
� χM[m1](x1)χM[m2 −m1](x2 − x1). (2.13)

InD � 3 the fundamental cells take the form of parallelepipeds.
While nine different cases exist, we display only the explicit
expressions for i � 1:

1,1χM(m)(x) � χM[m1 −m2 −m3](x1 − x2

− x3)χM[m2](x2)χM[m3](x3), (2.14)
1,2χM(m)(x) � χM[m2 −m1 −m3](x2 − x1 − x3)χM[m1 −m3]

× (x1 − x3)χM[m3](x3),
(2.15)

1,3χM(m)(x) � χM[m3 −m1 −m2](x3 − x1 − x2)χM[m1 −m2]
× (x1 − x2)χM[m2](x2),

(2.16)

and for i � 2, 3 similar functions with permutations of the indices
are found.

2.2. Phase Space Reduction of a Continuum
Toy Model
This subsection motivates and introduces a classical Hamiltonian
system subject to the Gauss constraint for Abelian gauge group
U(1) in D � 3 on a compact torus σ � [0, 1]3. The field content
will be a U(1)-connection Aa and the corresponding electric
vector field Pa. Due to U(1) being 1-dimensional, there is only
one constraint per point, which reads:

G(x) � (zaPa)(x). (2.17)

The most prominent example of a U(1) gauge theory is free
Maxwell electrodynamics:
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H :� εo
2
∫ d3x(Pa(x)Pa(x) + c2A⊥

a (x)δab(ω2A⊥)b(x)), (2.18)

with A split into transversal and longitudinal part respectively:

A⊥
a (x) � Aa(x) − A||

a(x),
A||

a(x) � (za1ΔzbAb)(x). (2.19)

Further, ϵo is the electric constant of units [J/(mV2)], but in
the following we set c � εo � 1. In Maxwell electrodynamics it is
ω2 � −Δ with Δ being the Laplacian. We modify (2.18) by
replacing Δ with

ω2 � 1
p2(n−1)

(−Δ + p2)n, (2.20)

with some Proca like mass term p> 0 and n> 0. This is merely a
generalization as standard Maxwell theory can be reobtained in
the limit p→ 0 and n � 1.

Our goal is to go to the reduced phase space and therefore we also
split the electric field Pa into Pa

⊥ and Pa
|| defined similar to (2.19):

Pa
⊥(x) � Pa(x) − Pa

||(x),

Pa
||(x) � (za1ΔzbPb)(x). (2.21)

Due to the fact that the transverse modes are gauge-invariant,
i.e. {G[Λ],A⊥

a (x)} � {G[Λ], Pa(x)} � 0 for all Λ ∈ L(σ), it follows
that the Hamiltonian (2.18) is gauge-invariant, too.

The unreduced phase space is equipped with Poisson brackets
{Pa(x),Ab(y)} � δabδ

(3)(x, y). As is standard, we perform a
canonical transformation to:{Pa

||(x),A||
b(y)} � 1

Δz
azbδ

(3)(x, y),
{Pa

⊥(x),A⊥
b (y)} � (δab − zazb

Δ )δ(3)(x, y),{Pa
⊥(x),A||

b(y)} � {Pa
||(x),A⊥

b (y)} � 0.

(2.22)

Next, we reduce to the subspace A|| � P|| � 0 and go into
Fourier space

P̂
a

⊥(k) :� ∫ d3xeik·xPa
⊥(x), Â

⊥
a (k) :� ∫ d3xeik·xA⊥

a (x), (2.23)

which can be decomposed as

P̂
a

⊥(k) � εa1(k)P̂1(k) + εa2(k)P̂2(k),

Â
a

⊥(k) � εa1(k)Â1(k) + εa2(k)Â2(k), (2.24)

with a choice of vector fields ε1(k), ε2(k) which are orthonormal
to each other and orthogonal to ka. Such a choice can always be
made and implies that the symplectic structure between P̂, Â is of
canonical form, i.e. for I, J ∈ {1, 2}{P̂I(k), ÂJ(k′)} � δIJδ

(3)(k, k′). (2.25)

On this subspace the Gauss constraint is trivially solved, and
all gauge-degrees of freedom have been removed. Expressed in

these variables the continuum Hamiltonian of our model takes
the form:

H � ∫ d3k∑
I�1,2
(∣∣∣∣P̂I(k)

∣∣∣∣2+ω(k)2∣∣∣∣ÂI(k)
∣∣∣∣2). (2.26)

2.3. Scalar Field Renormalization With
Multiple Field Species
In this subsection we discretize the model (2.26) with ω from
(2.20) with the scalar field techniques introduced in (Lang et al.,
2018a). Due to the form of the Hamiltonian we are close to the
analysis in (Lang et al., 2018b; Lang et al., 2018c; Lang et al.,
2018d) to which we refer the reader for all details. Indeed, we
can understand the Hamiltonian as two decoupled field
species (PI ,AI) labeled by I � 1, 2, where we use the
Fourier inversion:

PI(x) :� 1
2π
∫ d3ke−ik·xP̂I (k),

AI(x) :� 1
2π
∫ d3ke−ik·xÂI(k). (2.27)

We introduce a family of discretisations of the spatial manifold
σ in terms of cubic cell complexes as described in the previous
subsection such that NM,2M(m) � 2D for all
m ∈ Z3

M � {0, 1, . . . ,M − 1}3. With the evaluation maps EM
from (2.3) we discretize both field species:

PM,I(m) :� PI(mεM),
AM,I(m) :� ε3M(EMAI)(m). (2.28)

We must also introduce a discretization of ω which is
supposed to map from LM → LM . Since we have two field
species I � 1, 2 it could turn out that each supports its own
covariance. To take this possibility into account, we will keep the
discretisations ωM,I dependent on the field species I in the
following. However, as initial discretization we take them to be
equal, that is:

ωM,1 � ωM,2 � ω(0)
M ≡

1
p2(n−1)

(−ΔM + p2)n, (2.29)

with ΔM some initial discretization such that limM→∞ω(0)
M � ω.

Since the Hamiltonian is essentially of free harmonic oscillator
form for each I, it motivates to introduce the discrete annihilation
and creation fields:

aM,I(m) :� 1���
2Z

√ ( �������
ωM,I/ε3M√

AM,I(m) − i
�������
ε3M/ωM,I

√
PM,I(m)),

(2.30)

such that

HM � Z∑
I�1,2

∑
m ∈ Z3

M

aM,I(m)(ωM,IaM,I)(m). (2.31)
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For any resolution M we define the corresponding Hilbert
spacesHM,I for specie I with Fock vacuum Ω(0)

M ∈ HM :� ⊗IHM,I

annihilated by the operators corresponding to (2.30), i.e.

