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Magnetohydrodynamic (MHD) turbulent flows are found in the solar wind, themagnetosheath
and themagnetotail plasma sheet. In this paper, we review both observational and theoretical
evidence for turbulent flow in the magnetotail. MHD simulations of the global magnetosphere
for southward interplanetary magnetic field (IMF) exhibit nested vortices in the earthward
outflow from magnetic reconnection that are consistent with turbulence. Similar simulations
for northward IMF also exhibit enhanced vorticity consistent with turbulence. These result
from Kelvin-Helmholtz (KH) instabilities. However, the turbulent flows association with
reconnection fill much of the magnetotail while the turbulent flows associated with the KH
instability are limited to a smaller region near the magnetopause. Analyzing turbulent flows in
the magnetotail is difficult because of the limited extent of the tail and because the flows there
are usually sub-magnetosonic. Observational analysis of turbulent flows in the magnetotail
usually assume that the Taylor frozen-in-flow hypothesis is valid and compare power spectral
density vs. frequencywith spectral indices derived for fluid turbulence byKolmogorov in 1941.
Global simulations carried out for actual magnetospheric substorms in the tail enable the
results of the simulations to be compared directly with observed power spectra. The
agreement between the two techniques provides confidence that the plasma sheet
plasma is actually turbulent. The MHD results also allow us to calculate the power vs.
wave number; results that also support the idea that the tail is turbulent.
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INTRODUCTION

One of the primary goals of current investigations in space physics is to understand how
electromagnetic energy stored in the magnetotail is transferred to plasma energy. Turbulence is
a multi-scale phenomenon that mediates the transport of energy, mass, and momentum. Unsteady,
but nonrandom fluctuations in the magnetic and electric fields and flows characterize turbulence
(e.g., Karimabadi et al., 2013). Turbulent spectra have been observed in many space plasmas. For
example, turbulent fluctuation spectra have been found in the solar wind (Coleman, 1968; Matthaeus
and Goldstein 1982; Roberts et al., 1987a; Roberts et al., 1987b; Tu et al., 1989; Marsch and Tu, 1990;
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Sahraoui et al., 2010), in the magnetosheath (Zimbardo et al.,
2010; Li et al., 2020) and in the magnetosphere (Borovsky et al.,
1997; Lui 2001; Weygand 2005; Weygand et al., 2006; Weygandf
et al., 2007). In the magnetosphere, turbulence exists over a wide
range of scales from large scale magnetohydrodynamic (MHD)
flows to kinetic dissipation scales (see Zimbardo et al., (2010) for a
review of turbulence studies in the geospace environment
including both the magnetosheath and the magnetosphere).
Emphasis in this paper is on our understanding of the MHD
turbulence, its consequences for transport and dynamics, and,
specifically, its relationship to magnetic reconnection, with a
focus on the magnetotail. In particular, several studies have
presented evidence that turbulence in the plasma sheet is an
important mechanism for energizing plasma in the magnetotail
(Borovsky et al., 1997; Angelopoulos et al., 1999; Chang, 1999;
Klimas, 2000; Borovsky and Funsten 2003; Weygand et al., 2007).

In general, turbulence in plasmas can be thought of as
resulting from oscillations in velocity or magnetic field driven
by nonlinear processes at large scales (Kadomtsev, 1965) and as
vorticity in fluid motion where the inertial forces in the vortices
are larger than the forces that are damping the eddies (Leung and
Gibson, 2004). The turbulence in any medium transfers energy
from the largest scales to small dissipation scales, but, in some
circumstances, can involve an inverse transfer from small scales
to large scales (Frisch and Kolmogorov, 2001). Observations of
turbulent fluctuations in the solar wind have been discussed for
decades. For example, one of the primary goals of the Parker Solar
Probe mission (Nature 2019) is to find the source of the Alfvénic
turbulence in the solar corona. Compared to the solar wind, there

are relatively few observational studies of turbulence in the
magnetosphere. Such studies as there are include observations
of the fluctuations in the magnetic field, plasma, and electric field
measurements associated with power in both the inertial range
and the dissipation range. A schematic of this process is shown in
Figure 1. The large scales, or energy containing scales, will drive
turbulence to an inertial range that, in fluid turbulence, was
shown by Kolmogorov (1941) to have a power spectral index as a
function of wave number that is –5/3. In this range of scales,
turbulent eddies will break-down until dissipation causes the
spectrum to steepen as viscosity damps the eddies. The beginning
of the dissipative range is the Taylor scale (Kolmogorov 1941)
scale and it is at this (kinetic scale) that heating occurs as the
fluctuations are damped. In space, one generally measures time
series, so that the power spectra are usually shown as a function of
frequency but the validity of such a representation depends on the
nature of the background flow and the properties of the
fluctuations and often is determined by the validity of the
Taylor frozen-in-flow hypothesis (Taylor, 1938), which is
discussed in more detail below.

