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We show that a generalized version of the holographic principle can be derived from the
Hamiltonian description of information flow within a quantum system that maintains a
separable state. We then show that this generalized holographic principle entails a general
principle of gauge invariance. When this is realized in an ambient Lorentzian space-time,
gauge invariance under the Poincaré group is immediately achieved. We apply this
pathway to retrieve the action of gravity. The latter is cast à la Wilczek through a
similar formulation derived by MacDowell and Mansouri, which involves the
representation theory of the Lie groups SO(3, 2) and SO(4,1).
Keywords: Wilczek gravity, black hole information loss problem, emergent gravity, gauge invariance, holographic
principle

1 INTRODUCTION

Almost one hundred years of attempts to quantize gravity suggest that physical perspective may be
responsible for this failure (Garay, 1995). While continuing to seek an UV-complete theory of either
General Relativity (GR) or one of its possible extensions (Polchinski, 1998; Rovelli, 2004; Modesto,
2012; Modesto and Rachwal, 2014), an alternative option is to look at gravity as an emergent
phenomenon (Jacobson, 1995; Barcelo et al., 2005; Van Raamsdonk, 2010; Verlinde, 2011; Swingle
and Van Raamsdonk, 2014; Chiang et al., 2016; Oh et al., 2018). Among many possible instantiations
of this simple idea stands a paradigm of emergence that aims at recovering gravity via its analogical
similarity with Yang-Mills gauge theories. As remarked by Chen-Ning Yang, while electromagnetism
is evidently a gauge theory, and the fact that gravity can be seen as such a theory is universally
accepted, how this exactly happens to be the case must be still clarified. Notable explorations along
these lines have been provided in the past by Weyl (1918), and more recently by MacDowell and
Mansouri (1977), and Chamseddine et al. (1977), with subsequent improvements by Stelle and West
(1979).

At the same time, we heuristically note that gravity may naturally encode principles of
information theory. Such consideration naturally follows pondering that gravity is the field that
is involved in the very definition of both masses and spacetime distances, and that specifies the

Edited by:
Mohamed Chabab,

Cadi Ayyad University, Morocco

Reviewed by:
Ignazio Licata,

Institute for Scientific Methodology
(ISEM), Italy

Mohammed Daoud,
Ibn Tofail University, Morocco

*Correspondence:
Antonino Marciano

marciano@fudan.edu.cn

†ORCID:
Pisin Chenc

orcid.org/0000-0001-5251-7210
Filippo Fabrocini

orcid.org/0000-0002-6972-1020
Chris Fields

orcid.org/0000-0002-4812-0744
Enrico Greco

orcid.org/0000-0003-1564-4661
Matteo Lulli

orcid.org/0000-0002-6172-0197
Antonino Marciano

orcid.org/0000-0003-4719-110X
Roman Pasechnik

orcid.org/0000-0003-4231-0149

Specialty section:
This article was submitted to
High-Energy and Astroparticle

Physics,
a section of the journal

Frontiers in Astronomy and Space
Sciences

Received: 18 May 2020
Accepted: 04 January 2021

Published: 07 June 2021

Citation:
Addazi A, Chen P, Fabrocini F,

Fields C, Greco E, Lulli M, Marcianò A
and Pasechnik R (2021) Generalized

Holographic Principle, Gauge
Invariance and the Emergence of

Gravity à la Wilczek.
Front. Astron. Space Sci. 8:563450.

doi: 10.3389/fspas.2021.563450

Frontiers in Astronomy and Space Sciences | www.frontiersin.org June 2021 | Volume 8 | Article 5634501

PERSPECTIVE
published: 07 June 2021

doi: 10.3389/fspas.2021.563450

http://crossmark.crossref.org/dialog/?doi=10.3389/fspas.2021.563450&domain=pdf&date_stamp=2021-06-07
https://www.frontiersin.org/articles/10.3389/fspas.2021.563450/full
https://www.frontiersin.org/articles/10.3389/fspas.2021.563450/full
https://www.frontiersin.org/articles/10.3389/fspas.2021.563450/full
http://creativecommons.org/licenses/by/4.0/
mailto:marciano@fudan.edu.cn
http://orcid.org/0000-0001-5251-7210
http://orcid.org/0000-0002-6972-1020
http://orcid.org/0000-0002-4812-0744
http://orcid.org/0000-0003-1564-4661
http://orcid.org/0000-0002-6172-0197
http://orcid.org/0000-0003-4719-110X
http://orcid.org/0000-0003-4231-0149
https://doi.org/10.3389/fspas.2021.563450
https://www.frontiersin.org/journals/astronomy-and-space-sciences
www.frontiersin.org
https://www.frontiersin.org/journals/astronomy-and-space-sciences#articles
https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org/journals/astronomy-and-space-sciences#editorial-board
https://doi.org/10.3389/fspas.2021.563450


propagation velocities of point-like particles, and hence of
information, through the geodesic equations. Thus it is
reasonable to pursue a fundamental theory of gravity from
this perspective. Indeed, the underlying graph-structure of
information networks is a set of nodes and links—this is
reminiscent of the basis of the states in Loop Quantum
Gravity (Rovelli, 2004).

There have been huge achievements in the direction of a
quantum-information based theory of gravity, with several
different attempts developed so far—see e.g. Faulkner et al.
(2014). More generally, deep links between quantum
information theory and an “emergent” quantum theory of
observable physical systems have been developed by many
studies (Chiribella et al., 2016; Hamma and Markopoulou,
2011; Flammia et al., 2009). It is not within the present scope
to summarize this vast literature. Instead, we focus on a specific
alternative approach: we show that when the holographic
principle is reformulated from a semi-classical to a fully
general, quantum-theoretic principle, gravity emerges as a
gauge theory along the lines of the gauge formulation of
gravity, as proposed by Wilczek (1998).

