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It is an ongoing issue in astronomy to recognize and classify O-type spectra

comprehensively. The neural network is a popular recognition model based on data. The

number of O-stars collected in LAMOST is <1% of AFGK stars, and there are only 127

O-type stars in the data release seven version. Therefore, there are not enough O-type

samples available for recognition models. As a result, the existing neural network models

are not effective in identifying such rare star spectra. This paper proposed a novel spectra

recognition model (called LCGAN model) to solve this problem with data augmentation,

which is based on Locally Connected Generative Adversarial Network (LCGAN). The

LCGAN introduced the locally connected convolution and two timescale update rule

to generate O-type stars’ spectra. In addition, the LCGAN model adopted residual

and attention mechanisms to recognize O-type spectra. To evaluate the performance

of proposed models, we conducted a comparative experiment using a stellar spectral

data set, which consists of more than 40,000 spectra, collected by the large sky area

multi-object fiber spectroscopic telescope (LAMOST). The experimental results showed

that the LCGAN model could generate meaningful O-type spectra. In our validation data

set, the recognition accuracy of the data enhanced recognition model can reach 93.67%,

8.66% higher than that of the non-data enhanced identification model, which lays a good

foundation for further analysis of astronomical spectra.

Keywords: data augmentation, generative adversarial network, celestial spectra recognition, residual network,

attention mechanism

INTRODUCTION

Generally, the first step in spectral analysis is to classify and recognize spectra, which is the basis for
subsequent research. With the advancement of various high-performance astronomical telescopes,
for example, the Sloan Digital Sky Survey [SDSS, York et al. (2000)], the Global Astrometric
Interferometer for Astrophysics [GAIA, Perryman et al. (2001)], or the Large Sky Area Multi-
Object Fiber Spectroscopic Telescope [LAMOST, Zhao et al. (2012)], the scale of spectra collected is
getting larger and larger. How to efficiently process these massive amounts of astronomical spectra
and correctly classify celestial bodies in such a large database is a valuable problem to be studied.
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The neural network is a popular spectra process method based
on data. However, there exists some stars whose percentage in
the whole candidate data set is very small. As far as the data
set we studied is concerned, in LAMOST’s low resolution stellar
data set, taking data release seven version data set as an example,
there are more than 9.84 million low resolution star spectra,
in which there are only 172 O-type spectra1. So, Hou et al.
(2015) and Ai et al. (2016) proposed methods for recognizing
quasars and Am stars using template matching and spectral
line measurement. Kong et al. (2018) used the LASSO operator
to extract spectral features and recognize DB white dwarfs. Li
et al. (2018) introduced semi-supervised learning and proposed a
method for recognizing carbon stars based on positive unlabeled
learning (PU). However, one method of the PU learning uses
unlabeled samples as negative samples to train the classifier.
Since the unlabeled samples contain some positive samples, the
wrong label assignment leads to recognition errors. In order to
solve this problem, Qin et al. (2019) used random forest rough
selection and fine manual selection to recognize Metallic-line
(Am) stars. Semi-supervised learning with few samples (Wang
Y. et al., 2020) and Generative Adversarial Networks (GAN)
(Goodfellow et al., 2014) are proposed for the recognition of rare
stars with a small number. Zheng et al. (2020) introduced GAN
for data augmentation and obtained similar star spectra with a
high signal-to-noise(S/N) ratio.

However, there still exists some problems with the
current methods:

1) Themethod based on templates relies on comparing observed
spectral features with theoretical or empirical templates. With
this method it is easy to label spectra as “UNKNOWN” when
the spectral signal are interfered with or some specifical key
spectral line features are not captured.

2) The general recognition networks use up-sampling minor
classes or down-sampling major classes. Up-sampling is easy
to overfit and cannot learn more robust and generalized
features, while down-sampling will cause serious information
losses for major classes and even lead to underfitting.

3) The existing neural network models could recognize spectra
if there are enough training samples. In other words, it can’t
handle training samples with insufficient numbers well, such
as O-type spectra.