âM[fM] :�∑
I

∑
m ∈ Z3

M

âM,I(m)fM,I(m), (2.32)

(with fM,I(m) ∈ L2M :� ℓ2(Z3
M)2). Thus, ΩM is simultaneously

annihilated by the quantization of (2.31). Denoting by 〈., .〉HM

the scalar product on HM it follows

〈ΩM , e
iÂM[fM]ΩM〉HM

� e−
Z
4 〈fM,1 ,ω− 1

M,1 fM,1〉 e−
Z
4 〈fM,2 ,ω− 1

M,2 fM,2〉 (2.33)

Each HM can be represented as Hilbert space L2(R2M3
, d]M)

where ]M � ]M,1]M,2 is a Gaussian measure with covariance cM �
diag(cM,1, cM,2) and cM,I � (Z/2)ω−1

M,I . Hence, we have at our
disposal an initial family of Osterwalder-Schrader data
(HM , ĤM , ]M) which under a renormalization step, does not
change its general structure (Lang et al., 2018b) but leads to a new
family of (Gaussian) covariances, i.e. {c(n)M,I}M → {c(n+1)M,I }M . Our
goal is to find a family of measures that remains invariant under
the coarse graining induced by the maps IM→ 2M defined in
Subsection 2.1.

Indeed, the fact that our model is essentially two copies of a
free scalar field allows making use of many tools developed in
(Lang et al., 2018b; Lang et al., 2018c; Lang et al., 2018d). We
recall from Section 3.1 of (Lang et al., 2018d) that determination
of the fixed points for any power n in (2.20) can be reduced to
studying the renormalization group flow for n � 2 at the cost of
an additional contour integral by a standard application of the
residue theorem: Starting from the initial covariance:

c(0)M � p(n−1)(Z/2)(−ΔM + p2)n/2 � p(n−1)(Z/2)
2πi

∮
c
dko

1
kn/2o

1
−ΔM + p2 − ko

,

(2.34)

with γ being a contour consisting of a part along iR (excluding the
origin) and an arc closing at infinity on the positive half plane. For
brevity, we relabel p2 :� p2 − ko. Now, since the RG flow is linear
and only changes ΔM , determination of the fixed points boils
down to the case n � 2 up to said contour integral along γ.

As we had already seen in (Lang et al., 2018b) that the RG flow
is easiest studied in the Fourier transformed representation, we
recall the discrete Fourier transform and its inverse on LM for any
D (with kM � 2π/M)

fM(m) � ∑
l ∈ ZD

M

f̂ M (l)eikMl·m, f̂ M(l) � M−D ∑
m ∈ ZD

M

fM(m)e−ikMl·m.

(2.35)

Going to the discrete Fourier picture and assuming
translational invariance of the covariance, we know that the
kernel of the covariance at the fixed point can be written as:

c*M,I(m) � p(n−1)(Z/2)
2πi

∮
c
dko

1
kn/2o

∑
l ∈ Z3

M

eikMl·mĉ*M,I(l). (2.36)

Further, it was observed in (Lang et al., 2018d) that the
renormalization group flow decouples for each direction and

thus the covariance can be transformed via another application of
the residue theorem into:

ĉ*M,I(l) �
1

(2πi)3
⎛⎝∏3

b�1
∮

c
dzb⎞⎠ 1

p2 −∑bzb
∏3
b�1

ĉ*M,I,b(lb; zb).

(2.37)

For IM→ 2M from (2.7) with a discretization using regular
cubes as (2.10) the fixed point obtained from the flow starting
with the fraction in (2.34) has been already computed in (Lang
et al., 2018b) and reads:

ĉ*M,I,b(l, z) � ĉM(l, q) :
� ε2M
q3

q cosh(q) − sinh(q) + (sinh(q) − q)cos(kMl)
cosh(q) − cos(kMl) ,

(2.38)

where q � εM
�
z

√
. Note that indeed IM→ 2M is the same in each

direction b and the same for both field species I, hence we obtain
the same fixed point for both I.

For the deleting kernel IDelM→ 2M from (2.8) the fixed point can
be computed to be3

ĉ*M,I,b(l, z) � ĉDelM (l, q) :� ε2M
q

sinh(q)
cosh(q) − cos(kMl). (2.39)

Thus, we finished the analysis of the direct Hamiltonian
Renormalization applied to our toy model for a gauge theory
which has been reduced to the gauge-invariant subspace before
quantization. Keep in mind that in Section 3.2.2 of (Lang et al.,
2018b) it was already explained that renormalization of the
Hamiltonian leads to replacing in the discretization (2.31) the
initial covariance with the fixed pointed one, that is ωM,I1ω*

M.
Also, since both field species behaved exactly the same, i.e.

ωM,I � ωM , the same universality and continuum properties
discussed in (Lang et al., 2018c; Lang et al., 2018d) apply to
this case as well.

3. RENORMALIZATION WITH FORM
FACTORS FOR FREE VECTOR BOSONS

In this section we turn toward those discretisations for which the
fields are discretized with respect to the edges of some finite graph.
This brings us closer to lattice gauge theories which are typically
formulated in terms of holonomies, that is exponentials of the
connection. For this purpose, Subsection 3.1 introduces
discretisations where the fields are integrated along one-
dimensional curves and their canonical conjugated pairs againstD −
1 faces, whereD is the number of spatial dimensions.We can express
the discretization in a language maximally close to (Lang et al.,
2018c) and the previous section, if we smear both objects with form
factors of curves and D − 1 faces respectively.

3Note that the earlier work (Lang et al., 2018c) contains a typo: While in eqn (3.61)
(in (Lang et al., 2018c)) we quote obviously the initial covariance, we missed to
explicitly write the fixed point given by (2.39) above.
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Due to our earlier considerations we have an understanding
how sensible injection maps on the quantum level can be chosen,
which we do in Subsection 3.2 calling them “deleting” and
“filling” kernel respectively. These relate the quantities of some
resolution M to those on a finer resolution pM, where p ∈ N can
be any arbitrary factor. However, to keep the notation simple, we
will use throughout this paper the choice p � 2.

Afterward, we want to investigate a toy model in order to test
how the different coarse graining maps and their corresponding
fixed pointed theories behave with respect to each other. As we
want to study models which allow for the existence of holonomy
operators in the Fock representation that supports the continuum
Hamiltonian, we have to introduce a deformation of free Maxwell
theory. This deformation is discussed in Subsection 3.3.

In Subsections 3.4 and 3.5 we will again employ tools
developed in (Lang et al., 2018b; Lang et al., 2018c; Lang
et al., 2018d) to determine the fixed pointed Hilbert spaces for
the coarse graining maps defined by the deleting as well as the
filling kernel. The task amounts to finding a suitable fixed pointed
covariance defining a Gaussian measure on the Hilbert spaces of
finite resolution, which we will derive in closed form for both
maps. This demonstrates robustness of the continuum theory
even under drastic changes of the coarse graining procedure.

