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In cold galactic molecular clouds, dust grains are coated by icy mantles and are
prevalently charged negatively, because of the capture of the electrons in the gas. The
interaction of the charged grains with gaseous cations is known to neutralize them.
In this work, we focus on the chemical consequences of the neutralization process of
HCO+, often the most abundant cation in molecular clouds. More specifically, by means
of electronic structure calculations, we have characterized the energy and the structure
of all possible product species once the HCO+ ion adsorbs on water clusters holding an
extra electron. Two processes are possible: (i) electron transfer from the negative water
cluster to the HCO+ ion or (ii) a proton transfer from HCO+ to the negative water cluster.
Energetic considerations favor electron transfer. Assuming this scenario, two limiting
cases have been considered in astrochemical models: (a) all the neutralized HCO+ is
retained as neutral HCO adsorbed on the ice and (b) all the neutralized HCO+ gets
desorbed to the gas phase as HCO. None of the two limiting cases appreciably contribute
to the HCO abundance on the grain surfaces or in the gas.

Keywords: DFT, water ice, solvated electron, astrochemical modeling, interstellar medium

INTRODUCTION

The identification of about 200 molecular species in the interstellar medium (ISM) through
their rotational (millimeter), rovibrational (infrared), and/or electronic (ultraviolet or visible)
transitions is the proof of the existence of a rich molecular universe in which a multitude of
chemical processes take place (Caselli and Ceccarelli, 2012; Tielens, 2013; Van Dishoeck, 2014).
Understanding the chemical and physical bases that drive the formation of these molecules in
the harsh conditions of the ISM is a current challenge to the Astrochemistry community. Many
of these species are formed in reaction chains taking place in the gas phase (for some recent
examples, see, e.g., Shannon et al., 2013; Vasyunin and Herbst, 2013; Balucani et al., 2015; Skouteris
et al., 2017, 2018, 2019; Vazart et al., 2020), but in some cases their production occurs in or
on the icy mantle of interstellar dust grains. Interstellar grains, indeed, can act as a catalyzer
or simply as a concentrator of the reactants, by impeding them to fly apart after non-reactive
encounters. Several models have been developed to account for the chemistry on interstellar ice
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(e.g., Garrod and Herbst, 2006; Taquet et al., 2012; Agúndez
and Wakelam, 2013; Rimola et al., 2014; Penteado et al., 2017;
Loison et al., 2019; Grassi et al., 2020). The role of interstellar
grains is especially important for the synthesis of those molecules
that cannot be formed in gas-phase reactions, such as the most
important interstellar molecule H2 (Vidali, 2013; Wakelam et al.,
2017).

Remarkably, ice-assisted chemical synthesis can be activated
by UV and high-energy radiation (e.g., X-rays and energetic
particles like cosmic rays). The interaction of energetic particles
with matter generates many non-thermal secondary low-
energy (<20 eV) electrons (LEE), which may themselves induce
chemical reactions (Arumainayagam et al., 2010; Alizadeh and
Sanche, 2012). In an astrochemical context, LEE may result
from the interaction of cosmic rays with gaseous H2 in dense
clouds (Oka, 2013) and inelastic collisions of cosmic rays when
traversing through the ices (Pimblott and Laverne, 2007). The
number density of free electrons in molecular clouds is estimated
to be ca. ne = 10−4 cm−3 (Evans, 1993; Rae et al., 2004; Mason
and Field, 2019). As previously argued, the probability that
interstellar dust grains can capture free electrons is high. It has
been long recognized, indeed, that negatively charged grains
are present in the interstellar medium (Draine and Sutin, 1987)
and that their recombination with positive ions dominates their
neutralization (Walmsley et al., 2004; Ceccarelli and Dominik,
2005). Primary electron attachment can also induce chemical
transformations because of the production of reactive species
(Boamah et al., 2014; Mason et al., 2014).