The most similar work to this paper is Zheng et al. (2020).
They proposed a star classification network based on data
augmentation. Compared with their work, we propose LCGAN
for data augmentation. We introduce the locally connected
convolution (Huang et al., 2012) help model to focus on
the different spectral features in different bands, and use two
timescale update rules (TTUR) to control the adversarial training
between the generator and the discriminator (Heusel et al., 2017).

Then, we established the O-type spectra recognition model by
extending the RAC-Net classification model (Zou et al., 2020).
The model can focus on the bands that contain important
information in the spectra through the attention mechanism
(Vaswani et al., 2017). We use the residual mechanism

1Available online at: http://www.restfmri.net.

(He et al., 2016) to solve the problem of gradient dispersion or
explosion and degradation under deep conditions. In addition,
the attention mechanism pays more attention to the features
that are easier to recognize, reduces the interference of invalid
information, and enhances the interpretability of the model.
Simultaneously, the residual structure helps to expand the depth
of the model, making the representation of the fitting function
ability more complicated. In the end, we verify the superiority of
our model through experiments.

The organization of this paper is as follows. Section data
and data preprocessing briefly introduces the source of the
data set in this article and the preprocessing of the spectral.
Sectionmethodology introduces the specific technicals, including
the Locally Connected Generative Adversarial Network for data
augmentation and recognition model based on residual and
attention. Our experimental design and analysis of experimental
results are described in section results and discussion, and we
conclude the paper in section conclusion.

DATA AND DATA PREPROCESSING

Weuse spectral data from LAMOST, which is a reflective Schmidt
telescope with 4-m effective apertures and a 5-degree field of
view. LAMOST has 4,000 fibers mounted on the focal plane,
which enables it to observe 4,000 objects simultaneously.

Data Set Introduction
The spectra data in this work are from the LAMOST survey,
which is publicly available on LAMOST’s official website. The
spectra cover a wavelength range from 3,690 to 9,100 angstroms
with more than 3,700 dimensional data and a moderate
resolution R∼1800 (Cui et al., 2012; Zhao et al., 2012). Each
spectrum has a corresponding subclass (MK class) label (O, F, G,
and K). The details about the data of LAMOST can be found on
LAMOST’s official website (http://dr.lamost.org/).

The real spectra we used in this paper include four subclasses
under the STAR class, which includes 323O, 10000 F, 10000G,
and 10000K. By using the data enhancement based on the GAN
with the 150 original O-type spectra, we get 10000 generated
O-type spectra. Based on the spectra after data augmentation,
we divide different data sets for experimental analysis. The
detailed division of data sets will be introduced in section
experimental design.

Data Preprocessing
There are great differences in spectral feature distribution in
different bands. When the deep neural network is trained, it
is easy for the bands with large values to play leading roles
and ignore other bands with low values. Therefore, before
processing and analyzing the spectra, we need to do some
data preprocessing. Our data preprocessing is divided into the
following two steps:

1) Flux Standardization
We introduce flux standardization to normalize the spectra,

which can standardize the spectral value between 0 and 1
according to each spectrum’s flow intensity. This operation can
ensure that the attenuation of celestial light in the propagation

Frontiers in Astronomy and Space Sciences | www.frontiersin.org 2 May 2021 | Volume 8 | Article 634328

http://www.restfmri.net
http://dr.lamost.org/
https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org
https://www.frontiersin.org/journals/astronomy-and-space-sciences#articles


Yang et al. Spectra Recognition for O-type Stars

process will not affect the learning of the model (Li et al., 2007).
The flux standardization formula is shown as:

xi =
xi

‖xi‖2
(1)

where, xi is the i-th spectral sample in the data set, and
‖xi‖2 represents the 2-norm of the sample, that is, the flux of
the spectrum.

2) One Side Label Smoothing
In the GANs model, when the model is stable, the

discriminator will output the probability of whether the data
is real or generated. Ideally, we hope to be 0.5. But deep
neural networks tend to produce highly confident output (over-
confident) so that the probability of the correct class would have
an extremely high probability value, such as 0.99999, which is not
what we want. So, we use a label of 1− ∝ for the real data and a
label of 0 + β for the generated data. We introduce the α and β

to prevent GAN from overfitting (Müller et al., 2019).