We start by showing in Section 2 that a generalized
holographic principle (GHP) characterizes information transfer
within any finite quantum system in a separable state. The HP is
recovered from this more general, purely-quantum principle by
requiring covariance. We then show in Section 3 that compliance
with the GHP entails gauge invariance under the Poincaré group
in an ambient Lorentzian space-time. Hence the gauge principle
has purely quantum-theoretic roots and characterizes all finite
systems in separable states. We use this to retrieve the action of
gravity in Section 4. In Section 5, we provide, as an example, an
emergent theory of gravity, a theory of Yang-Mills gauge fields
and Higgs pentaplets that is cast à la Wilczek. This is a
formulation similar to a previous one envisaged by MacDowell
andMansouri, which involves the representation theory of the Lie
group SO(4, 1), but without explicit symmetry breaking. We
finally summarize some conclusions in Section 6, and suggest
that the AdS/CFT and dS/CFT correspondences may naturally
arise within this framework.

2 GENERALIZED HOLOGRAPHIC
PRINCIPLE FOR FINITE QUANTUM
SYSTEMS

2.1 Historical Remarks on the Genesis of the
Holographic Principle
Probably the most direct way to summarize the Holographic
Principle (HP) is via its original statement by ’t Hooft (1993):

“given any closed surface, we can represent all that
happens inside it by degrees of freedom on this surface
itself.”

The path that led to the formulation of the HP can be traced
from the Bekenstein’s area law (Bekenstein, 2004) for black
holes (BH),

S � A
4
, (2.1)

where S denotes the thermodynamic entropy of a BH and A its
horizon area in Planck units. Bekenstein conjectured the
existence of an upper bound, S itself, to the entropy of any
physical system contained within a bounded volume:

“the entropy contained in any spatial region will not
exceed the area of the region’s boundary.”

Historically, this conjecture was first instantiated by Susskind
(1995), who implemented a mapping from volume to surface
degrees of freedom for a general closed system. This was based on
the assumption that all light rays that are normal to any element
within the volume are also normal to the surface. Bousso (2002)
then showed that it is actually covariance that induces the
holographic limit on information transfer by light; he further
provided several counterexamples showing the failure of a
straightforward interpretation of the HP as a spacelike entropy
bound. Instead, Bousso formulated a covariant entropy bound:

S(L(Σ))≤A(Σ)
4

, (2.2)

withA(Σ) denoting the area in Planck units of a [typically but not
necessarily (Bousso, 2002)] closed surface Σ, and L(Σ) any light-
sheet of Σ, defined as any collection of converging light rays that
propagate from Σ toward some focal point away from Σ. The
bound (2.2) then refers to the entropy of the light-sheet L(Σ).
This covariant formulation of the HP holds for the light-sheets of
any surface Σ. BH emerge as special cases, for which the equality
in (2.2) holds.

We note that both (2.1) and (2.2) are semiclassical. The limits
on the entropy S that they impose are “quantum” only in their
reliance on Planck units and hence a finite value of Z. The entropy
itself is classical and of statistical origin, but the finite value of Z
restricts this thermodynamic entropy within the volume enclosed
by Σ. In the context of general relativity (GR), Σ is a continuous
classical manifold enclosing a continuous classical volume
characterized by a real-valued metric. As ’t Hooft (1993)
points out, the HP renders S(L(Σ)) independent of the metric
inside Σ:

“The inside metric could be so much curved that an
entire universe could be squeezed inside our closed
surface, regardless how small it is. Now we see that
this possibility will not add to the number of allowed
states at all.”

It bears emphasis that “allowed states” in this context are
thermodynamic states, i.e. states that can be counted by
measuring energy transfer between the system and its external
environment. As made fully explicit by Rovelli in the case of BH
(Rovelli, 2017; Rovelli, 2019), states that are effectively isolated
(e.g. isolated for some time interval much larger than relevant
interaction times) from the external environment do not
contribute to S(L(Σ)).
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While the demonstration by Maldacena (1998) of a formal
duality acting as an equivalence, at the level of the encoded
information, between string quantum gravity on d-dimensional
anti-de Sitter (AdS) spacetime and conformal quantum field
theory (CFT) on its d − 1-dimensional boundary has made the
HP a centerpiece of quantum gravity research, its physical
motivation remains that of ‘t Hooft’s conjecture, namely the
inaccessibility of the BH interior summarized by the Bekenstein
area law (2.1). The HP is conjectured to be fully general, although
it is quite mysterious why this should be the case. As Bousso
(2002) remarks, the HP retains a counterintuitive meaning:

“an apparent law of physics that stands by itself, both
uncontradicted and unexplained by existing theories
that may still prove incorrect or merely accidental,
signifying no deeper origin.”

Our goal in the next section is to place the HP on a much
deeper intuitive footing, by generalizing it from a semi-classical to
a fully quantum principle, one that is entirely independent of
geometric considerations.

2.2 Information Transfer in Finite, Separable
Systems
Let S � AB be a closed quantum system characterized by a Hilbert
space HS of finite dimension dim(HS), and suppose that over
some sufficiently long time interval τ, S maintains a separable
state, i.e. |S〉 � |AB〉 � |A〉|B〉 for all t ≤ τ, where t is a time
parameter characterizing S. We can then write a Hamiltonian:

HS � HA +HB + HAB (2.3)

whereHAB is the A-B interaction. Separability allowsHAB � 0 but
requires HA,HB ≠ 0.

We now assume HAB ≠ 0 and choose bases for A and B such
that, for all t ≤ τ:

HAB(t) � βkkBT
k∑

i

αk
i (t)Mk

i , (2.4)

where k � A or B, i � 1 . . .N for finiteN ≤ dim(HS), the αki (t) are
real functions with codomains [0, 1] such that:

∑
i

∫
Δt

dt αk
i (t) � Δt (2.5)

for every finite Δt, kB is Boltzmann’s constant, Tk is k’s
temperature, βk ≥ ln 2 is an inverse measure of k’s average per-
bit thermodynamic efficiency1 that depends on the internal
dynamics Hk, and the Mk

i are Hermitian operators with binary
eigenvalues. Given separability, we can interpret these Mk

i as
“measurement” operators that each transfer 1 bit between A and
B. Here the condition βk ≥ ln 2 assures compliance with
Landauer’s principle (Landauer, 1961): each bit transferred

from A to B by the action of some operator MA
i is paid for by

the transfer of an energy βBkBTB from B to A and vice-versa.
“Irreversible recording” of the transferred bits by A and B
corresponds2 to state changes:

|A〉|t → |A〉|t+Δt and |B〉|t → |B〉|t+Δt (2.6)

that maintain the separability of S. Given (2.5), the action
required for k to transfer N bits in time Δt is:

∫
Δt
dt({Z)lnP(t) � NβkkBT

kΔt (2.7)

where P(t) � exp(−({/Z)HABt). Informational symmetry clearly
requires βATA � βBTB during any finite Δt.

