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We continue our investigation of an improved quantization scheme for spherically
symmetric loop quantum gravity. We find that in the region where the black hole
singularity appears in the classical theory, the quantum theory contains semi-classical
states that approximate general relativity coupled to an effective anisotropic fluid. The
singularity is eliminated and the space-time can be continued into a white hole space-time.
This is similar to previously considered scenarios based on a loop quantum gravity
quantization.
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1 INTRODUCTION

In a previous paper (Gambini et al., 2020a) we studied an improved quantization for spherically
symmetric loop quantum gravity. Earlier work (Gambini and Pullin, 2013; Gambini et al., 2014;
Gambini et al., 2020b) had considered a constant polymerization parameter, similarly to the
“μ0” quantization scheme in loop quantum cosmology, whereas the improved quantization is
similar to the “μ” quantization scheme (Ashtekar and Singh, 2011). Other approaches involving
improved quantizations have also been explored in (Han and Liu, 2020). We observed that the
singularity was removed, but we did not analyze in detail what happened to the space-time
beyond the region where the singularity used to be. Here we complete that study. We find that in
that region there exist semi-classical quantum states for which the theory behaves like a
quantum version of general relativity coupled to an effective anisotropic fluid (Cho and Kim,
2019) that violates the dominant energy condition. In the highest curvature region there is a
space-like transition surface, something that was unnoticed in (Gambini et al., 2020a). The
space-time continues into a white hole geometry, like in Ref. (Ashtekar et al., 2018). However,
in this work we consider a different regularization for the parametrized observable associated to
the shift function. Its very definition requires the choice of a slicing and the new regularization
avoids an undesirable dependence on it in the semiclassical limit.

The organization of this paper is as follows. In section 2 we discuss the physical sector of the
quantum theory, focusing on semiclassical sectors. In section 3 we introduce a horizon penetrating
slicing based on Painlevé–Gullstrand coordinates and show how it can be used to connect to a white
hole space-time. We end with a discussion.

2 PHYSICAL SECTOR OF THE QUANTUM THEORY

The physical sector of the theory is obtained after combining Loop Quantum Gravity quantization
techniques and the Dirac quantization program for constrained theories. In summary, we start with a
kinematical Hilbert space in the loop representation adapted to spherically symmetric spacetimes for
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the geometrical sector [(Kφ, Eφ), (Kx, Ex)] together with a
standard representation for the spacetime mass and its
conjugate momentum (M, PM). A suitable basis of kinematical
states is the one provided by spherical symmetric spin networks
tensor product with the standard states for the matter sector in
the mass representation. Then, we represent the scalar constraint
as a well-defined operator in the kinemtical Hilbert space (for the
diffeomorphism constraint we rather work with the related finite
group of transformations mimicking the full theory).

Following the construction of Ref. (Gambini et al., 2020a),
the physical sector of the theory is encoded in physical states
(solutions to the scalar constraint) endowed with a suitable
inner product and a set of physical observables. This is
achieved, for instance, by applying group averaging
techniques for both the quantum scalar constraint and the
group of finite spatial diffeomorphisms (see also Refs
(Gambini and Pullin, 2013; de Blas et al., 2017)). We focus
our study to some of the simplest semi-classical states.
Quantum states consist of spatial spin networks labeled by
the ADM mass M (a Dirac observable) and integer numbers
that characterize the radii of spheres of symmetry associated
with each vertex of the network ki. The semi-classical states we
are going to consider here are given by superpositions in the
mass centered at M0 and of width δM0 and are therefore
associated with a fixed discrete structure in space (see
(Gambini et al., 2020a) for more details). They provide
excellent approximations to the classical geometry in
regions of small curvature compared to Planck scale.
Concretely, we consider the semi-classical states

|ψ〉 � 1
δM0

∫

dMeiMP0/Zcos[π(M −M0)
2δM0

]Θ(M −M0 + δM0)Θ(M0 + δM0 −M)