In this review, we first consider in Observations of Turbulence
in the Magnetotail the observational evidence that turbulence
exists in the tail. The approach used for studies of solar wind
turbulence is not directly applicable to the magnetotail because
contrary to the case in the solar wind, boundary effects are often
important and the fluctuations may not satisfy conditions
required of a random stationary process (Matthaeus and
Goldstein, 1982; Perri and Balogh, 2010) which justifies
construction of power spectra. In the super-Alfvénic solar
wind flow, one can usually assume the validity of the Taylor
frozen-in-flow hypothesis (Taylor, 1938) which justifies the
transformation from frequency spectra to wave number. The
Taylor hypothesis states that frequency ω relates linearly to the
wave vector k (i.e., ω � k v, where v is the plasma velocity) when
the magnetic field evolves on a timescale longer than the time it
takes it to flow past the spacecraft. In the magnetotail, the flow
rarely exceeds the Alfvén speed and thus time and spatial scales
are difficult to separate and determining the power spectrum of
fluctuations as a function of wavenumber is challenging.
Therefore, it is difficult to determine unambiguously the
spectra of observed fluctuations. The flow speeds in the
magnetosheath are usually higher and use of the Taylor
hypothesis is frequently valid.

Consequently, we include a discussion of a variety of analysis
methods in our discussion of fluctuations in the tail. In addition,
analysis techniques used for studies of magnetic reconnection in
the magnetotail can be applied to analyze the nature of the
observed flows.

A number of generation mechanisms including flow shear
instabilities such as the Kelvin-Helmholtz instability and flows
from reconnection have been proposed (Matthaeus et al., 1984;
Montgomery 1987; Angelopoulos et al., 1993; Borovsky et al.,
1997; Lui 2001; Antonova and Ovchinnikov, 2002; Vörös et al.,
2003). InMagnetohydrodynamic Simulations of Turbulence in the
Magnetotail, we review work on evaluating the mechanisms by
using MHD simulations. Finally, in Some Unsolved Questions
About Turbulence That can be Addressed Using Modeling, we

FIGURE 1 | Schematic of a typical power spectral density plot for
turbulent solar wind. The lowest frequencies are at the energy containing
scales and the dissipation range is at the highest frequencies. The correlation
scale (left most dashed gray line) separates energy containing scales and
the inertial range while the Kolmogorov scale (right most dashed gray line) is
between the inertial range and the dissipation range. The third scale on the
schematic is the Taylor scale (middle dashed gray line), the scale at which
eddies start to damp out, (Adapted from Goldstein et al. (1995)).
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consider several unsolved problems associated with turbulence in
the tail and discuss future simulations to address them.

OBSERVATIONS OF TURBULENCE IN THE
MAGNETOTAIL

A simplistic method suggesting the presence of turbulent
fluctuations in a time series is to examine the spectral index in
the inertial range of the power spectra. Kolmogorov (1941) used
dimensional analysis to argue that the spectral index for fully
developed fluid turbulence should be -5/3 for spectra of power vs.
wavenumber. Perhaps surprisingly, this value is frequently
observed in the fluctuating magnetic fields of the solar wind
and magnetosheath (also see, Podesta et al. (2007)). On the other
hand, Kraichnan (1965) found a value of -3/2 for ideal isotropic
incompressible MHD turbulence. The difference between the
neutral fluid values and magnetized fluid value comes from
the number of degrees of freedom in the fluid. In both
derivations, the rate of energy transfer from the driving scale
of the spectra to the dissipation range of the spectrum was held
constant. Whether or not the energy transfer rate is constant is
important for differentiating Kraichnan and Kolmogorov type
turbulence from intermittent turbulence. In intermittent
turbulence, the energy transfer rate may not be constant and
the turbulence may not yet be fully developed.

Within the plasma sheet, Borovsky et al. (1997) used ISEE-2
data and found for the plasma flow velocities that the slope of the
power spectral density vs. frequency was -0.8 to -2.0 while that for
the magnetic fieldit was between −1.6 and −3.0. Borovsky et al.
(1997) used a “random sweeping model to approximate the
conversion from wavenumber to frequency. (Even though
these values include the theoretical value they do not confirm
the presence of turbulent flows in the plasma sheet). Several
different phenomena can explain these values including waves
and/or driving phenomena, or it could be that the time series is
neither stationary nor fully developed. Borovsky and Funsten
(2003) suggested that this range of spectral indices could result
from boundary effects or a combination of driving mechanisms
each with different spectral indices. Weygand et al. (2005) found
spectral indices in Cluster plasma sheet magnetic field data that
were closer to −2 for the inertial range but did not take into
account the speed of the flows. Vӧrӧs et al. (2004), also using
Cluster magnetic field data, obtained a value of −2.6, but it is not
clear if this value applies to the inertial range, dissipation range, or
somewhere in between. Ergun et al. (2014) used MMS data and
found a clear spectral index of −5/3 within the magnetic field
inertial range, but a spectral index closer −3/2 in the electric field
inertial range data. Chaston et al. (2012) found a similar value
within the inertial range for electric field power spectra using
THEMIS plasma sheet electric field data. Overall, the studies
show that for slow speed flow the Taylor hypothesis is not valid
but may be valid for high speed flows like those associated with
magnetic reconnection. More work on this is needed.

Kozak et al. (2018) used the magnetic field measurements
from four spacecraft of the Cluster mission for the analysis of
turbulent processes in Earth’s magnetotail. They obtained

power-law scaling of the generalized diffusion coefficient
indicating the presence of super-diffusion processes. Prior to
the dipolarization, the spectral index was in the range between
−1.68 and −2.08 while in the dipolarization on larger time scales
the index was between −2.2 and −1.53. However, when they
examined the data in the dipolarization on smaller time scales
they found that the range was −2.89 to −2.35. They also report
that the break in the spectra occurs at approximately the average
proton gyrofrequency.