According to the work by Hatano et al. (2011), LEE are
thermalized within approximately 1 ps via inelastic collisions.
When the ice is predominantly formed by water molecules,
the captured electrons can be treated as metastable solvated
electrons. The plausibility of this scenario is demonstrated by
experiments where molecules embedded in water ice irradiated
by electrons at 100–400 eV yield the desorption of the molecular
species followed by the formation of solvated electrons (Thrower
et al., 2011).

In the present work, we aim to characterize the role
of fully equilibrated solvated electrons in the chemistry of
interstellar icy grains by means of quantum chemical calculations
complemented by astrochemical modeling. To this end, we have
described, as a test case, the interaction of a negatively charged icy
grain with the HCO+ ion, the most abundant molecular ion in
molecular clouds (average abundance with respect to H2 of about
10−8). Specifically, we have modeled the negative icy grain with a
cluster of water molecules containing an extra electron (so-called
solvated electron) and its possible interactions with the ion. We
have also scrutinized the possible outcomes of such interactions,
which are the following:

1) formation of the neutral HCO radical adsorbed on the water
ice grain surfaces through an electron transfer fromW− (i.e., the
water cluster with the extra electron) to HCO+:

W−
+HCO+(gas) → W···HCO (1)

where W···HCO represents the radical HCO interacting with
water ice W;

2) formation of CO adsorbed on the water ice grain surfaces
through proton transfer from HCO+ to W −:

W−
+HCO+(gas) → HW···CO (2)

where HW···CO represents CO interacting with the water ice
with an extra, covalently bound H atom;

3) formation of CO and H, both adsorbed on the water
ice grain surfaces, due to dissociative electron transfer from
W− to HCO+:

W−
+HCO+(gas) → H···W···CO (3)

where H···W···CO represents CO and H simultaneously
adsorbed on the water ice.

Finally, we have tried to address the possible astrophysical
implications of the present quantum calculations. We remind
the readers that HCO is an important intermediate species in
the formation of H2CO and, subsequently, CH3OH by CO
hydrogenation on ice. In addition, gaseous formyl radical has
been widely detected in interstellar objects and its formation
routes are poorly constrained (see below). New observational
results on the gaseous HCO radical have recently been
reported, including an analysis of its abundance to elucidate
its origin (Bacmann and Faure, 2016). Since the electron–ion
recombination liberates a large amount energy (as large as the
ionization potential of the HCO radical, namely, 8.12± 0.04 eV),
HCO or its moieties H and CO, once formed on ice, can
chemically desorb into the gas phase. We will therefore tackle the
possible effects of processes (1)–(3) either in the chemistry of ice
or in the chemistry of the gas phase.

METHODS

Quantum Chemical Calculations
As mentioned in the Introduction, the negatively charged icy
grains have been modeled in this work as water clusters of
different sizes containing one extra electron. In other words,
we consider that the interaction of the additional electron
occurs only with the water molecules of the icy mantles of
grains. The electronic nature of the solvated electron has been
extensively studied in physical and quantum chemistry (Turi and
Rossky, 2012; Young and Neumark, 2012). Quantum chemical
calculations based on large water clusters converge to the same
description, that is, the extra electron can be either localized
within the cavity of the water clusters, on the surface of the
clusters in a localized fashion, or delocalized along the cluster
surface. The preference for those forms depends on the structure
and size of the water cluster (Kim et al., 1996, 1997; Lee et al.,
1997; Khan, 2003, 2004, 2005, 2006; Herbert and Head-Gordon,
2005, 2006). To contemplate all the possible arrangements, in
this work we have considered three well-described water clusters
with one solvated electron (see Figure 1): (i) a 14 H2O-molecule
cluster (Khan, 2006), in which the extra electron is found inside
the cavity or localized on the surface cluster (W−