METHODOLOGY

In this section, we will describe two core parts of the LCGAN
model: data augmentation and data recognition.

Data Augmentation
In LAMOST low resolution star data set, the number of
O-type stars is very rare, accounting for <1% of the AFGK. For
example, there are only 172 O-type data in LAMOST data release
seven, which is not large enough for neural network learning and
training. To address this problem, we enhance theO-type spectral
data. The traditional data augmentation methods are not suitable
for one-dimensional spectral data. Adding noise may change the
key features of the spectrum itself; one-dimensional data cannot
be rotated and zoomed. The essence of repeated sampling is
to let the neural network repeatedly recognize the same data,
which easily results in overfitting (Cubuk et al., 2019; Shorten and
Khoshgoftaar, 2019).

The GAN is a generative modeling method based on game
theory. GAN relys on the idea that a data generator is good
if we cannot tell generated data apart from real data. GAN
consists of two models: a generator model and a discriminator
model. The generator generates samples, and the discriminative
network is used to distinguish generated and real data from each
other. In the training process, both models are improved against
each other.

We hope to enhance the original O-type spectra using the
GAN. At the same time, the model should be able to pay
attention to the different information in different bands of the
spectrum. Based on the enhanced data set, we introduce a
convolution recognition model based on residual and attention
mechanisms. Finally, an O-type spectra recognition model is
obtained. Figure 1 shows the schematic diagram of our proposed
LCGANmodel.

Convolutional Neural Network
Artificial neural networks can be seen as stack together with a
bunch of layers. They can be divided into the input layer, hidden

layers, and output layer. In the hidden layers, we use convolution
layers to extract the information of the data.

The convolutional neural network is a kind of neural network
which employs a mathematical operation called convolution for
processing data. In the convolution layer, we use convolution to
capture the features of the input data. The spectra input can be
seen as a one-dimensional array of data. In this paper, we use one-
dimensional convolution to learn one-dimensional spectral data.
This operation is accomplished by the convolution kernel sliding
on the data.

For one-dimensional convolution, the convolution kernel
starts from the left of the input data and slides on the data in
turn from left to right. When the convolution kernel slides to
a certain position, the elements of the convolution kernel and
the elements of the input data covered by the convolution kernel
are multiplied and summed. The formula could be written as the
following expression:

s (t) =
n
∑

i=0
xt+i∗ci (2)

where the vector (x1, . . . xt+i, . . .) represents input data and the
i and t represent the position of the data elements. The s is
the output data after convolution operation, n represents the
length of one-dimensional convolution kernel c, and the vector

(c1, . . . ci, . . . cn) represents the convolution kernel. An example
of a specific operation of one-dimensional convolution is shown
in in the first dotted line box in Figure 2.

Convolution can be seen as linearmatrixmultiplication. In the
convolution layer, a bias value b will be added to the result after
the convolution operation. Then the convolution layers use a
nonlinear activation function f (∗) to improve the representation
ability of the model; the operation of the whole convolution layer
is shown in the formula:

y (t) = f

(

n
∑

i=0
xt+i∗ci + b

)

(3)

f(•) represents the nonlinear activation function. Activation
functions decide whether a neuron should be activated or
not by calculating the weighted sum and further adding bias
with it. They are differentiable operators to transform input
signals to outputs, while most of them add non-linearity. We
choose the ReLU function and leaky ReLU function to activate
the convolution result. ReLU provides a simple non-linear
transformation. The formula is shown as:

ReLU (x) = max(x, 0) (4)

For leaky ReLU, given∝∈ [0, 1], x is the data, its definition is:

leaky ReLU (x) =

{

x, x > 0
∝ x, x ≤ 0

(5)

Leaky ReLU addresses the problem that a neuron might always
output a negative value and therefore cannot make any progress
since the gradient is 0 (Radford et al., 2016).
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FIGURE 1 | The schematic diagram of LCGAN structure.

FIGURE 2 | The comparison between a locally connected convolution layer and a convolution layer.