3.1. Injection and Evaluation Maps
As in the previous section, we consider a (D + 1)-dimensional
manifold of the form R × σ on which an infinite dimensional,
conservative Hamiltonian system is defined. Via an IR cut-off we
restrict to the compact submanifold σR, omitting the cut-off R in
all subsequent formulas.

Let the phase space be coordinatized by vector fields Pa and
covector fields Aa with a � 1, . . . ,D which read in terms of
smearing against test functions f , g ∈ L(σ)D

P[g] :� 〈P, g〉 :� ∫
σ
dDxPa(x)ga(x), (3.1)

A[f ] :� 〈A, f 〉 :� ∫
σ
dDxAa(x)f a(x), (3.2)

and which have elementary Poisson brackets:{P[g], P[g ′]} � {A[f ],A[f ′]} � 0,{P[g],A[f ]} � κo〈g, f 〉 :� κo∫
σ
dDxga(x)f a(x), (3.3)

with κo being the coupling constant of the theory, which we set to
one in the following: κo � 1.

We discretize the theory by introducing smearings of Aa along the
1-dimensional edges of some dual cell complex. For the case of
σR � [0,R]D, it suggests itself to consider regular lattices, where at
each vertex there are 2Dmany edges incident. In the following, we will
restrict to this choice, to keep the notation simple. Note that the edges of
the lattice are understood to be paths, i.e. semianalytic curves. The set of
all paths forms the groupoidP, which is closed under concatenation of
elements and features an inverse element for each path–however there
is no natural identity element on P. We understand an element e ∈ P
as the embedding e : [0, 1]→ σR. Since we want to focus for the
purpose of this article on regular lattices (e.g. cubic lattices for D � 3),

we are mostly interested in a subset of P: Given a lattice cM , whereM
denotes the number of vertices in each direction, we denote the set of
oriented edges in cM by PM ⊂ P.

A smearing of the field Aa against an edge can be obtained by
allowing in (3.2) not only test functions in L(σ) but distributions
such as form factors Fe for any edge e ∈ PM , i.e.:

(Fe)a(x) � ∫
e
dyaδ(D)(x, y). (3.4)

Similarly, since we are interested in those lattices cM which
stemmed from some dual cell complex, we can associate with
each edge e a choice of some (D − 1)-dimensional face S(e), such
that S(e)∩e′ � ∅ iff e≠ e′ and at the unique point S(e)∩e its
normal points in the same direction as _e. Then, we can also
introduce the dual form factors of the face S, e.g.:(f S)a(x) � ∫

S
dyb∧dyc

εabc
2
δ(3)(x, y) if D � 3, (3.5)

(f S)a(x) � ∫
S
dybεabδ

(2)(x, y) if D � 2. (3.6)

Note that there is a natural non-distributional Poisson bracket
between the form factors for curves and the dual form factors for faces:

〈Fe, f
S(e′)〉 � δee′ . (3.7)

We can now restrict the set of our observables with respect to
which the physical configuration (Ea,Aa) is probed. We want to
keep only those observables that can be understood as restricting Aa

to the edges of a lattice and Ea to its dual faces. This can be achieved
by introducing injection and evaluationmaps between test functions
in L(σD) and functions on the lattice LM ≡ L(PM ,R):

IDelM : LM → L(σ)D
fM1(IDelM fM)a(x) :� ∑

e ∈ PM

(Fe)a(x)fM(e), (3.8)

E′
M : L(σ)D → LM

f a1(E′
M f )(e) :� 〈f , f S(e)〉. (3.9)

Using property (3.7) one easily verifies that E′
M+I

Del
M � idM .

Further, we can understand

A[IDelM fM] � ∫ d3xAa(x)(IDelM fM)a(x) � ∑
e ∈ PM

A[Fe]fM(e), (3.10)

as Aa restricted to the lattice cM . We introduced a superscript on
IDelM and call it in the following “deleting kernel” due to its
similarity with (2.8).4, Yet, this construction is far from unique
and in order to demonstrate this we introduce a second choice
called “filling kernel.” In its spirit, this map is constructed to be
similar to the standard choice employed for scalar fields, i.e. (2.3).

4Deleting kernels are favored in the literature on cylindrical consistency of gauge
theories, see for example the projective spaces of the Ashtekar-Lewandowski
Hilbert space in the context of Loop Quantum Gravity (Ashtekar et al., 1995;
Thiemann, 2007; Rovelli, 2004). Note however, that the Ashtekar-Lewandowski
Hilbert space for each edge is a Hilbert space over SU(2) in contrast to the Fock
space we consider in this manuscript.
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Due to the multiple choices of cell complexes used to define (2.3),
we have an ambiguity regarding the injection map for the “filling
kernel.” We restrict us to the choices of parallelepipeds (2.11)
since discretisations with regular cubes have been extensively
studied in the papers (Lang et al., 2018b; Lang et al., 2018c; Lang
et al., 2018d) and this new choice will demonstrate the robustness
of the renormalization procedure under considerably drastic
changes. For i ∈ {1, . . . ,D}, we define

IFil,iM : LM → L(σ)D, (3.11)

fM1(IFil,iM fM)a(x) � 1
2D−1

∑
e ∈ PM

∑
e′ ∈ P2M

(Fe′)a(x)fM(e)rFil,iee′
, (3.12)

with

rFil,iee
′
� { δ _e(0), _e

′
(0)δ _e(0),̂b, if Im(e′) ⊂ i,bχ(e(0)),

0, else,
(3.13)

where Im(e′) denotes the image of e′ : [0, 1]→ σ, i,bχ is defined
in (2.11), b̂ is the normal vector of unit length pointing in
direction b and δ

_e(0),̂b denoting the Kronecker delta in the
tangent space, i.e. it is non-vanishing only if _e(0) � b̂. Note that
the cases in (3.13) are meant to be checked for all possible
b � 1, . . . ,D separately.

It is easy to check that for a suitable choice of faces S(e) we get
E′
M+I

Fil,i
M � idM for all i. We recall that the parameter i of the filling

kernel determines the choice of parallelepipeds from (2.11) and
thus all derived quantities in the coarse graining procedure will
depend on it. In what follows we fix i ∈ {1, 2, 3} and check the
coarse graining maps for all of them separately, thus not
displaying the label i explicitly.

3.2. Coarse Graining for Deleting and Filling
Kernel
In this subsection we concatenate injection and evaluation maps
to coarse graining maps IM→ 2M both for deleting and filling kernel
on the classical level and use IM→ 2M to build isometries between
Fock quantized Hilbert spaces of different resolutions.