×|M, kS, . . . , k0, . . . , k−S〉
(2.1)

with k0 < kj for all j≠ 0, namely, j � −S,−S + 1, . . . , 1,−1, . . . , S,
where

k0 � Int⎡⎣(2GM0Δ
4πℓ3Pl

)2/3⎤⎦, (2.2)

times the Planck length squared determines the smallest area of
the 2-spheres in the theory. This corresponds to the improved
quantization, where Δ is the area gap. Besides, we choose
M0 ≫mPl and

δM0 ≤
3
2
(4πℓ3Pl
2GΔ)2/3

M1/3
0 . (2.3)

The states in Eq. 2.1 belong to a family of sharply peaked
semiclassical states in the mass and with support on a concrete
spin network (states with higher dispersion in the mass will
require superpositions of different spin networks). This choice
considerably simplifies the analysis of the effective geometries. As
we discussed in our previous papers, the quantum theory has
additional observables to the ones encountered in classical
treatments (Kastrup and Thiemann, 1994; Kuchar, 1994)
which are the ADM mass and the time at infinity. These

emerge from the discrete nature of the spin network treatment
and are associated with the ki’s, which in turn are associated with
the value of the areas of the spheres of symmetry connected with
each vertex of the spin network. One can also consider states that
are a superposition of M’s. The analysis will remain the same as
long as the states are peaked around a value of M.

In addition to physical states, the physical observables
representing space-time metric components will be defined
through suitable parametrized observables. They act as local
operators on each vertex of the spin network. Furthermore,
they involve point holonomies that are chosen to be
compatible with the superselection sectors of the physical
Hilbert space (see Ref (Gambini et al., 2020a). for more
details). Some of the basic parametrized observables are

Ê
x(xj)|M, k

→
〉 � Ô(z(xj))|M, k

→
〉 � ℓ

2
Plkj(xj)|M, k

→
〉, (2.4)

M̂|M, k
→
〉 � M|M, k

→
〉, (2.5)

where z(x) is a suitable gauge function that codifies the freedom
in the choice of radial reparametrizations.

For the components of the space-time metric on stationary
slicings we have, for instance, the lapse and shift,1

N̂
2(xj) :� 1

4

([Êx(xj)]′)2(Êφ(xj))2 ,

[N̂x(xj)]2� Ê
x(xj)(Êφ(xj))2

̂sin2(ρjKφ(xj))
ρ2j

,

(2.6)

where

(Êφ(xj))2� [(Êx(xj))′]2/4
1 + sin2(ρjKφ(xj))

ρ2j
− 2GM̂��

|̂Ex
√

(xj)|

, (2.7)

where we polymerized Kφ with ρ the polymerization parameter of
the improved quantization,

ρ � Δ
4πÊ

x. (2.8)

We choose the k’s in the one-dimensional spin network in our
physical state and the gauge function z(x) such that

Ê
x(xj) � ℓ

2
PlInt[x2j

ℓ
2
Pl

], (2.9)

1In Ref (Gambini et al., 2020a). for the shift we adopted the regularization
Kφ(xj)→ sin(2ρjKφ(xj))/2ρj , but it introduces an undesirable slicing
dependence that is avoided with the present regularization. Besides, the
representation that we adopt here for the square of the shift function as a
parametrized observable is compatible with the superselection rules of the
quantum numbers ]j of the kinematical spin networks as it was discussed in
Ref. (Gambini et al., 2020a).
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[Êx(xj)]′|M, k
→
〉 � ℓ

2
Pl

δx
Int⎡⎢⎢⎢⎣(xj + δx)2 − x2j

ℓ
2
Pl

⎤⎥⎥⎥⎦|M, k
→
〉, (2.10)

and with xj � δx
∣∣∣∣j∣∣∣∣ + x0 and with j ∈ Z, where

x0 �
���������������
Int[(2GMΔ

4π
)2/3]√

. (2.11)

Besides, we will choose δx � ℓPl as in the first paper
(Gambini et al., 2020a), although we will discuss the
consequences of the limiting choices (for a uniform lattice)
δx � ℓ

2
Pl

2x0
and δx � x0. The different spacings δx just mentioned

here correspond to different choices of states in the physical
space, all of them lead to the same semiclassical behavior but
differ in the deep quantum regime close to the singularity, as
one would expect. The quantum regime is for the small values
of ki, where if one were to consider a superposition of states,
small changes in ki’s would lead to great fluctuations in the
properties of the states.