The wide range of spectral indices from the magnetic field and
electric field data suggests the presence of intermittent turbulence
within the plasma sheet. One method of determining the presence
of intermittent turbulence is to look for non-self-similar scaling of
the fluctuation probability distribution function. A number of
studies have demonstrated that non-self-similar scaling of
probability distribution functions exists within the plasma sheet
(Weygand et al., 2005; Weygand et al., 2006; Stawarz et al., 2015].
To determine if there is non-self-similar scaling, one constructs
probability distribution functions of the fluctuations across a range
of times and calculates the kurtosis (i.e., fourth moment) for each
distribution. If the kurtosis systematically decreases with
increasingly temporal separation in the time series, then most
likely the turbulence is intermittent (Weygand et al., 2006). All
three of these studies found that magnetic field fluctuations
observed with Cluster and THEMIS exhibited non-self-similar
scaling of probability distributions during geomagnetic active
periods within the plasma sheet. Both Stawarz et al. (2015) and
Weygand et al. (2005) used single spacecraft observations to show
non-self-similar scaling, which requires that the Taylor hypothesis
applies, and suggests that the fluctuations are evolving slowly with
respect to the time required for the plasma to flow past the
spacecraft and are consequently frozen in the flow. Weygand
et al. (2006) took this method one step further and avoided
assuming the Taylor hypothesis by using pairs of Cluster
spacecraft separated in space to show that non-self-similar
scaling is present within the plasma sheet magnetic field. This
non-self-similar scaling demonstrated the presence of intermittent
turbulence in the plasma sheet. Thus much of the prior work
suggests that turbulence is present in the plasma sheet, but that it
may not be fully developed or may be intermittent.

Assuming that turbulence is present in the plasma sheet, we
can determine the three fundamental associated scale lengths,
viz., the correlation scale, the Taylor scale, and the Kolmogorov
scale (Goldstein et al., 1995; Weygand et al., 2007). The
correlation scale is the energy-containing scale and the scale at
which the inertial range turbulent cascade begins to exhibit a
power spectrum. The Taylor scale is the scale at which the
turbulent eddies begin to damp out, and the Kolmogorov scale
is the point at which dissipation begins (Figure 1). A series of
studies by Weygand et al., 2007; Weygand et al., 2009; Weygand
et al., 2010) used Cluster spacecraft pairs over many years
combining many different intervals to produce two-
dimensional cross correlation maps of the magnetic field
fluctuations within the plasma sheet. An example of such a
map is shown in Figure 2. From these maps, we can
determine correlation scales and Taylor scales. The correlation
scale is the 1/e folding distance on the correlation vs. spacecraft
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separation curve and the Taylor scale is the radius of curvature of
the two point cross correlation function of the magnetic field
fluctuations at the origin (Matthaeus et al., 2005; Weygand et al.,
2007).Weygand et al., 2007;Weygand et al., 2009;Weygand et al.,
2010) found that the correlation scale and Taylor scale varied
with their angle with respect to the mean magnetic field direction
for geomagnetically quiet and moderate conditions. The
correlation scale and Taylor scale were longest along the mean
magnetic field (about 16,400 km and 2900 km, respectively) and
shortest perpendicular to the field (9200 km and 1100 km,
respectively). In the plasma sheet, the resulting two-
dimensional correlation maps were similar to the two-
dimensional correlation maps of quasi two-dimensional
turbulence observed in the slow solar wind (Dasso et al., 2005;
Weygand et al., 2011), suggesting the presence of quasi two-
dimensional turbulence within the plasma sheet. Physically, the
correlation scale is associated with the approximate thickness of
the plasma sheet and/or driving scales and the Taylor scale is
expected to be about the same size or larger than an ion
gyroradius in the plasma sheet (∼700 km). Weygand et al.
(2009) suggested that the difference in the Taylor scale size
with magnetic field direction (Figure 2) might be related to
dispersive and dissipative effects. Similar differences were
noted in the solar wind in the same paper.

The correlation scale (λCS) and the Taylor scale (λTS) derived
from the two-dimensional correlation maps can be employed to
determine an effective magnetic Reynolds number (Reff � (λCS/
λTS)2) for the plasma sheet. The effective magnetic Reynolds
number (i.e., Lundqvist number) is an important parameter to

help validate numerical MHD models and it suggests where
dissipation scale or, for Hall effects, dispersion become
important. Weygand et al. (2009), Weygand et al., (2010)
obtained effective magnetic Reynolds numbers between 10 and
110 for the plasma sheet. These values are similar to Lundqvist
numbers for magnetospheric MHD models, but atre significantly
smaller than 1600 reported in Vӧrӧs et al. (2006). El-Alaoui et al.,
(2010) estimated the magnetic Reynolds number from an MHD
simulation to be between 100 and 1000 except near sites of
reconnection where the Reynolds number is less than 10.

The statistical studies used to investigate observations of
turbulence can also be applied to simulations, which enables
us to compare more directly observations that indicate turbulence
with the simulations. The focus of this review is on global MHD
calculations of turbulence in the magnetotail but we should
mention additional modeling studies using other techniques.
Several calculations have modeled particle motion in turbulent
fields (e.g. Taktakishvili et al. (2001), Greco et al., (2002),
Zimbardo et al. (2003) We discuss the MHD simulation
results in more detail in Magnetohydrodynamic Simulations of
Turbulence in the Magnetotail.