3.2.1. Classical Coarse Graining Maps
First, we introduce the coarse graining maps for the deleting
kernel from LM → L2nM via: (n ∈ N)

IDelM→ 2nM :� (ε2nM
εM
)α

E2nM+I
Del
M , (3.14)

with α ∈ R. They relate a set of test functions on coarse resolution
Mwith a set of test functions at finer resolution 2nM. Their action
on test functions can be written explicitly as:

f2nM(e′) :� (IDelM→ 2nMfM)(e′) � 1
2nα

∑
e ∈ PM

rDelee
′
fM(e), (3.15)

where e′ ∈ P2nM and

rDelee′ � { 1, if e′ ⊂ e,
0, else.

(3.16)

The free parameter α ∈ R can be chosen in such a way that the
condition of cylindrical consistency is satisfied, that is for all A and
fM ∈ LM :

A[I2nM+IM→ 2nMfM] � A[IMfM]. (3.17)

Using that Fe � Fe1 + Fe2 + . . . + Fe2n if e � e1+e2+ . . .+e2n we
find

A[IDel2nMI
Del
M→ 2nMfM] � ∫ dDx ∑

e′ ∈ P2nM

Aa(x)(Fe′ )a(x)(2−αn ∑
e ∈ PM

fM(e)rDelee′ )
� ∫ dDx ∑

e ∈ PM

Aa(x)fM(e)(2−αn ∑
e′ ∈ P2nM

(Fe′ )a(x)rDelee′ )
� ∫ dDx ∑

e ∈ PM

Aa(x)2−αn(Fe)a(x)fM(e) � A[IDelM fM]2−αn.
(3.18)

Hence, it must be α � 0.
If we were to introduce a coarse graining map of the filling

kernel as the analogue of (3.14), a calculation similar to (Subsection
3.2.1) demonstrates, that the latter is not cylindrical consistent unless
Aa is constant over each i,bχ. However, requiring cylindrical
consistency for the classical coarse graining map is not necessary
per se, thus this finding does not rule out the filling kernel. The
important property for the inductive limit construction is the
compatibility condition between the quantum isometries, which
follows from the weaker condition

I
2nM→ 2n′M

IM→ 2nM � I
M→ 2n′M

, (3.19)

with n< n′ ∈ N. Indeed, (3.19) can be achieved also for the filling
kernel when defining IM→ 2nM as the analogue of (3.15):

f2nM(e′) :� (IFil,iM→ 2nMfM)(e′) � 1
2n
∑

e ∈ PM

rFil,i
ee′

fM(e), (3.20)

with e′ ∈ P2nM and rFil,i
ee′

from (3.13).
Lastly, it turns out–for both filling and deleting kernel–that

demanding the map IM→ 2nM to be an isometry, i.e.

〈IM→ 2nMfM , IM→ 2nM
~f M〉2M � 〈fM ,~f M〉M,∀fM ,~f M , (3.21)

can be used to fix an auxiliary scalar product on LM :

〈fM ,~f M〉M :� εDM ∑
e ∈ PM

fM(e)~f M(e). (3.22)

3.2.2. Isometric Injections on the Quantum Level
In this section we construct coarse graining maps between Hilbert
spaces corresponding to different resolutions. These maps drive
the renormalization group (RG) flow between the inner products
on the Hilbert spaces HM . Once a fixed point family of Hilbert
space measures is found, it can be used to obtain a continuum
Hilbert space via the method of inductive limits (Kadison and
Ringrose, 1986; Janas, 1988). To use the latter toolbox, certain
requirements must be met for the coarse graining maps JM→ 2M : It
must be guaranteed that JM→ 2M are isometric injections, i.e.

J†M→ 2MJM→ 2M � idHM , (3.23)

and that they are subject to the compatibility condition, i.e. for
each n< n′ ∈ N:
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J
2nM→ 2n′M

+JM→ 2nM � J
M→ 2n′M

. (3.24)

These two properties were also imposed for scalar field models
and indeed the same procedure of constructing the injections
from (Lang et al., 2018a) can be used again. We utilize a Fock
quantization of the discretized field AM � A+IM . Upon choosing
the vacuum vector ΩM ∈ HM of the discretized Hamiltonian, we
consider the dense linear span of vectors of the form

exp(iÂM[fM])ΩM , (3.25)

where

ÂM[fM] :� εM ∑
e ∈ PM

ÂM(e)fM(e) � εM ∑
m ∈ ZD

M

∑D
a�1

ÂM,a(m)fm,a(m),

(3.26)

and we denote the edge e � em,a with initial vertex m and
direction a.

In the same manner as in (Lang et al., 2018a), we define the
injections between Fock spaces as:

JM→ 2M(eiÂM[fM]ΩM) :� eiÂ2M[IM→ 2MfM]Ω2M , (3.27)

where IM→ 2M is the respective version of its action on test
functions for deleting or filling kernel.

By construction, this map is maximally parallel to the case of scalar
fields and therefore many properties can be transferred to this setting.
We refer to (Lang et al., 2018a; Lang et al., 2018b) for further details.

3.3. Toy Model: Definition and
Discretization for a Proca Like Theory
In this subsection, we define a toy model which allows for
holonomy like operators in the continuum, i.e. exp(iÂ[Fα])
has finite expectation values for α being some closed curve in
σ. Then, we discretize this theory with respect to smearings along
the curves of a lattice cM as discussed before.

3.3.1. Definition of the Continuum Model
In close analogy to the model of Section 2.3 we study a field
theory with D � 3 spatial dimensions and Hamiltonian

H :� εo
2
∫ d3x(Pa(x)Pa(x) + c2Aa(x)(ω2A)a(x)), (3.28)

where in the following we set c � εo � 1. In order to allow for the
continuum QFT to support the exponentials of Wilson loops as
operators, i.e. exp(iÂ[Fα]) with some closed curve, α we chose

ω2 � 1
p2(n−1)

(−Δ + p2)n, (3.29)

with some mass term p> 0 and n≥ 4 to ensure existence of the
covariance following from (3.28) when evaluated on form factors
Fα as in (3.4):

Lemma: Let α : [0, 1]→ σ be a (closed) curve. The continuum
vacuum expectation value of the holonomy along α is finite if
n≥ 4 and p> 0, i.e.:

〈Ω, eiÂ[Fα]Ω〉H� e−Z〈Fα ,ω
−1Fα〉/4<∞. (3.30)

Proof: We consider only the case n � 4 as higher powers are
automatically included due to positive definiteness of −Δ and
p> 0. The vacuum expectation value will be finite if 〈Fα,ω−1Fα〉
remains finite with ω from (3.29). It suffices to check whether

∫ d3k(p2 + k2)2(F̂α)a(k)(F̂α)a (k)<∞, (3.31)

where(F̂α)a (k) � ∫ d3xeik·x(F̂α)a(x) � ∫
α
dya ∫ d3xeik·xδ(3)(x, y)

� ∫
α
dyaeik·y � ∫1

0
dt _αa(t)eik·α(t).