Then, the metric components take the following form in terms
of the previous operators

ĝ tt(xj) � −(N̂2 − ĝxx[N̂x]2), ĝ tx(xj) � ĝxx

�����[N̂x]2√
,

ĝxx(xj) � (Êφ)2
Ê
x , gθθ(xj) � Ê

x
, gϕϕ(xj) � Ê

x
sin2θ.

Let us restrict the study to the family of stationary slicings
determined by the condition̂sin2(ρjKφ(xj)) � [F̂(xj)]2 (2.12)

where some specific choices of F(xj)will be studied below.However,
any viable choice must be such that F(x) is real and F(x) ∈ [−1, 1].
Now, one can easily construct the operators corresponding to the
components of the spacetime metric. They are given by

ĝtt (xj) � −(1 − r̂S��
Ê
x

√ ), ĝ tx(xj) � −
��
π

Δ

√ {[̂Ex]′} ��
F̂2

√
����
1− r̂S��̂

E
x

√
√

+ 4πÊ
x
F̂
2

Δ

,

ĝxx(xj) � {[̂Ex]′}2

4Ê
x(1 − r̂S��

Ê
x

√ + 4πÊ
x
F̂
2

Δ ), ĝθθ(xj) � Ê
x
, ĝϕϕ(xj) � Ê

x
sin2θ,

with r̂S � 2GM̂. The effective metric is defined as gμ] � 〈ĝμ]〉,
where the expectation value is computed on the extended physical
state

∣∣∣∣ψ〉 we presented above. We will focus on the leading order
corrections when the dispersion in the mass can be neglected. In
this case, we can just remove the hats in the previous expression
and denote this contribution by (0)guv(xj). In addition, we will
take a continuum limit that was discussed in our first paper.
Namely, xj � δx

∣∣∣∣j∣∣∣∣ + x0 is replaced by (|x| + x0), with x ∈ R and
the integer part function Int[·] will be dropped from all
expressions. This continuum limit means that the effective
geometries bounce when they reach x � 0.

3 PAINLEVÉ-GULLSTRAND
COORDINATES: BLACK HOLE TO WHITE
HOLE TRANSITION
We are interested in spatial slicings that are horizon penetrating
and asymptotically flat. For instance, ingoing Painlevé-Gullstrand
coordinates is one of the well-known choices that meet these
requirements. Besides, the time coordinate follows the proper
time of a free-falling observer. The slicing is defined by the
condition F̂(xj) � F̂1(xj) where

F̂1(xj) � ρ

����
r̂S��
Ê
x

√√
. (3.1)

This choice is equivalent to a lapse operator N̂(xj) � Î. Besides,
one can easily see that in the semiclassical limit xj → x + x0 we
have the function F1(x)< 1 for all x ≠ 0, while F1(x � 0) � 1. This
is important since this choice will allow us to completely probe
the high curvature region of the effective geometries.

FIGURE 1 | Penrose diagram of the effective geometry determined by
the slicing in Eq. 3.1. Black and green lines indicate low and high curvature
regions, respectively. Continuous lines represent smooth regions while dotted
lines are associated to a discrete geometry. Dashed lines indicate that
the spacetime diagram continues up and down.
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They can be obtained as in (Gambini et al., 2020a). One gets

(0)gtt(x) � −(1 − rS
|x| + x0

) ,

(0)gtx(x) � −sign(x)
������

rS
|x| + x0

√ (1 + δx
2(|x| + x0)) ,

(0)gxx(x) � (1 + δx
2(|x| + x0))2

, (0)gθθ(x) � (|x| + x0)2,
(0)gϕϕ(x) � (|x| + x0)2sin2θ.