MAGNETOHYDRODYNAMIC
SIMULATIONS OF TURBULENCE IN THE
MAGNETOTAIL

The MHD equations written in primitive form illustrate the
nonlinear terms responsible for MHD turbulence.

FIGURE 2 | Correlation contour plot for the plasma sheet. Correlations calculated for one quadrant were mirrored into the other quadrants. Rperp is the separation
perpendicular to themeanmagnetic field direction andRpara is the separation parallel to themagnetic field direction. The color bar gives the value of the cross correlation coefficient
(Weygand et al., 2009).

Frontiers in Astronomy and Space Sciences | www.frontiersin.org March 2021 | Volume 8 | Article 6205194

El-Alaoui et al. Magnetohydrodynamic Turbulence in the Earth’s Magnetotail

https://www.frontiersin.org/journals/astronomy-and-space-sciences
www.frontiersin.org
https://www.frontiersin.org/journals/astronomy-and-space-sciences#articles
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� −∇ · (ρv),

ρ
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� (v · ∇)p − cp∇ · v,
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� ∇ × (v × B) + η
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∇2B,

∇ · B � 0,

where ρ is the mass density, v is the plasma flow velocity, B is the
magnetic field vector, P is the thermal pressure, µo is the
permeability of free space, and η is the resistivity.

In the magnetotail at the largest scales, well described by
MHD, flows driven on the scale of the entire system, break up into
structures that cascade to smaller scales in an (energy cascade)
(El-Alaoui et al., 2010). Borovsky and Funsten (2003) argue that
plasma sheet turbulence is due to vortices, or eddies as shown in
two dimensions in Matthaeus and Montgomery (1980). In the
plasma sheet, turbulence produces intense mixing (Antonova and
Ovchinnikov, 1999; Antonova and Ovchinnikov, 2002). A
number of local (e.g. Nykyri and Otto, 2001; Nykyri et al.,
2006b) and global MHD simulation studies have shown
vortices forming at the magnetopause (e.g., Hwang et al., 2011;
El-Alaoui et al., 2012; Hwang et al., 2012; Sorathia et al., 2019) and
in the tail (e.g., Ashour-Abdalla et al., 1999; Fairfield et al., 2000;
White et al., 2001; Ashour-Abdalla et al., 2002; Slinker et al., 2003;
Hasegawa et al., 2004; Walker et al., 2006; Collado-Vega et al.,
2007; Claudepierre et al., 2008; Hwang et al., 2011; Sorathia et al.,
2019). However, the expected behavior in three dimensions has
yet to be studied in any depth. Vortices observed at the
magnetopause occur for both northward and southward
interplanetary magnetic field (IMF) and have been interpreted
as nonlinear Kelvin-Helmholtz waves (e.g. Hwang et al., 2011; El-
Alaoui et al., 2012; Hwang et al., 2012; Sorathia et al., 2019). The
vortices reported in the tail were, in general, not associated with
boundary oscillations. For example, Ashour-Abdalla et al. (2002),
Walker et al. (2006) found large-scale vortices in the central
plasma sheet during simulations of prolonged intervals with
southward IMF.

The results from idealized global MHD simulations of the
solar wind-magnetosphere ionosphere system driven by
simplified solar wind and IMF conditions (constant solar
wind with either southward or northward IMF), exhibit field
fluctuations with spectral properties similar to the observations
(El-Alaoui et al., 2012). An interesting feature revealed by these
simulations is that the fluctuation energy is transported to small
regions of high dissipation as described by, for example Wan
et al., (2012). However, MHD cannot reveal the processes
causing the dissipation. The statistical properties of the
observed fluctuations indicate that localized regions of high-
dissipation are formed (see, for example, a study carried out in
the solar wind by Greco et al., (2009)). The simulations show
that these fluctuations are associated with reconnection (El-
Alaoui et al., 2009; El-Alaoui et al., 2010). However, it is
unknown whether large-scale turbulence enhances,

diminishes, breaks up, or otherwise affects the micro-
processes involved in magnetic reconnection. Investigating
this theoretically requires particle-in-cell (PIC) simulations.
However, local PIC simulations of the reconnection region
do not include the substantial energy input from large-scale
turbulence. It is thus important to include the large scale driving
as well as the microscopic dissipation in the same calculation as
was done, for example, in Wu et al., (2013).

We have recently introduced a method to couple the large
scale drivers to the local kinetic scales. In this approach (Walker
et al., 2019), the MHD results provide the initial state and the
driving boundary conditions for a particle-in-cell simulation of a
substantial portion of the magnetosphere. The use of the implicit
moment method as implemented in the iPic3D code (Markidis
et al., 2010) allows one to consider larger domain sizes within the
kinetic approach. The approach has been shown to introduce
correctly the physics of reconnection at electron scales,
replicating the presence of electron crescent-shaped
distributions (Lapenta et al., 2017) and of unsteady
reconnection processes feeding further into the turbulence
cascade (Ashour-Abdalla et al., 2016) and resulting in electron
(Ashour-Abdalla et al., 2015) and ion (Lapenta et al., 2016)
energization. The kinetic level of description also reveals
instabilities both near the reconnection site (Lapenta, 2008;
Walker et al., 2018) and in the outflow (Divin et al., 2015;
Lapenta et al., 2015) that further drive (Pucci et al.,2017;
Lapenta et al., 2018) and impact energy exchanges (Lapenta
et al., 2016; Lapenta et al., 2020a). For instance, Lapenta et al.
(2020b) argue that turbulent acceleration is responsible for the
formation of power law tails in the distribution functions of
energetic electrons.