(3.32)
First, we give a bound from above for the absolute value of F̂α%%%%F̂α(k)

%%%%≤ β :� sup
a�1,2,3;t ∈ [0,1]

| _αa(t)|. (3.33)

Using this approximation and going to spherical coordinates
d3k→ r2sin(θ) dr dθ dφ we get:

∫
R3

d3k(p2 + k2)2(F̂α)a (k)(F̂α)a (k)≤ β2∫
R3

d3k(k2 + p2)2
� 4πβ2 ∫∞

0

r2dr(r2 + p2)2 � 2πβ2∫
R

r2dr(r2 + p2)2 � 2πβ2

p
∫

R

x2dx

(x2 + 1)2

� π2β2

p
<∞,

(3.34)

where we used the residue theorem in the last step. Hence, the
vacuum expectation value is well-defined.

Conversely, a similar calculation shows that for lower powers
of n in ω the vacuum expectation value diverges (and due to
(3.34) also if p � 0). One should therefore either change the test
functions and not use form factors or study different theories. In
principle, we could consider free Maxwell electrodynamics, the
Proca action or even the free graviton theory and study their
behavior under a renormalization group flow with the methods of
(Lang et al., 2018a). But here we have altered the Hamiltonian H
in order to ensure that the expectation values of holonomies with
respect to the vacuum (which is annihilated by H) are well-
defined. This happens by introducing a higher order polynomial
in the Laplacian (3.29)which of course breaks Lorentz invariance.
However, our model just serves to test theories with well-defined
holonomy operators (but not well-defined electric flux operators)
in the usual Fock space setting. Ultimately, we will be interested in
coupling general relativity to gauge theories. In this case, theories
such as Loop Quantum Gravity (Thiemann, 2007; Rovelli, 2004;
Ashtekar and Lewandowski, 1995) indicate that insertion of such
Lorentz invariance breaking higher polynomials is not
necessary(Thiemann, 1998; Liegener and Thiemann, 2016).
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3.3.2. Initial Discretization on Cubic Lattice
In order to test the coarse graining maps on the quantum level, we
need to first introduce a discretization of the phase space of
(Pa(x),Aa(y)) with a � 1, 2, 3 with symplectic structure (3.3)
and a discretization of the Hamiltonian (3.28).

We work on a cubic lattice, with M vertices in each direction
labeled by m ∈ ZD

M � {0, 1, . . . ,M − 1}D with D � 3. At each
vertex m we have three in- and three outgoing edges. We use
smearings against form factors to discretize the Hamiltonian.
Denoting the edges on the lattice by em,a (labeled by initial point
m and a direction a � 1, 2, 3 and _e(t) � â for all t ∈ [0, 1]) we
have

AM,a(m) :� A[Fem,a] � ∫[0,1]
dtAa(em,a(t)), (3.35)

Pa
M(m) :� P[f S(em,a)] � ∫

[0,1]2
dudvPa(Sem,a(u, v)), (3.36)

Similar to Section 2.3 we interpret this structure as three
different field species a � 1, 2, 3 (This is due to D � 3. To make
the distinction between directions and field species clear, we
will write in this section an arbitrary D for directions but keep
a � 1, 2, 3 for the field species). Moreover, at each m the field
specie a is supported only on edges along direction â. In order
to distinguish the a priori different species, we associate to each
of them their own discretised ωM,a, while of course our initial
discretization is such that

ωM,1 � ωM,2 � ωM,3 � ω(0)
M , (3.37)

with ω(0)
M some discretization of (3.29), such that

limM→∞ω(0)
M � ω.5

Since the Hamiltonian is of free harmonic oscillator form for
each a, we can repeat the discussion from Section 2.3: We
introduce the discrete annihilation and creation fields

aM,a(m) :� 1��
2�h

√ ( ������ωM,aεM
√

AM,a(m) − i
������
ωM ,aεM

√ −1Pa
M(m)),

(3.38)

such that

HM � �h ∑
a�1,2,3

∑
m ∈ ZD

M

aM,a(m)(ωM,aaM,a)(m), (3.39)

For each specie a, we define the corresponding Hilbert spaces
HM,a with Fock vacuum Ω(0)

M ∈ HM :� ⊗aHM,a annihilated by
each (3.38) and thus simultaneously by (3.39). Denoting by
〈., .〉HM

the scalar product on HM it follows (with
fM,a(m) ∈ LM :� L(PM ,R) ≡ ℓ2(ZD

M)3)

〈ΩM , e
iÂM[fM]ΩM〉HM

� ∏
a�1,2,3

e−(Z/4)〈fM,a ,ω−1
M,afM,a〉�e−〈fM ,cMfM〉/2,

(3.40)

with covariance cM � diag(cM,1, cM,2, cM,3) and cM,a � (Z/2)ω−1
M,a.

As Gaussian measures do not change their structure under coarse
graining (Lang et al., 2018b) the task boils down to find a fixed pointed
family {c*M}M for the coarse grainingmaps JM→ 2M of both the deleting
as well as the filling kernel. Then, we can also use that the fixed pointed
Hamiltonian is given by (3.39) when replacing ωM,a1ω*

M,a.
Also, we discussed already in Section 2.3 that the fixed point

for choice n≥ 4 in (3.29) can be achieved by finding the fixed
point of n � 2 due to the fact that both are related via the contour
integral (2.34) and replacing p21p2 � p2 − ko.

We end this section by choosing an explicit initial
discretization of the covariance, i.e. c(0)M � diag(c(0)M,1, c

(0)
M,2, c

(0)
M,3),

which acts on test functions fM,a(m) ∈ L3M . We assume that every
field specie has a translational invariant covariance, i.e. its kernel
is for m, n ∈ ZD

M :

cM,a(m, n) � cM,a(m − n), (3.41)

which holds true for the following initial discretization of the
derivatives inside

ω2
M � ⎛⎝ −∑D

b�1
zMb z

b
M + p2⎞⎠, (3.42)

with: (zMb fM)a(m) :� 1
εM
[fM,a(m) − fM,a(m − b̂)], (3.43)

(zbMfM)a(m) :� 1
εM
[fM,a(m) − fM,a(m + b̂)], (3.44)

and b̂ is the normal vector pointing in direction b. We see that cM
does not mix the different species a, therefore we can apply the
discrete Fourier transform from (2.35) on each subspace of fixed
a to get as initial starting point for the covariance (see (Lang et al.,
2018b) for details):

ĉ(0)M,a(l) �
Z/2

p2 − ε−2M∑D
d�1(2cos(kMld) − 2), (3.45)

with l � {l1, . . . lD} and kM � 2π/M. Note that the right-hand
side of (3.45) is independent of a due to the initial choice
(3.37). This will change once we study the RG flow of the filling
kernel.