Locally Connected Convolution
Compared with convolution, the locally connected convolution
kernels of unshared convolution do not share parameters (Huang
et al., 2012). When the convolution kernel slides one position,

its parameters will change accordingly. Locally connected layers
are useful when we know that different information should be a
function of a small part of space, and the same features should
not occur across all of space. The comparison between a locally
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connected convolution layer and a convolution layer is shown in
the following Figure 2.

When the convolution kernels of the two layers are set to
two units, the parameter values of convolution kernels at each
position are shared and dynamically adjusted. In the locally
connected layer, the convolution kernels will change parameters
with the position sliding. In this mechanism, convolution kernels
at different positions in the locally connected convolution can
generate different features. For example, in generating a face
picture from noise vectors, the same convolution kernel can be
used to generate features corresponding to eyes in the upper
half of the image. When sliding to the lower part of the
image, the convolution kernel can be used to generate mouth
features correspondingly.

Compared with convolution, locally connected convolution
can pay more attention to the generation of features at different
positions in the generative task, so we use locally connected
convolution to generate spectral features in different bands in
the LCGAN.

We can see that after the convolution operation, the length
of the output will be shorter than that of the input. For one-
dimensional convolution, the length relationship between input
and output is as follows:

o =
n+2p−f

s + 1 (6)

where n is the length of input data (for two-dimensional data, n ∗
n is the two-dimensional size of input data), p is the size of filling,
s is the size of step size, f is the size of convolution kernel, and O
is generally the size of output data. If the convolution operation
is not filled, the data size will be reduced with each volume layer.

In order to generate spectral data with more feature
dimensions from the original low dimensional random noise
vector, we use the method of locally connected convolution and
up-sampling to expand the dimension of the data layer by layer.
The operation is shown in Figure 3.

Generative Adversarial Network
Suppose that there is a simple and easy sampling distribution p(z)
in the low dimensional space Z. Generally, p(z) is the standard
normal distribution N(0, 1), and the target is the complex
distribution X in the high-dimensional space. We want a neural
network to fit such amapping functionG :Z → X, which is called
generative modeling.

GAN makes the samples generated fit the real data
distribution through the adversarial training (Goodfellow et al.,
2014; Hong et al., 2019). There are two models in GAN, which
can both be made up of deep neural networks. The task of the
discriminator model is to distinguish whether the input sample
is the real data or the generated data. The goal of the generator
model is to generate samples so that the discriminator model
cannot distinguish the generated from the true. The training
objectives of the two models are the opposite, and they were
trained alternately. The training process is similar to a minimax
two-player game. The ultimate goal is to generate samples that
resemble the real data.

The goal of the discriminator is to distinguish whether a
sample is from real data or generated data, so the discriminator

FIGURE 3 | The dimension was expanded by locally connected convolutions

and up-sampling.

model is actually a two-class classifier model. The label y = 1
indicates that the sample comes from real data, and y = 0
indicates that the sample comes from the generator model. The
discriminator model should give the probability p(y = 1|x) of
the input x from the real distribution. The loss function of the
discriminatior is defined as below:

min−
(

Ex
[

ylogp
(

y = 1
∣

∣x
)

+
(

1− y
)

logp
(

y = 0
∣

∣x
)])

(7)

The goal of the generator model is opposite to the discriminator
model. The generator aims to let the discriminator distinguish the
generated samples as real samples. The generator will minimize
the following equation:

max
(

Ez∼p(z)

[

logD (G (z; θ))
])

(8)

Above all, for the whole GAN, the loss function can be expressed
as follows:

minmax L (G,D) = Ex∼p(x)

[

logD (x; c)
]

+

Ez∼p(z)[log (1− D(G (z; θ) ;β))]

(9)

Here, β is the weight parameter of the discriminator model, θ

is the weight parameter of the generative model, D(x;β) is the
output of the discriminator model for the input sample x based
on weight β , and G (z; θ) is the generated data when the input is
Z based on the generator parameterized with weight θ . E[] is the
expected operation.

Based on the game theory, the generator model and
discriminator model can reach a local Nash equilibrium in
theory. For the discriminator model, the probability that any
input sample is true is about 0.5. That is, the discriminator
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model cannot recognize the source of the input sample. At this
time, the network can generate samples that conform to the real
data distribution.