(3.2)

For this slicing, the low curvature regions occur when F(x)x0 or
equivalently at x→ ± ∞. Concretely, at x→ +∞ the effective
metric approaches sufficiently fast a classical black hole metric in
ingoing Painlevé-Gullstrand coordinates, while for x→ −∞ the
effective metric approaches sufficiently fast a classical white hole
metric in outgoing Painlevé-Gullstrand coordinates. On the other
hand, as we will see below, the curvature reaches its maximum when
F(x) � 1, namely, at x � 0.

In what follows, we refer to Figure 1 (see the similarities with the
Penrose diagram of Ref (Ashtekar et al., 2018)). One can see that the
condition (0)gtt(x) � 0 has two real solutions in x, corresponding to
two classical black or white hole horizons, at xBH > 0 and xWH < 0. In
the spacetime regions with x > xBH or x < xWH , the surfaces x � const
are time-like, and correspond to untrapped regions. In the region right
behind the black hole horizon, x < xBH , x � const hypersurfaces are
space-like. This region is a trapped black hole interior. As we move
toward the high curvature region, curvature ismaximumat x � 0. This
space-like hypersurface connects the trapped black hole region with an
anti-trapped white hole region. This is the so-called transition surface
(Ashtekar et al., 2018). The anti-trapped white hole region extends all
the way from x � 0 to the white hole horizon x � xWH . In all this

region, x � const hypersurfaces are still space-like. Once the white hole
horizon x � xWH is crossed to the outside region, spacetime is
untrapped again and x � const hypersurfaces are again time-like.

In order to illustrate all these properties, it is convenient to first
write the effective metric in its diagonal form (It should be noted
that although the theory does not recover the full diffeomorphism
invariance of the classical theory in the quantum regions, it is a
valid mathematical tool to diagonalize a metric nevertheless.) It
can be easily obtained by introducing the change of coordinates

dt→ dt +
(0)gtx(x)
(0)gtt(x)

dx (3.3)

This transformation amounts to the change

(0)gxx(x)→ (0)~gxx(x) �
(1 + δx

2(|x|+x0))2(1 − rS
|x|+x0) , (0)gtx(x)→ (0)~gtx(x) � 0,

(3.4)

while all other components remain as

(0)gtt(x)→ (0)~gtt(x) � −(1 − rS
|x| + x0

), (3.5)

(00)gθθ(x)→ (00)~gθθ(x) � (|x| + x0)2, (00)~gφφ(x)→ (00)~gφφ(x)
� (|x| + x0)2sinθ.

(3.6)

In Figure 2we show two components of the effectivemetric in its
diagonal form. There where they vanish, a horizon forms and the
coordinate system becomes singular. However, we should remember
that around xxx0 spacetime is discrete and the continuous line is
just an interpolation. Therefore, the metric will be well defined
provided the horizons are not located on a vertex of the lattice.

We have also studied the effective stress-energy tensor that encodes
the main deviations from the classical theory. It is defined as

Tμ] :� 1
8πG

Gμ], (3.7)

where Gμ] is the Einstein tensor. Tμ] is characterized by the
effective energy density ρ and radial and tangential pressures
densities, px and p||, respectively. They are defined by means of

ρext :� Tμ]
XμX]

XρXρ
, (3.8)

pextx :� Tμ]
rμr]

rρrρ
, (3.9)

and

pext|| :� Tμ]
θμθ]

θρθρ
, (3.10)

whereXμ is the Killing vector field that is time-like in the regions in
which x � const hypersurfaces are time-like. rμ and θμ are the
vector fields pointing in the radial and θ-angular directions,
respectively. When the Killing vector field Xμ is space-like,
namely, in the regions in which x � const hypersurfaces are
space-like, rμ becomes time-like. Therefore,