Lastly, let us recall from (Lang et al., 2018d) that an initial
covariance of the form (3.45) can be transformed via the residue
theorem into several integrals over a product of “one-
dimensional” covariances, i.e. decouples in each direction:

ĉ(0)M,a(l) �
Z/2

(4πi)3 (∏Db�1 ∮Γ
dzb) 1

p2 −∑bzb
c′M(la, a; za)∏

b≠ a

c′M(lb, a; zb), (3.46)

where Γ is a contour surrounding the real axes (closing at ± ∞
and thus including both poles) and (l′ ∈ ZM)

cM′ (l′, a; z) :� 1
z − ε−2M (2 cos(kMl′) − 2). (3.47)

Note that the way in which we split the integrals is purely
conventional and does not affect the continuum limit M→∞.

5Indeed, we will see in the next sections that the coarse graining induces different
flows of ωM,a for different a in case of the filling kernel, leading ultimately to
different fixed pointed families {ω*

M,a}M . However, this “direction dependence” is
artificial in the sense that it is only present for finiteM, while in the continuum limit
M→∞ the covariances of all species a agree.
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Also, the initial covariance does not have a direction dependency,
hence the label a does not appear on the right hand side of (3.47).

A factorization property like (3.46) becomes useful if it can be
established that the covariance does not change this structure
under a renormalization step. In such a case, each of the c′M will
drive into its respective fixed point (Lang et al., 2018d). Indeed,
this will be case for both the deleting and the filling kernel as we
discuss in the next two sections. There, we will study the different
Hamiltonian RG flows in order to find the fixed pointed
covariances c*M,a � (Z/2)(ω*

M,a)− 1 for each field specie a. They
completely describe the Hilbert spaces and the Hamiltonians at
finite resolution.

3.4. Toy Model: Fixed Points of the Deleting
Kernel
From now on we setD � 3 explicitly in all formulae. We study the
RG flow of the coarse graining for the deleting kernel from (3.27),
i.e.

JM→ 2M(eiÂM[fM]Ω(n+1)
M ) :� eiÂ2M[IDelM→ 2MfM]Ω(n)

2M , (3.48)

which is equivalent to the flow of the family of Hilbert space
measures

〈Ω(n+1)
M , eiÂM[fM]Ω(n+1)

M 〉H(n+1)
M

� 〈Ω(n)
2M , e

iÂ2M[IDelM→ 2MfM]Ω(n)
2M〉H(n)

2M
,

(3.49)

that is (see (Lang et al., 2018b)):

〈fM , c(n+1)M gM〉M :� 〈IDelM→ 2MfM , c
(n)
2MI

Del
M→ 2MgM〉2M, (3.50)

with fM , gM ∈ LM � ℓ2(Z3
M)3 and deleting kernel (m′ ∈ Z3

2M)(IDelM→ 2MfM)a(m′) � ∑
m ∈ Z3

M

fM,a(m)(δm′ ,2m + δm′ ,2m+̂a). (3.51)

We see that (3.51) does not mix the field species for different a
with each other and does not distinguish between different a.
Together with the fact that the initial covariance was written as
diagonal matrix cM � diag(cM,1, cM,2, cM,3), this implies that the
same holds at each iteration of the RG flow and thus also the fixed
point measure will be a product of three times the same Gaussian
measures for each a.

However, for each field specie a the different directions with
respect to the lattices vertices m � (m1,m2,m3) behave
differently as â enters the right-hand side of (3.51). Thus, in
direction â the IDelM→ 2M behaves as the one-dimensional blocking
kernel studied in (Lang et al., 2018b), that is

(IDelM→ 2MfM)a(2ma, . . .) � (IDelM→ 2MfM)a(2ma + 1, . . .), (3.52)

for ma ∈ ZM being the ath component of m ∈ Z3
M . However, for

b≠ a, the kernel behaves as the one-dimensional deleting kernel from
(Lang et al., 2018c), that is for mb being the bth component of m:

(IDelM→ 2MfM)a(. . . , 2mb + 1) � 0. (3.53)

Thus, the flow of the coarse graining map from (3.51)
introduces a “direction dependence” of the covariance at the
quantum level for finite resolution M. This dependence only
vanishes in the continuum limit M→∞.

Since the RG flow in (3.50) does not mix the different
directions, for a decoupled covariance of the form (3.46) each
“one-dimensional covariance” c′M will flow into its respective
fixed point. And since the RG flows for direction a and b≠ a
behave like the ones of the injections studied in (Lang et al.,
2018b) and (Lang et al., 2018c) respectively, the fixed points are
already known and read:(ĉ′M)*(l′, b; z) � ĉDelM (l′, z) for direction b≠ a, (3.54)(ĉ′M)*(l′, a; z) � ĉM(l′, z) for direction a, (3.55)

with l′ ∈ ZM , z ∈ C and the definitions from (2.38) and (2.39).
It remains to plug the fixed points for each direction into

(3.46) and to restore the correct n-dependence via (2.34). Thus,
we know the complete fixed pointed covariance c* �
diag(c*M,1, c

*
M,2, c

*
M,3) with the following kernels for the Fourier

transform of the covariances:

ĉ*M,a(l) �
p(n−1)Z
(4πi)4 ∮c

dko
1
kn/2o

⎛⎝∏3
b�1
∮

Γ
dzb⎞⎠ 1

p2 − ∑3
b�1zb

ĉM(la, za)∏
b≠ a

ĉDelM (lb, zb), (3.56)

where we remember that p2 � p2 − ko. For further details, see
(Lang et al., 2018b; Lang et al., 2018c; Lang et al., 2018d).

3.5. Toy Model: Fixed Points of the Filling
Kernel
We turn toward the second choice of coarse graining map that
was motivated in this paper. While of course further coarse
graining maps can be constructed, the analysis of this section
presents already an indication of universality–as it will transpire
that the continuum limitM→∞ of the fixed pointed theories for
both kernels agree.

Again it is D � 3. The three different choices of filling kernels
are labeled by i ∈ {1, 2, 3} and their explicit action is obtained by
using the form of the characteristic functions in (2.11):(IFil,iM→ 2MfM)a(m′)

� ∑
m ∈ Z3

M

fM,a(m)
⎧⎪⎨⎪⎩ δ(m′

a−∑b ≠ a
δodd(m′

b))/2,ma
∏
b≠ a

δ
m′

b/2,mb
, for i � a,

δ(m′
a−δodd(m′

1)+δodd(m′
s))/2,ma

δ(m′
1+δodd(m′

s))/2,mi
δ
m′

s/2,ms
, else,

(3.57)

where s � 1, 2, 3 is distinct from both a, i, that is a≠ s≠ i and
δodd(n) � 0 iff n ∈ 2ZM and � 1 else. Like in the previous
subsection, we see that different field species a will not talk to
each other, therefore keeping the structure cM �
diag(cM,1, cM,2, cM,3) intact during the whole RG flow.