Our LCGAN architecture is shown in Figure 4.
We input a 1 × 900 dimensional random noise vector Z

into the generator. Then locally connected convolution with up-
sampling mentioned in section locally connected convolution
will transform it into a higher dimensional space. Finally, we mix
the generated samples with the real O-type samples, and mark
them as real or generated. We use them as the training set to
train the discriminator model. According to the theory of game
theory, when the adversarial training of the two models reaches
Nash equilibrium, the samples generated by the generator can be
realistic enough. LCGAN generates enough true O-type spectral
data to train the recognition model.

In order to train LCGAN model better, we use the
following strategies:

(1) Training process optimization of LCGAN. Randomness
is helpful to improve the robustness of LCGAN. Training
LCGAN is a dynamic process, so the training of LCGAN may
be “stuck.” The introduction of randomness in the training
process can prevent this situation. We introduce randomness
by random dropout of some neural units in the dropout layer
(Gal and Ghahramani, 2016; Salimans et al., 2016).

(2) There is a generator model and a discriminator model
in LCGAN, and the training promotion of the two models
is not consistent. Therefore, it is necessary to control the
learning rates of the two models separately. We use two
timescale update rules (TTUR) to prevent LCGAN from being
dominated by the generator or discriminator (Heusel et al.,
2017).

Data Recognition
After the data augmentation, we get the balanced training data
set, which can be used to train the recognition model. We built
a recognition model based on residual and attention to learn
the features of O-type spectra, and finally get an O-type spectra
recognitionmodel. In this section, we will describe the techniques
in detail.

Residual Networks
In theory, if a new layer is added to the neural network model,
the representation ability of the fully trained model will never
be lower than the original model. This is because the solution
space of the new model is larger than that of the original model,
so the new model may obtain a better mapping function to fit
the relationship between input and output. For deeper neural
networks, if we can train the newly-added layer into an identity
function f (x) = x, the new model will be as effective as the
original model. As the new model may get a better solution to
fit the training data set, the added layer might make it easier to
reduce training errors. However, in the actual training, the deeper
model often has the problems of gradient dispersion and gradient
explosion, which means the model cannot be well-trained.

In the training process of the model, the Error Back
Propagation (BP) algorithm is used to transfer the loss backward

(Rumelhart et al., 1986). The parameters are adjusted by the
chain derivation rule, which requires a continuous propagation
gradient. The function of each activation layer of the model
is nonlinear rather than identity mapping. Therefore, with the
increase of neural network depth, the gradient multiplication will
lead to vanishing or exploding in the propagation process.

In order to solve the problems of gradient dispersion and
gradient explosion in the deep model, He et al. (2016) proposed
the design idea of a residual network. The residual network
relies on the idea that every additional layer should be better at
containing the identity function as one of its elements. We realize
the residual mechanism by the residual block. The structural
comparison of the residual block and regular block is shown in
Figure 5.

When the input is x, we assume that the desired underlying
mapping is f (x), which can be used as the input of the next layer.
On the left of Figure 5, the regular block structure must learn the
mapping f (x). On the right of Figure 5, in the residual structure,
the corresponding layer of the neural network only needs to learn
the residual mapping: f (x)− x. For example, if we want a layer to
learn the identitymapping: f (x)−x, the residual mapping is easier
to learn by pushing the weights and biases within the dotted-line
box to zero.

The gradient transferred backward from the next layer can
be directly transferred to the upper layer through shortcut
connections, instead of multiplying activation functions between
convolution layers, so that the gradient will not vanish and
explode (Orhan and Pitkow, 2018). At the same time, the
introduction of a residual structure can be regarded as an
integrated model that transforms the original path between two
points into a series of path combinations and achieves a better
integration effect by promoting each path in themodel to bemore
independent (Veit et al., 2016).

The residual structure helps us to use the deeper convolution
neural network to capture the deeper features of spectral data.
From the perspective of astronomical spectral data, the residual
structure helps the model to expand the depth of the model,
which makes the fitting space of the model more complex.
This is in line with the specific characteristics of astronomical
spectrum data.