Let us now consider an interval τ≪ τ during which A and B
exchange exactly N bits. In any such interval, the thermodynamic
entropy S(B)|τ measured byA is clearlyN bits; the entropy S(A)|τ
measured by B is similarly N bits. Coarse-graining time to an
interval Δt � nτ≪ τ to allow n N-bit measurements, both
measured entropies remain N bits. Hence we have:

Theorem 1. Given any finite-dimensional quantum system
S � AB that maintains a separable state |AB〉 � |A〉|B〉 for t ≤ τ,
the information S(B) obtainable by A during any finite interval
Δt≪ τ is independent of HB.

Proof. The information S(B) obtainable by A during any finite
interval Δt≪ τ is just the information transferred byHAB, which is
specified entirely independently of HB. Indeed HB and hence HS

can be varied arbitrarily, provided that B has sufficient degrees of
freedom to maintain the separability of S, without affecting HAB.

Note that if the assumption of separability is dropped and two
subsystems cannot be distinguished, Eq. 2.6 fails, the von
Neumann entropy of |AB〉 remains zero, and no information
is transferred by HAB.

2.3 The HP Is a Special Case of the
Generalized Holographic Principle
Theorem 1 places a principled restriction on information transfer
within any separable quantum system; as noted above, the notion
of information transfer within a non-separable (i.e. entangled)
quantum system is meaningless. The HP is a principled
restriction on information transfer within a semiclassical
system that is separable by definition. Hence the two should
be related. This relation can be made explicit by stating:

Generalized Holographic Principle (GHP): Given any
finite-dimensional quantum system S � ABmeeting the
conditions of Theorem 1, the thermodynamic entropies
ofA and B over a coarse-grained time, over whichA and
B only interact through Eq. 2.4, are S(B) � S(A) � N
bits, where N is the number of operators in the
representation (2.4) of HAB.

We note that this GHP is formulated entirely independently of
geometric assumptions; in particular, it is prior to any assumption
of general covariance.

1Here the efficiency relates to the thermodynamic transformations triggering the
exchange of information bits among the two subsystems A and B. 2Notice that irreversibility is connected to the efficiency bound 1/βk < 1.
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To make the physical meaning of the GHP clear, let us
consider a specific example. Suppose A and B interact by
alternately preparing and measuring the states of N shared,
non-interacting qubits as shown in Figure 1. We can consider
that, in a time interval τ, A prepares the N qubits in her choice of
basis, i.e. using her MA

i and then B makes measurements in his
choice of basis, i.e. using hisMB

j . In the next interval τ’, B prepares
and A measures, and so forth. The prepared and measured bit
values will be preserved, i.e. A and B will employ the same
“language,” only if they share a basis, in this case a z axis,
which functions as a shared quantum reference frame (QRF)
(Bartlett et al., 2007; Fields and Marcianò, 2019). Clearly,
however, S(B) � S(A) � N bits in every interval of length at
least 2τ, independently of whether A and B share a QRF.

The qubit-mediated interaction shown in Figure 1 still
makes no geometric assumptions. If we now imagine,
however, that the array of qubits is embedded at maximal
density in an ancillary real 2-dimensional surface Σ, and
further require that the bit values generated by the actions of
theMA

i (respectively,MB
j ) must be transferred to a distant point

within A (respectively, B) by photons (or any other quantum
carrier consistent with the local symmetry/invariance that is
present), Eqs. (2.1) and (2.2), i.e. the usual covariant HP, results
by the reasoning of Bekenstein (2004), Bousso (2002). The
surface Σ can, in this case, naturally be interpreted as a
“boundary” between A and B at which they interact. The
self-interactions HA and HB are then naturally interpreted as
characterizing the “bulk” of A and B, respectively.

We note that the GHP provides, when HAB is assumed to act
across an A-B boundary, an immediate and intuitive explanation
of the decoherence of B relative to A and vice-versa (Fields and
Marcianò, 2019; Fields, 2019). Hence the GHP provides a natural

account of the “emergence of classicality” within separable
quantum systems: if |AB〉 is separable as |A〉|B〉, “classicality”
characterizes the bit values “encoded on” the A-B boundary, i.e.
the boundary at which HAB acts. There are, in other words, no
classical systems, just classical information.

Both Theorem 1 and the GHP above are formulated for fixed
N. Generalizing to the case of N varying slowly, i.e. remaining
piecewise constant in time for intervals τ≪Δt≪ τ, is
straightforward. Therefore, only the constant N case is needed
in what follows.

3 POINCARÉ SYMMETRIES AND GAUGE
INVARIANCE

3.1 The Generalized Holographic Principle
Requires Gauge Invariance for Finite,
Separable Systems
Theorem 1 and hence the GHP restricts access to information,
and so states an invariance: the information S(B) is invariant
under changes in HB (and vice-versa), provided HAB remains
fixed and separability is maintained. Gauge invariance for the
“bulk” Hamiltonians HA and HB clearly follows.

Theorem 2. In any S � AB compliant with the GHP, the bulk
interactions HA and HB are gauge invariant.

Proof. The situation is completely symmetrical, so considering
either HA or HB alone is sufficient. Gauge symmetry for HA can
only fail if a local coordinate change, i.e. a local change in basis
vectors for HA, is observable, i.e. has an effect on HAB. Any such
effect is ruled out by Theorem 1, which is satisfied by all systems
compliant with the GHP.