Turbulence for idealized conditions
El-Alaoui et al., (2010) examined results from a 3D MHD
simulation of the magnetosphere with nominal solar wind
parameters and a southward IMF. They demonstrated that
flows in the plasma sheet were consistent with turbulence.
This global MHD simulation required very small grid spacing
(<0.13 RE) to resolve flow vortices and turbulence in the plasma
sheet. The simulation was run with southward IMF (5 nT) for
240 min followed by a northward IMF of the same magnitude.
They found that fluctuations and eddies occurred under these
steady driving conditions. In the tail, the regions of high grid
resolution were large, including the near earth and mid-
magnetotail regions. Snapshots taken during the southward
IMF interval are in Figure 3. Three variables are
superimposed in areas on the equatorial plane. The color
contours display the BZ component of the magnetic field, the
black arrows show flows in the plane and the white isocontours
give the locations of the last closed field lines. Localized
reconnection can be identified by flow reversals, from
earthward to tailward, associated with reversals in the BZ
component of the magnetic field. The BZ component was
complex during this interval with filament like structure where
it was large and positive at several locations. A spacecraft
encountering this would see dipolarization front like signatures
in the magnetic field. Vortices are apparent earthward of the
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reconnection (panel a). Nested within the larger vortices are
smaller vortices (panel b) and within the smaller vortices we find
even small vortices (panel c). This pattern of nested vortices exists
throughout the magnetotail earthward of the reconnection sites
throughout the simulation.

Figure 4 shows the power spectral density (PSD) in the tail
(Figure 4A) with the Kolmogorov [1941] spectrum
superimposed. The slope changes to –3 at ∼30 mHz, which we
interpret as the dissipation regime. A qualitatively similar change
in slope is also observed in the solar wind (e.g., Alexandrova,

FIGURE 3 |BZ color contours and flow vectors (arrows) at time 130 min in the equatorial plane. Panel (A) shows the global scale configuration; panel (B) shows the
meso-scale vortices expanded; and panel (C) shows further expansion of a selected region. Note that Bz changes sign tailward of about 50 RE and is very patchy at this
time. (After El-Alaoui et al. (2010)).

FIGURE 4 | (A) Power spectra for BZ at x � −15 RE, y � −5 RE and z � 0 for southward IMF. Histograms of (B) inertial range PSD slopes (C) Dissipative range PSD
slopes for southward IMF. (After El-Alaoui et al., 2010).
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2008; Chen et al., 2010; Sahraoui et al., 2010) and in the
magnetosphere (e.g., Vörös et al., 2005; Nykyri et al., 2006a;
Matthaeus et al., 2008).

We computed inertial and dissipative range PSD slopes at
forty-nine locations in the equatorial magnetotail. All of the PSDs
at these locations exhibited the three frequency ranges defined
above: the driving (energy containing) range, the inertial range,
and the dissipative range. We constructed histograms of the
spectral slopes for the inertial ranges (Figure 4B) and for
dissipative ranges (Figure 4C) for southward IMF. We found
that the PSDs have a median value of −1.77 while in the
dissipative range the median value is −3.9 although the
distribution is broad. In a statistical distribution of observed
spectra Weygand et al. (2005) found a peak in the distribution of
slopes at a spectral index of −2.0 and a weak secondary peak at a
slope of −1.6. There is a trend toward more negative slopes for
more tailward locations.

MHD simulations require a source of dissipation for
reconnection to occur. One way to provide dissipation is to
add an extra term of the form ηJ where η is a resistivity and J
is the current density in Ohm’s law (El-Alaoui, 2001; El-Alaoui
et al., 2009). Dissipation in the simulation contributes to plasma
sheet turbulence in two ways. On a large scale, it leads to
reconnection that drives the turbulent flows and on small
scales it dissipates the energy. It is important to have this term
in the MHD code. For instance, without this term reconnection
does not occur in the tail (Raeder et al., 2001).

While the turbulent flows in these calculations are related to
reconnection, turbulent flows in the magnetotail associated with
the Kelvin-Helmholtz (KH) instability also have been reported.
Observations of changes in the magnetopause position consistent
with KH have been discussed by numerous authors (e.g., Sckopke
et al., 1981; Song et al., 1988; Chen et al., 1993; Fairfield et al.,
2000). Intervals with northward IMF provide an opportunity to
investigate boundary oscillations in the absence of strong flows
from plasma sheet reconnection. For instance, several studies
have reported vortices forming along the flank boundaries from
MHD simulations (Li et al., 2009; El-Alaoui et al., 2010; Sorathia
et al., 2019). They indicated that the KH instability was likely the
source but noted that reconnection also was occurring at high
latitudes in the polar cusp region (Hwang et al., 2012). Li et al.
(2009) argued that the combined processes form a cold dense

boundary layer. All of the papers indicated that the process was
turbulent. A typical example of the resulting flows based on the
El-Alaoui et al. (2010) simulation is shown in Figure 5. Power
spectral densities at different locations for the northward IMF
interval are shown in Figure 6. The PSD power law indices in the
inertial range had more variation than in the southward case but
were still consistent with turbulence. The PSD power law indices
in the dissipative range also varied widely but were generally more
negative than in the inertial range.