Attention Mechanism
People can receive a large amount of sensory information
through visual, auditory, tactile, and other ways in daily life.
However, the human brain can work orderly with this external
information bombing because it can select a small part of useful
information from a large amount of the input information to
focus on processing and ignore other information. For example,
when we look for someone in a crowd, we focus on the person’s
face. When we want to count the number of people, we often
only focus on the outline of each person. We can also learn
from the attention mechanism of the human brain, selecting only
the key information to focus on and weakening the process of
unimportant information to improve the efficiency of the neural
network (Zhao et al., 2020). In the task of spectra recognition,
the attention mechanism can also be used to make the neural
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FIGURE 4 | The whole architecture of the LCGAN.

FIGURE 5 | The structural comparison of the residual block and regular block.

network focus on the information that can express the specific
meaning of the spectra to recognize better (Chen et al., 2017).

In convolution operation, each filter corresponds to the
convolution result of a channel. Traditional convolution
networks default that these different channels have the same
contribution to the subsequent recognition results, but the fact

is not the case. Different channels carry different features. Some
features contributemore to recognition, some features contribute
less, and some features even have negative effects. For example,
in the process of light propagation, spectral information will be
affected by the atmosphere and other external environments,
resulting in noise in some bands, which will affect the extraction
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FIGURE 6 | The operations in the attention block.

of spectral features. Maybe the features collected by a channel are
noise features, which will affect the performance of the model.
We can get the weight of different channels through channel
attention and focus on some specific channels (Wang Q. et al.,
2020).

As shown in Figure 6, the attention block can be divided into
eight stages. Firstly, a convolution operation is performed on the
input spectrum (stage 1), producing c channels (stage 2). Then
the MaxPooling and AveragePooling operate on these c channels,
producing two vectors wMax

c and w
averge
c with lengths of c (stage

3). Then, the two vectors in stage 3 were concatenated to one
vector wc (stage 4). In stage 5, the initial weight Wc is sent to a
full-connected layer. After learning and adjustment, the output
is the final weight array watt

c , which is the attention weight (stage
5). At the ReapeatVector layer, the attention weight is extended
to an attention matrix with the shape of (l, c) (stage 6). In stage 7,
the output of the attention block yout was obtained (stage 8), by
multiplying the attention matrix with the convolution data from
stage 2.

The attention mechanism helps us to pay more attention to
the important bands of the spectra. Through the combination
of residual and attention, we built an O-type spectra recognition
model by extending the RAC-Net classification model (Zou et al.,
2020). After training on the training set, this recognition model
could recognize the O-type spectra in the massive spectra.

RESULTS AND DISCUSSION

In this section, we will discuss the evaluation criteria and
experimental results. We compared our model with SGAN
(Zheng et al., 2020) and the recognition model without data
augmentation. The experiments show the effect and superiority
of our method.

Evaluation
Our model can be divided into two parts: LCGAN for
data augmentation and O-type spectra recognition model for
recognition. In order to evaluate our model, we refer to the

TABLE 1 | The experimental data sets from the LAMOST.

Data set Type1 Type2 Type3 Type4

Data set 1 O:150 – – –

Data set 2 O:323 – – –

Data set 3 O:1000 F:1000 – –

Data set 4a O:1000 F:1000 G:1000 K:1000

Data set 4b O:1000 F:1000 G:1000 K:1000

Data set 5a O:10000 F:10000 G:10000 K:10000

Data set 5b O:10000 F:10000 G:10000 K:10000

methods in Shmelkov et al., 2018; Wulan et al., 2020; Zou et al.,
2020, and adopt three evaluation criteria: GAN-test, GAN-train,
and recognition accuracy.

Here, GAN-train is regarded as a kind of diversity measure
while GAN-test is an authenticity measure. The higher value of
the GAN-train suggests the better diversity of generated data. The
higher the value of GAN-test means the more similar between
the generated data and the real data. In short, a good generative
model must satisfy both diversity and authenticity.

First, to calculate GAN-train, we need to design a convolution
classificationmodel and train it with the generated data generated
by LCGAN, and then test it on the real data. Suppose the
recognition model can learn the corresponding features from
the generated data and correctly classify the real data. In those
cases, it means that the generated data are similar to the real
ones. Second, to calculate GAN-test, we train the classification
model on real data and test it on the generated data generated by
LCGAN. Finally, we test the recognition accuracy of the O-type
spectra recognition model for real data after data augmentation.