FIGURE 1 | Systems A and B exchange bits via an ancillary array of non-interacting qubits. Bit values are preserved if a quantum reference frame (here, a z axis) is
shared a priori. Adapted from Fields and Marcianò (2020); CC-BY license.
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Note that gauge invariance here depends explictly on
separability: if |AB〉≠ |A〉|B〉, i.e. S is in an entangled state, the
notion of a “bulk” Hamiltonian HA (or HB) is meaningless.

Theorem 2, like Theorem 1 and the GHP, involves no
assumptions about geometry. We introduce these below, with
QED as an initial example.

3.2 QED and the Consequences of the
Generalized Holographic Principle
As a specific example, consider a finite system AB, with A
comprising photons described by the usual electromagnetic
vector field Aμ(x) and B comprising fermionic particles, e.g.
electrons described by the Dirac field ψ(x), with x a real
space-time coordinate. Clearly A and B only interact via a
Hamiltonian HAB. The numbers of photons and electrons can
be arbitrarily large, so the usual approximation of infinite degrees
of freedom can be adopted for simplicity with no physical (i.e.
observable) consequences.

We can make the presentation more precise at the
mathematical level to illustrate the independence of observable
results from coordinate (i.e. basis) transformations, even in the
presence of the ancillary space-time geometry with points labelled
by x. The local gauge freedom for the choice of the vector field Aμ,
which generalizes for quantum fields, i.e. systems with infinite
degrees of freedom embedded in an ancillary space x, the
invariance with respect to the choice of basis we discussed
above, can be defined as in:

Aμ(x)→A′
μ(x) � Aμ(x) − zμλ(x), (3.1)

where λ(x) is a scalar function that is continuous with its first
derivatives. Stepping out of the redundancy contained in (3.1),
and denoting the components of the vector fields as Aμ � {ϕ,A},
the electric and the magnetic fields, invariant under (3.1), can be
defined respectively as E � _A − ∇ϕ and B � ∇∧A.

The quantization of the theory can be achieved following the
standard path integral procedure. The partition function for the
system A, namely the U(1) gauge sector, casts:

ZA[A] � ∫DAμ e
{S(A) (3.2)

in which DAμ denotes the path integral measure over the
copies of the gauge field, while S(A) denotes the classical
action. The expectation value in the path integral of the theory
of any functional observableO[A] is invariant under the gauge
transformation (3.1). It is straightforward to show this
fundamental property by comparing the expectation value
of O[A] for different choices of the gauge fixing. On the other
hand, different choices of the gauge fixing correspond to
different choices of (local) observers, namely bases. But
within these circumstances, the GHP implies that the path
integral of any O[A] must be gauge invariant: choosing an
observer is choosing a measurement basis, i.e. choosing a set
of operators Mk

i in (2.4), a choice that is independent of A by
Theorem 1. In simpler words, the GHP implies gauge
invariance.

The redundancy due to the gauge transformations, i.e. choices
of Mk

i , can be factored out by fixing the gauge functional G, and
then imposing gauge invariance. This is achieved by inserting in
the path integral (3.2) the resolution of the identity:

1 � ∫Dλδ(G(Aλ)) ∣∣∣∣∣∣∣∣det δG(A
λ)

δλ(x)
∣∣∣∣∣∣∣∣ (3.3)

where as customary Aλ
μ(x) � Aμ(x) + zμλ(x). The simplest

choice of gauge functional is provided by the Lorentz
functional G(A) � zμAμ, which implements the gauge
invariance of the path integral. Notice that under gauge
transformations, the Lorentz functional transforms as:

G(A) � zμA
μ →G(Aλ) � zμA

μ +□λ . (3.4)

Having all set up, we can easily show the invariance of the path-
integral:

ZA[A] � N ∫DAμ e
{SA(A) ∫Dλδ(G(Aλ))∣∣∣∣∣∣∣∣det δG(A

λ)
δλ(x)

∣∣∣∣∣∣∣∣
� N

∣∣∣∣∣∣det□∣∣∣∣∣∣ ∫DAμ e
{SA(A)∫

Dλδ(G(Aλ))
� N ′ ∫DλDAμ e

{SA(A) δ(G(A))

� N ″ ∫DAμ e
{SA(A) δ(G(A)),

(3.5)

where the normalization functions N , N ′, and N ″ are not
relevant, and have been safely disregarded.

The perspective provided by the GHP allows us to place a
novel physical interpretation on the action of G(A) in removing
gauge redundancy, one that points toward a deeper
understanding of the role of the spatial coordinate x in QFT.
As noted above, from a GHP perspective, gauge redundancy is the
redundancy in the choice of measurement operatorsMk

i . This can
equally be interpreted as redundancy in the choice of observers k.
But k, in this case, is just a quantum system X that can be coupled
to the quantum field A while maintaining a separable joint state
|AX〉. The action of G(A) renders these different observers
redundant, effectively removing the dependence of
(observations of) A on X. Hence we can now see what X is
doing in QFT: it is enforcing separability. This is indeed an insight
of Einstein (1948):

Further, it appears to be essential for this arrangement
of the things introduced in physics that, at a specific
time, these things claim an existence independent of one
another, insofar as these things “lie in different parts of
space.”

“Claiming an existence independent of one another” obviously
requires separability.