However, a notable difference to the map IDelM→ 2M is that the
choice of i leads to different fixed pointed families for the field
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specie labeled by a–since (3.57) singles out the case with a � i. On
top of that, the directions of the lattice vertices m ∈ Z3

M do not
decouple in an obvious way. Thus, we need to carefully study how
the matrix elements of a covariance transform under a
renormalization step, which reads for fixed a and fM , gM ∈ LM

〈fM,a, c
(n+1)
M,a gM,a〉M :� 〈IFil,iM→ 2MfM,a, c

(n)
2M,aI

Fil,i
M→ 2MgM,a〉2M. (3.58)

Here, we only show the case a � i � 1 explicitly, all other
choices work analogously. By writing explicitly 〈., .〉M with (3.22)
abbreviating fM(m) :� fM,a�1(m) and plugging in (3.57), we
perform the following manipulations:

ε−2D2M 〈fM , c(n+1)M,1 gM〉M

� ∑
m,~m ∈ Z3

2M

(IFil,1M→ 2MfM)(m)(IFil,1M→ 2MgM)(~m)c(n)2M,1(m, ~m), (3.59)

� ∑
m′

1 ,m
′
2 ,m

′
3 ∈ Z2M

∑
~m′
1 ,~m

′
2 ,~m

′
3 ∈ Z2M

c(n)2M,1(m′
1,m

′
2,m

′
3, ~m

′
1, ~m

′
2, ~m

′
3), (3.60)

× fM(⌊m′
1 − δodd(m′

2) − δodd(m′
3)

2
⌋,⌊m′

2

2
⌋,⌊m′

3

2
⌋)gM

(⌊~m′
1 − δodd(~m′

2) − δodd(~m′
3)

2
⌋,⌊~m′

2

2
⌋,⌊~m′

3

2
⌋)

� ∑
m,~m ∈ Z3

M

∑
δ,~δ ∈ {0,1}3

c(n)2M,1(2m1 + δ1, 2m2 + δ2, 2m3 + δ3, 2~m1

+ δ1, 2~m2 + δ2, 2~m3 + δ3) × fM(m1 + (δ1 − δ2 − δ3)/2,m2,m3)gM(~m1 + (~δ1 − ~δ2 − ~δ3)/2, ~m2, ~m3),
(3.61)

where in the last step we expressedm′
i � 2mi + δi withm, ~m ∈ Z3

M
and δ, ~δ ∈ {0, 1}3. We can now shift the summation parameter
m11m1 − (δ1 − δ2 − δ3)/2 using that fM(0) � fM(M) and
c(n)2M,1(0, . . .) � c(n)2M,1(2M, . . . .):

ε−2D2M 〈fM , c(n+1)M,1 gM〉M � ∑
m,~m ∈ Z3

M

fM(m)gM(m)

× ∑
δ,~δ ∈ ZD

M

c(n)2M,1(2m1 + δ1 − 2
δ1 − δ2 − δ3

2
, . . . , 2~m1 + ~δ1

− 2
~δ1 − ~δ2 − ~δ3

2
, 2~m2 + ~δ2, . . .).

(3.62)

× ∑
δ,~δ ∈ ZD

M

c(n)2M,1(2m1 + δ1 − 2
δ1 − δ2 − δ3

2
, . . . , 2~m1 + ~δ1

− 2
~δ1 − ~δ2 − ~δ3

2
, 2~m2 + ~δ2, . . .)

As this equation is for arbitrary fM , gM , it must hold
component wise and gives us the following recursion relation
for the RG flow:

c(n+1)M,1 (m, ~m) � 2−2D ∑
δ,~δ ∈ Z3

M

c(n)2M,1
⎛⎝2m1 +∑

i

δi, 2m2 + δ2, 2m3

+ δ3, 2~m1 +∑
i

~δi, 2~m2 + ~δ2, 2~m3 + ~δ3⎞⎠,
where we realized that ∑iδi can be obtained by interchanging
the summation parameter δi1δi + 1 in the cases where δ2 +
δ3 � 1.

In order to proceed, we employ the assumption of the
covariance to be translational invariant, i.e.
c2M,1(m, ~m) � c2M,1(m − ~m), and go into Fourier space, where
the recursion relation reads:

ĉ (n+1)
M,1 (l) � 2−2D ∑

δ,~δ,η ∈ {0,1}3
ĉ(n)2M,1(l + ηM)

exp
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ik2M(l + ηM) · ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝∑i δiδ2

δ3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ −⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝∑i ~δi~δ2
~δ3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
� 2−2D ∑

η ∈ {0,1}3
ĉ(n)2M,1(l + ηM)[1 + eik2M(l1+η1M)][1

+ eik2M(l1+l2+(η1+η2)M)][1 + eik2M(l1+l3+(η1+η3)M)] × [1
+ e−ik2M(l1+η1M)][1 + e− ik2M(l1+l2+(η1+η2)M)][1
+ e−ik2M(l1+l3+(η1+η3)M)]

� 2−2D ∑
η ∈ {0,1}3

ĉ(n)2M,1(l + ηM)2D[1 + cos(k2M(l1 + η1M))] × [1
+ cos(k2M(l1 + l2 + (η1 + η2)M))][1 + cos(k2M(l1 + l3

+ (η1 + η3)M))]
� 2−D ∑

δ ∈ {0,1}3
ĉ(n)2M,1(l1 + δ1M, (l1 + l2) + δ2M, (l1 + l3) + δ3M)

× [1 + ( − )δ1 cos(l1)][1 + ( − )δ2 cos(k2M(l1 + l2))][1
+ ( − )δ3 cos(k2M(l1 + l3)]

(3.63)

where in the last step we introduced ĉ2M,1(l1, l1 + l2, l1 +
l3) ≡ ĉ2M,1(l1, (l1 + l2) − l1, (l1 + l3) − l1) and used the
periodicity ĉ2M,a(l + 2M) � ĉ2M,a(l) to relabel η→ δ and
cos(l + k2MM) � −cos(l) (due to k2MM � π).

We observe that if the initial covariance could be written as a
product of the form c′(l1)c′(l1 + l2)c′(l1 + l3) then every element
of the RG flow would have this property (similar to (Lang et al.,
2018d)). Thus, we aim at splitting ĉ(0)M via another application of
(3.46). For this purpose, note the following identity for ĉ(0)M from
(3.45):

ĉ(0)M,a(l) �
Z

2
Ξ−1
a [z1, z2, z3]|za�ϵ−2M (2cos(kMla)−2), zb≠ a�ϵ−2M (2cos(kM(la+lb))−2),

(3.64)
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with

Ξa[{z}] : � p2 − za − 2ε−2M

∑
b≠ a

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣(ε2M2 za + 1)(ε2M
2
zb + 1)

+

��������������
1 − (ε2M

2
za + 1)2

√√ ��������������
1 − (ε2M

2
zb + 1)2

√√
− 1
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦.