FIGURE 2 | The values of the tt component of the metric and the inverse
of xx for the metric in diagonal form. When the first vanishes, horizons arise.
Notice that in the region between the two horizons the discreteness is
significant as represented in the separation of the dots (although in the
plot we do not show all the points in the lattice but only one out of fifty).
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ρint :� Tμ]
rμr]

rρrρ
, (3.11)

pintx :� Tμ]
XμX]

XρXρ
, (3.12)

while pint|| � pext|| since θμ remains space-like. We will assume that
these effective space-times can be approximated by a smooth and
continuous geometry everywhere, even at the transition surface.
This assumption, as we mentioned, fails in the most quantum
region. However, we expect that T]

μ (a quantity only valid when
geometry is smooth) will still give us qualitative hints about
quantum geometry corrections there.

In Figure 3 we show the components of the stress-energy
tensor Tμ], or equivalently, the components of the Einstein tensor
(up to a factor (8πG)) for the choice δx � ℓPl. From them it is easy
to extract the energy densities and pressures in each region of
these effective space-times.

It is straightforward to compute the value of the energy density
and pressures of the stress-energy tensor at the transition surface
and in the limit of large mass rS ≫ ℓPl. Actually, their value
depend on the choice of spacing δx of the uniform lattice in
the radial direction. For instance, for δx � x0(ℓPlx0

)s with s � 0, 1, 2,
one can see that2

ρint(x � 0) � 2π
Δ ×O([ Δ

2πrS
]s/3+2/3),

pintx (x � 0) � −2πΔ ×O([ Δ
2πrS

]s/3),
pint|| (x � 0) � −2πΔ ×O([ Δ

2πrS
]s/3)

(3.13)

Let us note that in the most quantum region,

ωx(x � 0) � pintx (x � 0)
ρint(x � 0) � −O([2πrSΔ ]2/3),

ω||(x � 0) � pint|| (x � 0)
ρint(x � 0) � −O([2πrSΔ ]2/3). (3.14)

As we see, at the transition surface, the effective stress-energy
tensor does not violate the strong energy condition since
ρint(x � 0)≥ 0. However, it does actually violate the dominant
energy condition. Since the dominant energy condition implies
that |ωx|≤ 1 and

∣∣∣∣ω||
∣∣∣∣≤ 1, we conclude that this condition is

violated since both |ωx(x � 0)| and
∣∣∣∣ω||(x � 0)∣∣∣∣ at the

transition quantum spacetime blow up in the limit rS ≫ ℓPl.
One can construct the Penrose diagram of this geometry, together

with a possible extension to regions not covered by our slicing.

4 DISCUSSION

There are several comments about the scenario studied in this
manuscript. On the one hand, the effective geometries that one
can derive in this theory are uniquely determined by the

FIGURE 3 | The stress energy tensor of the effective metric (0)~g
μv(x). This plot corresponds to δx � ℓPl, namely, s � 1.

2The choices of δx shown here correspond to the maximum allowed uniform
discretization if s � 0, while s � 2 gives the finest uniform refinement. s � 1 is an
intermediate choice.
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semiclassical physical state and the (parameterized) observables
that represent the components of the metric. The quantum
corrections on these geometries likewise depend on the
minimal area gap Δ and the size of the discretization of the
physical states we are considering. Polymer corrections due to the
choice of foliation will also contribute if fluctuations of the mass
are considered. We are taking for simplicity an element (spin
network) of the basis in the physical space of states and ignoring
superpositions in different discretizations and masses. Quantum
corrections break the covariance, in particular because their
dependence on the discretization of the chosen quantum
states, but also due to foliation dependent terms. The latter
produce O(Δr2S /x2) quantum corrections in the (asymptotically
flat) external region of the black hole and therefore they are
completely unobservable for macroscopic black holes, allowing to
recover diffeomorphism invariance. Since different foliations are
identified with (observer’s) frames of reference, this is equivalent
to say that, for physically implementable frames of reference (i.e.
physically realizable observers) in the exterior region, quantum
corrections will be negligible. Nevertheless, these quantum
corrections increase when approaching the high curvature
region, reaching maximum values of order O(Δr2S /x20). For
instance, a free-falling observer (as it is the case under
consideration in this manuscript) and an accelerated observer
will observe there only slightly different corrections, even if its
foliation involves accelerations that are Planck order.