It is well known that the gauge condition can be cast in a more
general form, employing an arbitrary function f. In this latter case,
the gauge functional:

Gf (A) � zμA
μ − f (3.6)
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actually introduces a family of gauge-fixing terms. The
independence of the physical observables on the gauge fixing
is recovered through a process of average that is realized by
integrating over f the gauge fixing terms weighted with the factor

exp( − {
2ξ ∫ d4xf 2(x)), where ξ is a positive parameter. The path

integral in (3.5) then recasts as:

ZA[A] � N ∫Df DAμ e
{SA(A)− {

2ξ∫
d4x f 2(x)

� N ∫DAμ e
{SA(A)− {

2ξ∫ 
d4x(zμAμ(x))2

(3.7)

This invariance of the partition function under different choices
of the gauge fixing condition, i.e. different choices of f, percolates
into the gauge invariance of the expectation value of any
observable O. This manifests immediately, as one can
recognize from the easy passages

〈O[A]〉f � N ∫Df DAμ e
{SA(A)− {

2ξ ∫ d4x f 2(x) O[A]

� N ∫DAμ e
{SA(A)− {

2ξ ∫ d4x(zμA μ(x))2 O[A]

� N ∫DgDAμ e
{SA(A)− {

2ξ ∫ d4x g 2(x) O[A]
� 〈O[A]〉g

(3.8)

where f and g are two different gauge-fixings.
Wemay take into account now the other interaction partner in

QED, the system B composed by Dirac matter fields, for
simplicity electrons. The path integral formulation of the
system, composed by only one fermionic species ψ, then casts:

ZB[ψ,ψ] � ∫DψDψ e{SD(ψ,ψ) (3.9)

where

SD(ψ,ψ) � ∫ d4x ψ({cμzμ −m)ψ (3.10)

The observable quantities O[ψ,ψ] are bilinear operators in the
fermionic fields ψ and ψ, which can be generally cast as
O[ψ,ψ] � ψO(ΓI)ψ, where the matrix O, with suppressed
spinorial indices, depends on the elements of the Clifford
algebra ΓI , with I � 1 . . . 16.

As previously done for the bosonic system A, also for the
system B we can introduce a local gauge transformation having
the meaning of a transformation among observers. Of course, this
transformation cannot change the values of O, which lead us to
state the necessity of the symmetry

ψ(x)→ψ′(x) � e{qλ(x)ψ(x), ψ(x)→ψ′(x) � e−{qλ(x)ψ(x),
(3.11)

where q stands for the charge parameter. This is a U(1)
transformation, the generator of which commutes with the
matrix O, ensuring the gauge invariance of any observable O
under (3.11). By the Noether theorem, selecting λ(x) � α ∈ R to
individuate an infinitesimal global transformation, the conserved
charge is easily recovered

Q � ∫
Σ

d3x ψ†ψ,

where Σ is a spatial hypersurface. This allows to cast U(1)
transformations acting on the Hilbert space of the theory
as U � e{αQ.

3.3 Extension to Gravity and Local Lorentz
Invariance
So far we have first considered generic quantum systems with
finite number of degrees of freedom, and stated the GHP within
these simplified but completely general contexts, which do not
necessarily require geometric concepts. In this sense, these
notions shall be considered as pre-geometric. We have then
extended our focus to continuous systems with an infinite
number of degrees of freedom, focusing specifically on the
paradigmatic example of QED, which is embedded on a flat
Minkowski space-time. This embedding requires the addition of
ancillary coordinates x into the description of the system, which
are necessary to specify its evolution and fully capture the
dynamics as it is observed by spatially-separated observers.

Let us now include gravity in this construction, extending the
arguments previously exposed. Our joint system S � AB shall be
now composed by the gravitational degrees of freedom, described
by the gravitational field gμ](x), the configurational space of
which constitutes the system A, and by the matter degrees of
freedom, the fields3 ϕℵ(x), the configurational space of which
individuates the system B. The GHP then imposes the gauge
invariance of the gravitational field, once the ancillary spatial
coordinates have been introduced, in exactly the same way as
discussed above. The role of the spatial coordinates is, as in the
case of QED, labeling the manifold in which separable physical
(in this case, matter) systems, e.g. observers, that interact with the
field A are embedded. Symmetries fully depend in this picture on
the signature of the embedding space, which we assume to be
Lorentzian, so as to distinguish among time [required already by
(2.4)] and space (ancillary) coordinates. Thus the emergent
symmetry will impose the invariance under local SO (3, 1)
transformations: indeed, the underlying space structure we are
considering has Lorentzian signature. This is also consistent with
the fact that the tangent space to each point of the manifold is flat
and Minkowski, and thus the whole construction specifies how
the invariance under supertranslations in time and space emerges
in this framework.

Besides local SO (3, 1) Lorentz symmetries, the theory of
gravity also encodes symmetries under diffeomorphism. It is
customary to deal with these latter in the Hamiltonian
formulation of the theory. This requires considering
Lorentzian manifolds M4 that are diffeomorphic to R × Σ.
This property enables a slicing of M4 into space-like
hypersurfaces Σ at instants of time t ∈ R. This slicing is
arbitrary, since there exist several possible choices to pick a
diffeomorphism ϕ : M4 →R × Σ. Thus different time

3Here we denote with ϕℵ(x) any possible scalar, vectorial or spinorial matter fields.
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coordinates τ can be defined on M4, as the pullback of t that is
realized by ϕ, or in the mathematical jargon τ � ϕ p t. This
corresponds to different clocks for different observers (in the
language of §2.2, different “tick” intervals τ), which nevertheless
must not affect the definition of the physical observables, which
are gauge invariant and diffeomorphic invariant. The theory is
then recast on Cauchy surfaces, on which the gravitational field is
captured by the restriction of the gravitational field to the three-
metric on the slice Σ, namely 3g, and to its “time” derivative,
namely the extrinsic curvature K. These variables form the
Cauchy data of the problem, and open the pathway to access
the meaning of the ten components of the Einstein equations.
Indeed, four of the Einstein equations turn out to be constraint
equations that the Cauchy data must satisfy, while the other six
are evolutionary equations that dictate the dynamics in time of
the three-metric.

A time-like unit vector n must be then defined that is
orthogonal to any tangent vector v on Σ. Considering the
metric two-form g on M4, these two requirements amount
to write in formulas that g(n, n) � −1 and g(n, v) � 0. The
direction of the unit vector n is then defined to point towards
the future. A derivative of any generic vector v on Σ can be
then defined along any generic direction individuated by a
vector u on Σ. This is simply attained by projecting on Σ
and removing the component along the normal direction, i.e.
∇uv � −g(∇uv, n)n + [∇uv + g(∇uv, n)]. The first term identifies
the extrinsic curvature, K(u, v)n � −g(∇uv, n)n, which measures
the bending of the surface Σ in the ambient manifold M4, by
quantifying the failure of a generic vector ofM4 to be still tangent
to Σ after we parallel translate it using the Levi–Civita connection
on the ambient space M4. While considering the component
tangential on Σ, we can write 3∇uv � ∇uv + g(∇uv, n), since it
introduces the Levi–Civita connection on Σ that is associated to
the three metric 3g. One can show that this is a connection, and
satisfies the Leibnitz rule.