Hence, with (3.46) and c′M from (3.47) we find the desired
splitting:

ĉ(0)M,a(l) �
Z/2

(4πi)3
⎛⎝∏3

b�1
∮

Γ
dzb⎞⎠Ξ−1[{z}]

c′M(la, a; za)∏
b≠ a

c′M(la + lb, a; zb). (3.65)

Moreover, the recursion with [1 ± cos(. . .)] is the same as in
(Lang et al., 2018b) and thus is known to lead to the fixed point
ĉ M from (2.38). In other words, we know to which fixed point
family the flow induced by recursion (3.63) drives to. Lastly, we
again restore the contour integral to take n≥ 4 into account and
obtain the final result:

ĉ*M,a�i(l) �
p(n−1)Z
(4πi)3 ∮c

dko
kn/2o

⎛⎝∏3
b�1
∮

Γ
dzb⎞⎠Ξa[{z}]ĉM(za, la)∏

b≠ â

cM(zb, la + lb). (3.66)

Analogously, iterating the same steps for a≠ i we get: (with
a≠ s≠ i)

ĉ*M,a≠ i(l) �
p(n−1)Z
(4πi)3 ∮c

dko
kn/2o

⎛⎝∏3
b�1
∮

Γ
dzb⎞⎠Ξ′

a[{z}]ĉM(za, la)ĉM(zi, la

+ li)ĉM(zs, li + ls − la),

where Ξ′
a can be obtained from a similar splitting as in

(3.64).

If one performs the continuum limit M→∞, one sees that
the artificial direction dependence as well as the difference
between the field species a will be lost and the continuum
theory agrees thus with the continuum limit from (3.56), i.e.
the fixed point of the deleting kernel. In other words, the
projections of same continuum theory with different coarse
graining projections carrying the same label M differ. Yet, the
difference is merely due to the fact that the coarse graining maps
are different. The continuum theory is in both cases the same and

thus displays universality with respect to this change of the coarse
graining map.6

4. CONCLUSIONS

In this paper we performed preliminary steps to extend the
Hamiltonian Renormalization Group to Abelian gauge
theories. This serves as a further step toward the construction
of interacting QFTs for those systems which are subject to
constraints.

When constraints are present, a possible strategy is to
perform a symplectic reduction and go to the reduced phase
space on which the constraints have been implemented. In
general, the geometry (i.e. the symplectic structure) of the
reduced phase space may be very complicated, but at least for
the Gauss constraint of Abelian gauge theories the procedure
is well understood: one can split the phase space in
transversal and longitudinal modes and then gauge-fix the
unphysical longitudinal modes. This allows to proceed with
canonical quantization and renormalization along the
methods for scalar fields from (Lang et al., 2018a; Lang
et al., 2018b; Lang et al., 2018c; Lang et al., 2018d). In a
class of models that includes free Maxwell theory we
performed a reduced phase space quantization obtaining a
family of Fock Hilbert spaces HM , one for each resolution M.
For this class, we could test different injections
JM→ 2M : HM →H2M . It transpired that the resulting models
can be understood as two decoupled field species, both of
them running into their fixed point, which we knew
analytically due to previous studies in (Lang et al., 2018b;
Lang et al., 2018c).

The reduced phase space approach results in a
renormalization flow which is very close to that of scalar
fields. In order to test renormalization flows that take the
vector field structure into account we considered a second
class of models without Gauss constraint which includes free
Proca theory. The motivation for considering generalisations of
free Maxwell and Proca theory is that some of these models allow
for well defined holonomy operators in the corresponding Fock
representations at the price of losing Poincaré invariance. We
consider these models as mere toy models for quantum gravity
theories (Thiemann, 1998; Liegener and Thiemann, 2016) that
are based on Hilbert space representations with both well defined
holonomy operators and Hamiltonians without breaking
symmetries. In particular we are thinking about discretisations
of the Hamiltonian operators studied in this paper using
holonomies themselves which would simulate the proposal of
(Thiemann, 1998; Liegener and Thiemann, 2016). In a future
publication (Liegener and Thiemann, 2020) we will also aim at

6Of course, this does not guarantee universality under any changes of coarse
graining map—a property which cannot be true in general. However, it is possible
to show that for the Hamiltonian RG formulation all coarse graining maps are
unitary equivalent, albeit the initial discretisations may change under said unitary
map, see (Bahr and Liegener, 2020) for all details.
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imposing the Gauss constraint after quantization. The idea of
introducing a “smoothening” operator into the Hamiltonian in
order to allow for holonomy operators in the corresponding Fock
representation is in some sense dual to the idea of using smoothened
form factors studied in (Varadarajan, 2000). Note also that we could
have made our deformation of Proca or Maxwell theory
phenomenologically more interesting by changing ω21 − Δ +
p2((−Δ + p2)/μ2)n with p arbitrarily small but finite and μ
arbitrarily large but finite so that the Lorentz violation will only
manifest itself at energies above μ. Even in this case holonomies are
still well-defined operators and the presented strategy to determine
the fixed point remains the same.

We chose two different coarse graining maps in order to
understand how stable the fixed points of the theory are under
changes of the injection maps. Both maps–deleting and filling
kernel–are mathematical well-defined, but the level of experience
that we have for them differs: the deleting kernel has already been
actively studied in the literature and found application in the non-
Abelian case of Loop Quantum Gravity where it enabled the
construction of an inductive limit Hilbert space. Spin networks (a
possible basis of said Hilbert space) carry distributional
excitations such that a smooth quantum geometry can only be
obtained by distributions on the Hilbert space. Conceptually,
reobtaining smooth geometry could be easier when working with
the filling kernel, as it excites all edges as the resolution increases.
However, extensive studies on the latter kernel have not been
performed as of today.

Both maps employ discretisations of the spatial manifold
where the fields are smeared along edges of a cuboidal lattice.
Choosing such cubic lattices might at first glance look like a
restriction of the theory since it gives rise to the so-called
“staircase problem” (Sahlmann et al., 2001): albeit square
lattices suffice to separate the points in phase space as M gets
large, one does not have access to “45” degree line observables at
any finite resolution. Yet, the continuum theory does allow
considering holonomy operators along such curves which are
not straight. This stresses the point that the lattice just serves to
construct the continuum theories, all other investigations have to
start from there.

We demonstrated for our model classes that the relevant fixed
points can be found for the filling as well as for the deleting
kernel. Due to the fact that the discretisations were expressed
in terms of smearings with form factors, the investigation
exploited many of the findings from previous applications
of the Hamiltonian Renormalization Group in (Lang et al.,
2018b; Lang et al., 2018c; Lang et al., 2018d). Finally, we found
analytically closed formulas for the respective fixed points and
saw that the Hamiltonian renormalization leads to reliable
results.
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