Experimental Design
In our experiment, seven different data sets are used. The detailed
data composition is as Table 1:

Data set 1 consists of 150 true O-type spectra. The data set is
used to train the LCGANmodel.

Data set 2 consists of 323 true O-type spectral data.
In Data set 3, a total of 323 true O-type spectra in Data set 2

were up-sampled (duplicated) to obtain 1000 true O-type spectral
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data. In addition, 1000 spectra of F-types stars were added to Data
set 3. Data set 4a is made up of 4000 spectra, which consists of
1000 generated O-type spectra and real F, G, and K, three classes
of 1000 each. The difference between the Data set 4a and Data set
4b is that the first O-type spectra are generated by LCGAN, and
the second is generated by SGAN.

In the same way, Data set 5a and Data set 5b consist of 10000
generated O-type spectra, 10000 F-type spectra, 10000 G-type
spectra, and 10000 K-type spectra. We compare our generative
model with SGAN (Zheng et al., 2020).

In our experiment, we use two evaluation criteria (GAN-
test and GAN-test) in section evaluation to analyze the data
augmentation models. This is because GAN-test needs to use real
data to train the recognition model, and then use the trained
model to test the quality of the generated data. While our real
O-type data scale is not enough to train a deep neural network
model, so we use the support vector machine (SVM) (Pisner
and Schnyer, 2019) as the GAN-train and GAN-test classification
model. At the same time, we test the accuracy of the recognition
model after data augmentation and without data augmentation.

Results
Experiment Settings
The Keras deep learning framework is used for constructing our
LCGAN and O-type spectra recognition model. The CPU we use
is Intel E5-2690 v4 (2.60 GHz), thememory is 128G, and the GPU
is NVIDIA Tesla K40C/12.00GB.

In the generative model, we used RMSprop with an initial
learning rate 0.0001 in the generator, while the learning rate
in the discriminator is 0.00015. In the recognition model, we
used Adam with an initial learning rate of 0.0001. We use
sklearn.svm.NuSVC api to build the SVM model, in which the
Gaussian kernel is used as the kernel. The parameter setting of
SGAN can be seen in the paper (Zheng et al., 2020).

Experiments on Data Augmentation
In order to calculate the GAN-train and GAN-test, we construct
the SVM model for O-type spectra binary recognition (Pisner
and Schnyer, 2019). We use Data set 3 to train the SVM model
and then test on spectra in Data set 4 to calculate the GAN-test.
We use Data set 4 as a training set and then test the SVM model
with Data set 2 to calculate GAN-train.

Because the training of the GAN is a dynamic process,
different from the general deep neural network, every step of
training in the GAN model will change the gradient space
(Shmelkov et al., 2018). Meanwhile, the loss of the GAN model
cannot prove the quality of data generated by the GAN, so we do
not discuss the loss of the GAN. We test the results of multiple
rounds of iteration for each model by GAN-test and GAN-train.
After analyzing the results of multiple rounds, we get the average
value. The final experimental results are as Table 2.

It can be seen that the scores of the GAN-train and GAN-test
of our model are higher than the SGAN model. The GAN-train
of LCGAN can reach 91.50% and SGAN can reach 91.38%. The
higher the GAN-train, the more likely it is that the data generated
by the model will contain more types of real data. It shows the
high diversity of the two generative model. The GAN-test of

TABLE 2 | The GAN-train and GAN-test results of the SGAN and the LCGAN

model.

Model GAN-train GAN-test

SGAN 91.38% 83.13%

LCGAN 91.50% 95.48%

The bold values show the effect of the LCGAN model in this paper, distinguish it from the

baseline model.

LCGAN can reach 95.48%, which is 12.35% higher than SGAN.
It shows that the authenticity of the O-type data generated by
LCGAN is better.

Compared with SGAN, LCGAN introduces TTUR to control
the confrontation training of generator and discriminator, which
can alleviate the problem of mode collapse in the GAN network.
So the generator can learn the features of real data and generate
more diverse data. Locally connected layers are useful to help the
model to generate appropriate spectral features in the different
bands. So, the LCGAN can generate more similar spectra.