Given this framework, denoted as ADM (Arnowitt et al., 1959)
in the literature, we can now introduce a time coordinate τ � ϕ*t
onM4, which individuates a generic foliation {τ � s}. The vector
field zτ on M4 then admits the generic decomposition along a
tangential direction to Σ and its normal, respectively individuated
by the lapse function N and the shift vector N, i.e. zτNn +N. We
can finally move to consider the Einstein theory of gravity and its
Hamiltonian structure, which is a purely constrained system. We
can first move from the Einstein-Hilbert action, which we review
in Section 4, and cast it in terms of the ADM variables, using the
three-metric 3g, the Levi–Civita connection on Σ, namely 3Γ, the
associated Riemann tensor 3Ra

bcd and the Ricci scalar 3R on Σ.
Then the Lagrangian of the Einstein–Hilbert action reads,
modulo a boundary term:

L �
��
3g
√

N[3R + tr(K2) − (trK)2] (3.12)

which allows to define the symplectic structure of the system,
namely:

qij � 3gij pij � δL
δ _qij

� �
q

√ [Kij − (trK)qij] (3.13)

with vanishing momenta conjugated toN and N, respectively P �
0 and P � 0. In Eq. 3.13 the extrinsic curvature is expressed in
terms of the covariant derivatives on Σ, namely 3∇, and the ADM
variables, as:

Kij � 1
2N
( _qij − 3∇iNj − 3∇jNi) . (3.14)

The Hamiltonian density of the gravitational system, which can
be calculated by the usual Legendre transform
H(qij, pij) � pij _qij − L, finally provides the Hamiltonian of the
system H � ∫

Σ
Hd3x. This latter can be recognized to be a totally

constrained system:

H � �
q

√ (NC + NiCi) , (3.15)

with

C � − 3R + q−1(tr(p2) − (tr p)2), Ci � −2 3∇j(q− 1/2pij). (3.16)

For simplicity, we assumed the hyperspace Σ to be compact, so as
to neglect the contribution otherwise provided by total
divergences.

The first term of the Hamiltonian represents the Hamiltonian
constraint, which generalizes time reparametrization, while the
second term is the space-diffeomorphism constraint, respectively:

C(N) � ∫
Σ

NC �
q

√
d3x, C(N) � ∫

Σ

NiCi
�
q

√
d3x. (3.17)

Involving the continuous version of the Poisson brackets for the
phase-space variables of the system, namely:

{f , g} � ∫
Σ

⎧⎨⎩ zf
zpij(x)

zg
zqij(x) −

zf
zqij(x)

zg
zpij(x)

⎫⎬⎭ �
q

√
d3x,

we may recover the algebra of constraints for the gravitational
system, known as Dirac algebra, namely:

{C(N), C(N′)} � C([N,N′]) , (3.18)

{C(N), C(N)} � C(NN ′) , (3.19)

{C(N), C(N ′)} � C[(NziN ′ − N ′ziN)zi] . (3.20)

The scalar and the vector constraints entering the total
Hamiltonian can be cast in terms of the Einstein tensor
components, contracted with the normal nμ to the
hypersurface Σ, i.e.:

C � −2Gμ]n
μn], Ci � −2Gμin

μ,

while the spatial components Gij source the Hamilton equation of
the phase-space variable, which are also captured by the
Hamilton equation _qij � {H, qij} and _pij � {H, pij}.

4 EMERGENT POINCARÉ SYMMETRIES
FROM AN EMERGENT GAUGE THEORY

There is a deep similarity among gauge symmetries and
diffeomorphisms, which becomes manifest as soon as both the
gauge theories and gravity are formulated as principle bundle
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theories. This turns space-time symmetry into an emergent
concept, similarly to what has been discussed in the previous
section, while considering the consequences of the GHP. A
celebrated framework in which gravity, and thus the Poincaré
symmetries, are shown to be emergent from a gauge structure
was provided by MacDowell and Mansouri. Nonetheless, the
gauge symmetry is explicitly broken in this model. We briefly
review here this theoretical framework, as a propedeutic
element to the next section, where we review a model, due
by Wilczek, in which gravity is emergent from a fully gauge-
invariant theory.

4.1 Einstein–Hilbert Action
Before introducing MacDowell–Mansouri gravity, it is useful to
remind the Palatini formulation of gravity in the Einstein–Hilbert
action. This casts in terms of the metric gμ], its inverse gμ], and its
first and second derivatives, i.e.:

SEH � 1
16πG

∫ d4x
���−g√ (R − 2Λ) (4.1)

with R being the Ricci scalar. The Ricci scalar, encoding non-
linearly first order derivatives and linearly second order ones, is
defined as the contraction of the Riemann tensor, namely:

Rαβμ]g
α]gβμ � R , (4.2)

with the Riemann tensor expressed as:

Rα
βμ] � zμΓρ]σ − z]Γρμσ + Γαμλ Γλ]β − Γα]λ Γλμβ, (4.3)

with Γρμ] Christoffel symbols. These latter are torsionless in the
Einstein–Hilbert theory, namely Tρ

μ] � Γρμ] − Γρ]μ � 0. Varying
with respect to the Christoffel symbol, one obtains the
expression in terms of the metric and its derivatives:

Γρμ] �
1
2
gρσ(zμg]σ + z]gμσ − zσgμ]) . (4.4)

A first-order formulation of the Einstein–Hilbert action of gravity
is admitted in terms of the SO(3, 1)-connection ωab

μ and the tetrad
one-form (frame-field) eaμ, which is valued in the SO(3, 1) algebra
and carries an internal vector-index in the fundamental
representation of SO(3, 1). In terms of these fields, the action
now casts:

SEH � 1
64πG

∫ d4x ϵabcd (Rab
μ] e

c
ρ e

d
σ −

Λ
3
eaμ e

b
] e

c
ρ e

d
σ) ϵμ]ρσ (4.5)

with:

R ab
μ] � zμω

ab
] − z]ω

ab
μ + ω a

μ c ω
cb
] − ω a

] c ω
cb
μ ,

Ta
μ] � Dω

μ e
a
] −Dω

] e
a
μ ,

(4.6)

which can be recast as Rab � dωab + ωa
c ∧ω

cb and Ta � Dωea �
dea + ωa

c ∧ e
c.