The pattern of vorticity in the tail was muchmore extensive for
the southward IMF. This suggests that reconnection driven flows
are more important than the KH instability for driving the tail
into a turbulent state. However, more work needs to be done to
quantify the relative contributions of reconnection and KH.

Our ability to correctly resolve the turbulent cascade resulted
in large part from recent improvements in the resolution of MHD
simulations [e.g., Guild et al., 2008; El-Alaoui et al., 2009). The
success in simulating the overall form of turbulent spectrum
(Figure 4,6) gives us confidence That the details of dissipation
may not significantly affect that overall turbulent spectrum.

MHD turbulence in simulated substorms
El-Alaoui et al., (2013) investigated the properties of fluctuations
during a February 7, 2009 substorm in which the WIND spacecraft
provided solar wind data. The simulation of this substorm suggests
that the configuration of the tail and its evolution is very complex. The
simulation results and THEMIS observations in the magnetotail were
remarkably similar to dipolarizations and strong flows (see Figures
3,4 of El-Alaoui et al., (2013) for a detailed comparison between the
observed magnetic field and flows and the simulation). As has been
reported in previous substorm simulation studies (e.g. Ashour-
Abdalla et al., (2015)) a large dipolarization grows by accreting
smaller earthward-moving dipolarization fronts (DFs). In this case
the dipolarizations were associated with a strong channel of earthward
flow that formed a large vortex near earth. Figure 7 shows two
snapshots of the flows, Bz and the thermal pressure in the plasma
sheet (maximum pressure surface) at two times. The plots on the left
are from 0359UT and those on the right are from 0405UT.
Dipolarizations from reconnection at about X � −15RE have
moved into the inner tail. The flows in these channels, combined
with lower velocity return flows, form several large vortices in the
plasma sheet.

FIGURE 5 | Northward IMF results at 300 min. Shown are color contours of Vx and flow vectors at the dawn flank to show the existence of waves consistent with
the Kelvin-Helmholtz instability. (Adapted from El-Alaoui et al. (2010)).
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FIGURE 6 | (A) Power spectra forBZ at x � −20 RE, y � −5 RE and z � 0 for northward IMF. Panel (B) contains a histogram of (B) inertial range PSD slopes and panel
(C) has dissipative range PSD slopes for northward IMF (After El-Alaoui et al. (2010)).

FIGURE 7 |MHD results on themaximum pressure surface at two times (GSM coordinates). In the top panel, color contours showBz and the black arrows give the
flow velocity. Dipolarization fronts are located between the vertical white lines. Dipolarization fronts are clearly visible as areas of high magnetic fields which are moving
earthward. The bottom panels show the change in thermal pressure from a baseline 10 s before. (After El-Alaoui et al., (2013)).
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The panels in Figure 8 show successive blowups of Bz and
the flows at 407UT. Within the larger vortices, we find smaller
nested vortices like those found in the generic simulation
described above, although the vortex structure is more
complex in the event driven case (compare Figure 3 with
Figures 7,8). These vortices form the low frequency end of
the turbulent cascade.

The MHD simulation and the observations show that the
magnetotail mesoscale structures (e.g., dipolarizations, flow
channels, localized reconnection sites, and flow vortices)
during a substorms are in a state of rapid change. In
Figure 9, we have compared the spectra of Bz from times
between 0200 UT and 0500 UT, at z � −3 RE and y � −2 RE

for three x values (−10 RE, −12 RE, and −14 RE) with
observations at THEMIS P5. The driving, inertial and
dissipative scales appear in both the observations and the
simulation. The slope of the spectrum in the MHD results at
high frequencies becomes nearly flat as the MHD time-step size
(typically between 0.01 and 0.1 s) is approached. The slopes in
the upper right corner of the figure come from least squares fits
to the results. The simulation (black) power levels in the driving
and inertial ranges frequently overlap those observed (red). The
spectral indices in the inertial ranges are similar, with an
observed index at P5 of −1.74 and values from −1.85 to
−1.80 from the simulation. The frequency between the
inertial range and the dissipative range appears to be about
30 mHz. This feature is similar to that found in the generic cases.
The numerical experiments with generic simulations have
shown that the overall level of dissipation in the simulation
controls the location of this breakpoint (El-Alaoui et al., 2013)
but does not affect the driving and inertial ranges. Although the
resistivity in the MHD model gives the observed frequency
where the slope changes, it does not tell us which physical
mechanisms dissipate energy at the high-frequencies.

Probability distribution functions (PDFs) enable us to
characterize the turbulent flows. In particular, the fourth
moment of the PDF (the kurtosis) provides a measure of
non-Gaussian nature of the wings of the PDF. If the
kurtosis of the PDF decreases with increasing lag (τ) the
turbulence is said to be intermittent. In plasma flows,
intermittent turbulence occurs if dissipation is localized to
specific regions of space. Figure 10 shows the PDFs from this
simulation as black curves and PDFs constructed from
THEMES P5 observations in red using three lags (10, 200
and 900s). The black dotted line gives values from a Gaussian.
The numbers at the top of the panels give the kurtosis. A
Gaussian distribution has a kurtosis of three while the larger
values reflect energy in the wings of the distributions. The
kurtosis tends to decrease for increasing lags consistent with
the expectations of intermittency. Similar results in the solar
wind were found in Wu et al. (2013).