Experiments on O-type Spectra Recognition Model
The previous experiments show that our data enhancement
model has certain advantages in the diversity and authenticity of
the generated data. Next, we will build a recognition model and
test whether our model can recognize the real O-type spectrum.

We train the O-type spectra recognition model on the
generated data set and then test the recognition model’s accuracy
on the validation set. We use Data set 5, which is composed of O-
type spectra generated by two generative models, as the training
set of our recognition model. We divide the Data set 5 into the
training set and test set according to 7:3. When the test set’s loss
does not drop after five rounds, we stop the training. We use this
method to avoid the recognition model overfitting. At the same
time, we use Data set 1 as the O-type data training set to test the
accuracy of the recognition model without data augmentation.

To test the performance of the model on real data sets, we take
Data set 2 as our validation set to test whether the recognition
model can recognize the real O-type spectral data. LCGAN and
SGAN have been trained for more than 2,000 iterations, and
we sampled them on multiple iterations. In the previous work,
we only tested GAN-train and GAN-test on SVM, and the data
only had two types: O-type and F-type. When testing the O-type
spectra recognition model, we expand the types of data sets and
expanded the types of data to O, F, G, and K. We conducted 10
experiments in each group and took themedian as the final result.
The results can be seen in Figure 7.

Because the GAN model has the problem of mode collapse, if
the generator repeatedly imitates a piece of data in the real data,
the discriminator will always judge it as true. Simultaneously,
after reaching the local equilibrium, the dynamic gradient space
makes it possible for the model due to more training. It can
be seen that the accuracy of the two models will oscillate after
reaching the highest accuracy.

The recognition accuracy of the recognition model without
data augmentation is 85.1% (Zou et al., 2020). Compared with the
recognitionmodel after data augmentation by LCGAN or SGAN,
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FIGURE 7 | Based on the data generated by the LCGAN and SGAN of different iterations, the accuracy of the O-type spectra recognition model on the validation set.

the accuracy of the recognitionmodel without data augmentation
is lower. Comparing the two models, the LCGAN model has the
following advantages: in terms of the overall effect, the average
and highest accuracy rate that LCGAN can achieve is higher than
that of SGAN. The accuracy rate of LCGAN can reach 93.67%,
which is 3.31% higher than SGAN.

Compared to the LeNet-like architecture classification model
used by Zheng et al. (2020), we build the O-type spectra
recognitionmodel with the attentionmechanism and the residual
structure. The attention mechanism helps the recognition model
to pay attention to the important spectral band, reducing the
influence of invalid information (such as noise). The residual
structure helps the recognition model to deepen the depth and
improve the representation ability of the network.

The experimental results show that spectra recognition model
based on data augmentation can complete the task of O-type
spectra recognition.

CONCLUSION

In this paper, we propose a novel model LCGAN to complete
the data augmentation task by introducing a generative
adversarial network and locally connected convolution. Then,
we extend an O-type spectra recognition model based on
residual and attention mechanisms. Base on the LCGAN,
the O-type spectra recognition model can learn the features
of O-type spectra. The above results show that our O-type
spectra recognition model based on data augmentation has

some advantages over other models in the task of O-type
spectra recognition.

Compared with Zheng et al. (2020), on the one hand,
we improve the data augmentation model based on GAN;
on the other hand, we introduce attention mechanism and
residual structure into the recognition model, which improves
the learning ability of the recognitionmodel. Compared with Zou
et al. (2020), we pay more attention to the data enhancement
of rare stars. The data-driven neural network classification and
recognition method cannot deal with the recognition task of rare
stars well. Our method has certain feasibility and superiority
in dealing with the recognition and classification of these
rare stars.

However, our model still has some problems in explaining
the features of the generated spectra. This is because the
GAN relies on the adversarial training between the generator
and the discriminator. GAN generates spectra by reducing the
distance between the distribution of generated samples and
the distribution of real samples. The model is not enough
to explain the features of the generated spectra. In future
work, we will focus on the exploration of the generated
spectral features.
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