A new topological invariant can be added to the action of
gravity, without affecting the classical equation of motions. The
Holst term can be added to the Einstein–Hilbert action, then
leading to the new action that involves a real (Barbero–Immirzi)
parameter γ, i.e.:

SEH � 1
64πG

∫ d4x(ϵcdab + 1
c
δcdab)Rab

μ] eρc eσ d ϵμ]ρσ

− Λ
3
ϵabcd eaμ eb] ecρ edσϵμ]ρσ (4.7)

the phase-space of which retains the symplectic form:

{cωa
i (x), E i

a(y)} � cδ(x − y)δjiδab (4.8)

where now a, b � 1, 2, 3, the connection reads
cωa

i � ω0a
i + c

2ϵ0abcωibc, the (Plebanski) two-form reads
Ei
a � 4

Gϵabcϵijk ebj eck, and as usual { , } denote the Poisson brackets.

4.2 BF Formulation of Gravity
The Einstein–Hilbert–Holst action admits a formulation within
the BF framework, as a deviation from the topological theory. The
BF theory is defined as a G-principle bundle on a D-dimensional
base manifold MD. The action is the Killing form contraction of
the g Lie algebra-valued (D-2)-form B and the field strength of
the G-connection A. The Lagrangian then reads:

LBF � tr(B∧ F[A]) , (4.9)

which specialized to the case of SO(3, 1) casts:
LSO(3,1)

BF � Bab ∧ Fab[A] , (4.10)

where here a, b � 1, . . . 4 are indices in the fundamental
representation of SO(3, 1). This automatically provides the
Einstein-Hilbert action, when the two-form is constrained to
appear as a bi-vector, i.e. Bab � ϵabcd ec ∧ ed . The Einstein-Hilbert
action for gravity, complemented with the Holst term, is then
instantiated by the imposition of the so-called simplicity
constraints on the B Lie algebra-valued two form, namely:

Bab � ± (ϵabcd + 1
c

δabcd) ec ∧ ed .

4.3 MacDowell–Mansouri Action
Switching now to the MacDowell–Mansouri action, we introduce an
extended (anti-de Sitter) group SO(3, 2). In the
MacDowell–Mansouri action, this is explicitly broken down to its
stabilizer, the Lorenz group SO(3, 1). The anti-de Sitter connections,
composed by ten internal components, are labelled by indices of the
fundamental representation of the extended group A, B � 1, 2, . . . 5
as AAB � AAB

μ dxμ. This decomposes into AAB
μ � (Aab

μ , A
a5
μ ), with

Aab
μ � ωab

μ and Aa5
μ � ℓ

−1 ea), given the identification:

Λ
3
� − 1

ℓ
2 .

Involving the SO(3, 2) algebra-valued connections, the
decomposition is recognized to encode both the generators of
the Lorentz transformations Mab and the space-time translation
Pa, i.e.:

Aμ � 1
2
ωab
μ Mab + 1

ℓ
eaμP

a � 1
2
AAB

μ MAB ,

having identified Ma5 � Pa.
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According to this decomposition, the connection casts as:

AAB � ⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
ωab 1

ℓ
ea

−1
ℓ
eb 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ , (4.11)

and correspondently the curvature 2-form, with indices
contracted with the structure constants of the SO(3, 2) group:

FAB � dAAB + AAC ∧AB
C ,

decomposes into the SO(3, 1) valued components:

FAB � ⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
Rab + 1

ℓ
2e

a ∧ eb
1
ℓ
Ta

−1
ℓ
Tb 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ . (4.12)

The MacDowell–Mansouri action deploys this extended
formalism, but with the crucial underlying assumption of
(explicit) symmetry breaking:

FAB → F
AB � Fab. (4.13)

The Einstein–Hilbert action of gravity can then be encoded in a
general framework, moving from the action:

SMM[A] � ℓ
2

64πG
∫ tr(F ∧ +F) (4.14)

where + denotes the gravitational Hodge dual. Using the
curvature decomposition in Eq. 4.12, the action recasts as:

SMM[A] � ℓ
2

64πG
∫(Rab + 1

ℓ
2e

a ∧ eb)∧(Rcd + 1
ℓ
2e

c ∧ ed)ϵabcd
(4.15)

The action then entails the Einstein–Hilbert action, with the
cosmological term, and some 4D Euler characteristic:

32πGSMM[A] � SEH + 1
2ℓ2

∫ ϵabcd eaμ eb] ecρ edσ ϵμ]ρσ

+ ℓ
2

2
∫ ϵabcd R ab

μ] R cd
ρσ ϵμ]ρσ

The equations of motion read:

(Rab ∧ ec + 1
2ℓ2

ea ∧ eb ∧ ec)ϵabcd � 0, Ta � 0. (4.16)

The MacDowell–Mansouri theory admits a straightforward BF
formulation, involving so(2, 3)-valued B two-forms. The action
then reads:

S � ∫
M

tr(B∧ F − GΛ
6

B ∧ +B), (4.17)

the equations of motion of which imply that: i) varying in δAAB,
the local SO(2, 3) Gauss constraint holds; ii) varying in δBa5,
torsion vanishes, i.e. Fa5 � Ta

ℓ
−1 � 0; iii) varying in δBab, the

relations that provide the MacDowell–Mansouri in Eq. 4.14 is

recovered, namely Fab � GΛ/3ϵabcdBcd . This relation allows us to
write the MacDowell–Mansouri action as the deformation of a
topological gauge theory. The symmetry breaking, which is here
explicit, occurs as regulated by a coefficient that is
dimensionless, in natural units, and for current estimates of
the cosmological constant value reads GΛ ∼ 10− 68. This makes
General Relativity adapt to be described, with excellent
approximation, as the perturbative limit of a topological field
theory.