The vorticity in both the generic case (Figure 3) and the
event simulation (Figure 7) suggest a strong interaction
between the reconnection generated flows and the tail

FIGURE 8 | Details on the maximum pressure surface of Bz and the flow
showing vortices at 0407 UT. Vortices occur on multiple time and spatial
scales. (After El-Alaoui et al., 2013).
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becoming turbulent. As discussed in Observations of Turbulence
in the Magnetotail, the Taylor hypothesis may not be applicable
to the tail under all flow conditions. One advantage of
simulations is that we can calculate the power in k space. We
computed spatial power spectra in the region between −10 and
−22RE in x and −4 to 8RE in y at the maximum pressure surface
(El-Alaoui et al., 2016). The fluctuations in this box were
transformed to k space by using a Fourier transform. This
yields the power at the allowed wavenumbers in the square
domain. These are given by kx � 2πn/L and ky � 2πm/L where L
is the length of the box on a side and n andm are integers 0, 1, 2,
3, . . .). Most of the power is at low wavenumbers as expected
(Figure 11, bottom), since the lowest wavenumbers are
dominated by large scale features of the magnetotail
including the dipole field and the effects of the box’s edges.
To display the variations in turbulent power as a function of
time, we summed over n and m, excluding the lowest
wavenumbers (0, 1, and 2). The mesoscale features with sizes

less than or equal to 3 RE are included, however. We then
computed the sum of the power in the remaining modes
between 0340 and 0412 UT. Because dipolarizations are
characterized by Bz increases and the flow is primarily
earthward (Vx), these two parameters are used in the
analysis. The plot on bottom left of the figure is a time
before a dipolarization front forms while that on the right is
after formation. The total power is much higher at the second
time (0353 UT). These spectra show that the additional power
extends across the k-spectrum, showing that the turbulent
power quickly cascades across the wavenumber range.

The top panels of Figure 11 give the summed power vs. time.
The maxima in the Bz and Vx power correspond with the
evolution of the mesoscale structures in the magnetotail. The
largest feature is a major increase in Vx power starting at 0349 UT
and peaking at 0353 UT. An increase in Bz power starts at about
the same time and peaks a few minutes later. The start of this
increase corresponds to the formation of a narrow, intense flow

FIGURE 9 | The panels showPSDs forBZ at the three locations in theMHD simulation. Values from the simulation are black and at THEMIS P5 observations are red.
The solid blue (green) lines are least squares fits in the inertial range for the data (MHD results). The dashed blue lines have the slopes of -5//3.
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channel and a large dipolarization noted above. At 0353, this large
dipolarization has reached about x � −10.5 RE.

The February 7, 2009 substorm provides a rare example in
the literature of a case where both observations and a
simulations have been compared directly. There is
considerable work from both the data analysis and the
simulations that support the conclusion that localized
reconnection-driven earthward flows can generate turbulent
fluctuations in the tail. Observations of localized
reconnection regions with strong high-speed outflow support
the idea that reconnection is an important process driving
turbulence in the plasma sheet (Vörös et al., 2006;
Angelopoulos et al., 1999). Huang et al., (2012) and Osman
et al., (2015) have analyzed the magnetic field fluctuations
observed by Cluster during a period of strong earthward
plasma sheet flow (∼1200 km/s). The magnetic field
fluctuations are consistent with turbulence. Localized
dissipation may drive these fast flows by enabling localized
reconnection. The resulting outflow jets can initiate a turbulent
cascade. For example, when a high-speed flow such as a bursty
bulk flow (BBF) reaches the near-Earth region, that flow is
diverted leading to large vortices that are several RE across [e.g.,
Vörös et al., 2006]. The February 7, 2009 MHD simulation of
the magnetosphere shows this explicitly. In the MHD results
strong narrow flow channels form (Wiltberger et al., 2000;
Ashour-Abdalla et al., 2002; Walker et al., 2006; Ge et al., 2011;
Birn and Hesse, 2013) at the driving scales for turbulent
vortices (e.g., El-Alaoui et al., 2013). In turn, the turbulent
eddies can feedback on the reconnection process as well,

leading to a very complex interplay between turbulence and
dissipation (Matthaeus and Lamkin, 1986; El-Alaoui et al.,
2012; Donato et al., 2013). The existence of turbulent eddies
may contribute to the patchiness of the reconnection occurring
in MHD simulations (El-Alaoui et al., 2010). Borovsky and
Funsten (2003) investigated dissipation of the turbulence and
argued for small-scale eddy dissipation where the vortices
dissipate energy due to reconnection. Overall the results
from all of these studies strongly support the idea that fast
earthward flows drive large scale vortices that initiate
turbulence.