Regarding the original choice of shift as parametrized observable
adopted in Ref. (Gambini et al., 2020a), we noticed that, as
mentioned in (Kelly et al., 2020), the most quantum region
showed an inner Cauchy horizon connecting the trapped black
hole region with a Planckian size transition space-time where x �
const hypersurfaces are time-like. However, strictly speaking, due to
this Cauchy horizon, the extension beyond this region is not unique.
After the bounce a Cauchy Horizon is traversed and therefore the
initial conditions at I− that end up producing a black hole are not
enough for the determination of the possible extensions beyond the
Cauchy horizon. Notice that the Cauchy horizon occurs in a deep
quantum region that is in the past of the extension; further non-
uniqueness would occur when quantum superpositions are
considered. Besides, different foliations capture different
extensions. We saw that a choice of foliation (corresponding to
an accelerated observer with a Planck order acceleration) leads to an
anti de Sitter universe beyond the Cauchy horizon. Similar
ambiguities have been noted in classical general relativity
(Dafermos and Luk, 2017). One must keep in mind that these
ambiguities can be alleviated by considering parametrized
observables that correspond to physically implementable frames
of reference (i.e. physically realizable observers). We are considering
here extrinsic framings corresponding to a choice of polimerization
for the functional parameter Kφ(xj). Even though the theory is
covariant in the sense that the classical observables become quantum
observables in the quantization process, each polimerization
corresponds to a different choice of framing. In reference
(Gambini and Pullin, 2009) we proved that diffeomorphism
invariance of the parametrized observables corresponding to the
metric is only preserved for diffeomorphism that do not amplify
Planck scale separation to macroscopic scale. The introduction of

more realistic intrinsic framings resulting from the inclusion of
matter would provide a natural choice of slicing allowing to solve this
limitation. For instance, the case of Painlevé-Gullstrand coordinates,
that amount to a unit parametrized observable related to the lapse
function. The kind of midisuperspace model here considered allows
to analyze this issues while most of the minisuperspace scenarios
proposed in the literature (see (Bodendorfer et al., 1912; Sartini and
Geiller, 2021; Boehmer and Vandersloot, 2007; Campiglia et al.,
2008; Ashtekar and Singh, 2011; Cortez et al., 2017; Olmedo et al.,
2017; Alesci et al., 2018; Alesci et al., 2019; Assanioussi et al., 2020)
for references on hypersurface orthogonal slicings) adopted a
particular family of space-time foliations where this issue of
slicing dependence did not arise. Other authors have taken the
issue of non-covariance to imply that modifications of the constraint
algebra are in order, leading to the deformed hypersurface
deformation algebra approach (Tibrewala, 2012; Bojowald et al.,
2015; Ben Achour et al., 2018).

Summarizing, we have applied an improved quantization scheme
for loop quantum gravity in spherical symmetry. The singularity that
appears in classical general relativity is eliminated and space-time is
continued to a white hole space-time geometry through a transition
surface where curvature reaches its maximum value. This is
qualitatively similar to scenarios that have been recently proposed
(Ashtekar et al., 2018). Our proposal yields effective geometries that
are free of undesirable slicing dependencies in the semiclassical limit.
Actually, the slicing independence in a precise semiclassical limit of
small mass fluctuations can be invoked to restrict polymer
modifications of the scalar constraint and the parametrized
observables describing the quantum geometry. Finally, it is
interesting to note that most of the ideas presented here and in
Ref (Gambini et al., 2020a). can be very useful in other situations, like
in the vacuum polarized T3 Gowdy cosmologies with local rotational
symmetry (de Blas et al., 2017).
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