Without entering into further details, we notice that the
MacDowell–Mansouri theory can be cast in a similar fashion
in terms of an internal de Sitter group SO(4, 1), again explicitly
broken down to SO(3, 1). Within this latter case, the
SO(4, 1)-connection is decomposed into the generator of
translations and the generators of rotations, namely the tetrads
and the spin-connection AAB � (ωab, ℓ−1 ea).

5 WILCZEK GRAVITY

Frank Wilczek proposed in Wilczek (1998) a model that
is reminiscent of the theory formulated by MacDowell and
Mansouri, with internal SO(4, 1), or equivalently SO(3, 2),
gauge symmetry. The configuration variables are the gauge
symmetry connection AAB

α , and the internal scalar field ϕA, in
the fundamental representation of the group. The crucial
difference between the MacDowell–Mansouri model and
the Wilczek model lies in the spontaneous symmetry
breaking of the internal gauge group that is present in the
latter. This indeed directly enables us to recover the metric
structure of General Relativity from the principal bundle of
the model proposed by Wilczek.

The Lagrangian considered in Wilczek (1998) is:

LW � κ3 ϵαβcδϵABCDE FAB
αβ ∇cϕ

C ∇δϕ
D ϕE , (5.1)

in which ∇cϕ
C � zcϕ

C + AC
cFϕ

F denotes the SO(4, 1) gauge
covariant derivative. The field strength is defined as:

FAB
αβ � zαA

AB
β − zβA

AB
α + f ABCDEFA

CD
α AEF

β , (5.2)

in which f ABCDEF is the structure constant of SO(4,1), namely:

f AB LM PQ � ηBLηAPηMQ − ηALηBPηMQ

−ηBMηAPηLQ + ηAMηBPηLQ .
(5.3)

Two novel terms with respect to the MacDowell–Mansouri
action, were introduced in the Wilczek model:

1. The interaction potential of ϕA, namely:

L1 � κ1(ηABϕAϕB − v2)2.
By varying with respect to ϕA, this term is recognized to be
stationarized either for ϕA � 0 or when

∣∣∣∣ϕ∣∣∣∣ � v. In the latter case,
the choice ϕA � δA5 v implements the spontaneous symmetry
breaking.
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2. A term that constrains the determinant of the metric in the
spontaneous symmetry broken phase:

L2 � κ2(J − ω)2 ,
in which:

J � ϵαβcδϵABCDE ϕE∇αϕ
A∇βϕ

B∇cϕ
C∇δϕ

D. (5.4)

This term is stationarized when J � ω, implying the
unimodularity of gravity (Bufalo et al., 2015). The
spontaneous symmetry breaking induces in (5.4) a reduced
expression for J, namely:

J � v5ϵαβcδϵabcdAa5
α A

b5
β A

c5
c A

d5
δ , (5.5)

J denoting the determinant of the metric.
The total Lagrangian proposed by Wilczek then reads:

LW � κ2(J − ω)2 + κ1(ηABΦAΦB − v2)2
+ κ3 ϵαβcδϵABCDE FAB

αβ ∇cϕ
C ∇δϕ

D ϕE.

In order to unveil the emergence of the gravity, we may instantiate
the spontaneous symmetry breaking Eq. 4.13 directly on the
Lagrangian in Eq. 5.1, using the decompositions recovered in
Eqs. (4.11) and (4.12), and then finding:

LW � κ3 v
3 ϵαβcδϵabcd[(zαωab

β − zβω
ab
β + f abcdefω

cd
α ω

ef
β ) − Λ eaαe

b
β]eccedδ

� κ3 v
3 ϵαβcδϵabcd[Fab

αβ − Λ eaαe
b
β]eccedδ .

(5.6)

This equation corresponds to the Einstein–Hilbert action,
introduced in Eq. 4.5, plus the cosmological constant term.
The unimodular term is not essential for our arguments, and
we can neglect it here.

We can recast the main term of the Lagrangian density
proposed by Wilczek, rearranging as:

L � κ ϵαβcδFAB
αβ B

AB
cδ , (5.7)

where

BAB
cδ � ∇cΦC∇δΦD ΦE ϵABCDE

works as a simplicity constraint, which here drags the Wilczek
model away from its topological phase.

In the Higgs condensate phase, the B ∧ F term is (nothing
but) reduced to the Einstein-Hilbert term, and an emergent

diffeomorphism invariance is recovered starting from a
topological invariance, which is finally broken. In this way,
moving from a background independent theory, because of the
flatness of the connection, after the Higgs condensate phase an
emergent metric tensor is obtained.

6 CONCLUSIONS AND OUTLOOKS

We have shown here that a generalized version of the holographic
principle can be derived from fundamental considerations of
quantum information theory, in particular, the imposition of
separability on a joint state. This GHP entails gauge invariance.
We emphasized that as soon as this is instantiated in an ambient
Lorentzian space-time, gauge invariance under the Poincaré group
automatically follows. Indeed, following this pathway we can
recover the action of gravity. We summarize several gauge-
invariant models for gravity, including gravity cast à la Wilczek.
This is a formulation of the Einstein theory of gravity similar to the
one proposed by MacDowell and Mansouri, which involves the
representation theory of the Lie groups SO (3, 2) and SO (4, 1).

As the GHP provides a natural and completely general
distinction between “bulk” and “boundary” degrees of
freedom, one that is independent of geometry, it would be
worth to investigate whether the AdS/CFT and dS/CFT
correspondences could fit within this framework. This would
require complementing the GHP with the concept of the
renormalization group flow. Indeed, group renormalization
flow techniques might be actually considered to connect the
fully symmetric SO (3, 2) and SO (4, 1) theory with the
SO(3,1) broken symmetric phase.
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