SOME UNSOLVED QUESTIONS ABOUT
TURBULENCE THAT CAN BE ADDRESSED
USING MODELING

The simulation and data studies discussed make a strong case that
flows associated with reconnection are turbulent. However, the
dissipation in theMHDmodels used in this review depends on an
additional term in Ohm’s law. The extra term has free parameters
so the fluid models provide little information about the physics of
the dissipation region. One challenge in modeling turbulent flows
in the tail is to include the physics of dissipation on a global scale.
We need a model that can extend our basic understanding of
kinetic turbulence and the transition between fluid and kinetic
effects. Such a model would be a combined simulation that would
resolve macroscopic motions and at the same time resolve ion
and electron scales. It would cover the MHD turbulent cascade at

FIGURE 10 | Probability Distribution Functions calculated from the simulation (black) and from THEMIS P5 observations (red). The top panels are based on the Vx
component of velocity and bottom panels are based on Bz. The dashed line is a Gaussian fit. The numbers at the top give the kurtosis. (From El-Alaoui et al., 2013).
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large scales (inertial range) as well as Hall (dispersive) and
kinetic (dissipation) ranges. Such simulations need to capture
energetic exchanges at all scales. Fluid turbulence transfers the
energy of large-scale flows to small-scale fluctuations and heat.
As turbulence develops, the large-scale flow breaks up into
vortices that cascade down to smaller and smaller scales
where energy dissipates as heat. This represents a cascade of
energy from the large energy-containing scales, through
intermediate scales to small scales where heating occurs. In
the magnetotail, the energy at the largest scales comes from
the interaction between the magnetosphere and the solar wind,
while at the smallest scales the dissipation is due to wave particle
interactions and reconnection occurring on length scales of the
ion Larmor radius or smaller. In the magnetotail, turbulence is
complicated by the coupling between velocity and magnetic field
fluctuations. Furthermore, turbulence in the kinetic regime
involves specific normal modes of the plasma with spatial
scales associated with specific waves, e.g., lower hybrid, or ion
cyclotron waves.

We have recently developed (Walker et al., 2019) a model that
combines simulations that resolve the macroscopic evolution and
simulations that resolve ion and electron scales. The new method
covers the MHD turbulent cascade at large scales (inertial range) as
well as Hall (dispersive) and kinetic (dissipation) ranges. In the
application to the study of turbulence, these simulations capture
energetic exchanges at all scales. Fluid turbulence transfers the energy
of large-scaleflows to small-scale fluctuations and heat. As turbulence
develops, the large-scale flow breaks up into vortices that cascade
down to smaller and smaller scales where energy dissipates as heat.
This represents a cascade of energy from the large energy-containing
scales, through intermediate scales to small scales where heating
occurs. At the magnetopause, the energy at the largest scales comes
from the interaction between themagnetosphere and the solar wind,
while at the smallest scales the dissipation is due to wave particle
interactions and reconnection occurring on length scales of the ion
Larmor radius or smaller. In the magnetotail, turbulence is
complicated by the coupling between velocity and magnetic
field fluctuations. Furthermore, turbulence in the kinetic regime

FIGURE11 | Time history of total small andmesoscale spectral power in the vicinity of flow channels and dipolarizations. For the region between −10 and −22RE in x
and −4 to 8RE in y, the sum of the power in all x and y for mode numbers greater than twowas computed (top two panels). The top panel shows the result forBz, in units of
nT2, and the panel below it shows the result for Vx, in units of (km/s)2. The lower two panels show the power, in units of (RE · km/s)2, vs. wavenumber at two times, 0344
UT on the left and 0353 UT on the right. (After El-Alaoui et al. (2016)).
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involves specific normal modes of the plasma with spatial scales
associated with specific waves, e.g., lower hybrid, or ion cyclotron
waves. It has long been recognized that the plasma distributions in
the tail have non-thermal tails (a κ distribution). Recently, Lapenta
et al. (2020b) have used this approach to model the acceleration of
tail plasma to form this high-energy tail distribution. They argue
that the main acceleration mechanism is turbulent acceleration. A
similar conclusion was reached by Ergun et al. (2020) based on
observations from the Magnetospheric Multi-Scale (MMS)
mission.

The MMS observations come from four closely spaced
satellites that provide the opportunity to investigate the
turbulence in wave number space without the necessity of
invoking the Taylor hypothesis. Combined with the latest
kinetic simulation, these data (e.g., Ergun et al., 2018; Li et al.,
2020; Ergun et al., 2020) offer great potential for understanding
the importance of turbulence for acceleration in the tail and
provide the community with a way to better understand the
mechanisms of dissipation.

Specific issues that need to be examined include the scale of the
dissipation region and its distribution in space. Fluid turbulence can
develop into a state with dissipation localized in small regions of
sharp gradients. How does this dissipation work in the plasma sheet
when kinetic physics is included? How does dissipation occur in
different regions? Is dissipation found near structures like thin
current sheets (as in Wu et al., 2013), dipolarization fronts and
the separatrices the result of distinct or the same processes? How do
the flows become turbulent (e.g. velocity shears as in Ruffolo et al.
(2020))? How important are turbulent flows for plasma heating by
energy transfer from magnetic energy to particle and wave energy?

The magnetotail provides a unique laboratory for studying
turbulence and reconnection. In the solar wind, turbulence has
been investigated in depth for a long time (e.g. Coleman, 1968;
Roberts et al., 1987a; Roberts et al., 1987b) but it is driven from
the Sun over very large distances and long times but there is also
evidence of reconnection driven turbulence in the solar wind
(Gosling et al., 2010). In contrast in the magnetotail plasma sheet,
the driving forces are well confined and comparatively short-
term, developing in a few minutes over just tens of thousands
of km.
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