14-cav and W−
14-

loc, respectively); (ii) a 20 H2O-molecule cluster (Khan, 2003,
2005; Herbert and Head-Gordon, 2005, 2006), in which the extra
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FIGURE 1 | BHYLP/6-31(1+,3+)G(d,p)-optimized geometries of the water clusters with 14 (A), 20 (B), and 24 (C) H2O molecules with the extra electron (W−

14, W
−

20,
and W−

24, respectively) inside the cavity (cav), localized at the surface of the water clusters (loc) and delocalized at the surface of the clusters (deloc). The singly
occupied molecular orbitals (SOMO), which represent the localization of the extra electron, are also shown.

electron is localized or delocalized on the cluster surfaces (W−
20-

loc and W−
20-deloc, respectively); and (iii) a 24 H2O-molecule

cluster (Khan, 2004; Herbert and Head-Gordon, 2005, 2006),
which can present the extra electron within the cavity, localized
on the surface, or delocalized on the surface (W−

24-cav, W
−
24-loc,

and W−
24-deloc, respectively). For the sake of clarity, along this

work we will use the “W−
N-xy” notation for the water cluster

systems, in which W− will refer to water clusters with the extra
electron, N refers to the number of water molecules composing
the water cluster, and the xy term indicates if the extra electron

is inside the cavity (xy=cav), is localized on the cluster surface
(xy=loc), or is delocalized on the cluster surface (xy=deloc).

Concerning the calculations including H/C/O, the initial
guess structures were manually built: (i) for the W···HCO
complexes, the initial guess features HCO+ interacting through
its O atom end with one H atom of the H2O cluster ices, (ii)
for the HW···CO complexes, the CO molecule is interacting
with one H2O molecule of the cluster ices, while the H atom
is incorporated into another water molecule of the cluster,
thus forming an H3O group, and (iii) for the H···W···CO
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FIGURE 2 | BHYLP/6-31(1+,3+)G(d,p)-optimized structures for the interaction of HCO+ with the 14-water-molecule clusters with an extra electron inside the cavity
(A) and localized at the surface (B). Structures on the left correspond to the electron transfer from W−

14 to HCO+; structures in the middle correspond to the H
transfer from HCO+ to W−

14 (the transferred H is labeled by an asterisk); and structures on the right correspond to the dissociation of HCO resulting with the
adsorption of CO and H on the water ice clusters. Bare values are the calculated reaction energies taking as the zero energy reference the W−

14 + HCO+ asymptote;
values in brackets are the relative energies of the different complexes belonging to the same system. These energetics values are calculated at the
MP2/6-311(2+,3+)G(d,p)//BHYLP/6-31(1+,3+)G(d,p) theory level. Energy units are in eV, and bond distances are in Å.

complexes both CO and H are interacting with different water
molecules of the cluster ices. Following the work by Herbert
and Head-Gordon (Herbert and Head-Gordon, 2005, 2006),
geometry optimization has been carried out by using the BHLYP
hybrid density functional method with a 6-31(1+,3+)G(d,p)
basis set, which is the 6-31++G(d,p) standard one with
two more sets of diffuse s functions on each H atom (with
exponents 1.0843373500 × 10−2 and 3.2660763500 × 10−3,
and coefficients 1.00). Single-point energy calculations on the
optimized geometries at the MP2 post-Hartree–Fock method
employing a 6-311(2+,3+)G(d,p) basis set [namely, the 6-
311++G(d,p) standard one including an additional set of diffuse
sp functions on each O and C atom (for O, with exponent
2.5451807230 × 10−2 and coefficient 1.00; for C, with exponent
1.3192771080× 10−2 and coefficient 1.00) and the two additional
sets of diffuse s functions on each H atom] have been performed

to calculate the reaction energies of processes (1), (2), and (3).
It is worth mentioning that more sophisticated treatments on
electron capture phenomena are possible, including quantum
effects (Flower and Middleton, 2004). However, our systems are
relatively large to be simulated by this methodology (with a
significant increase of the computational cost) and, since the aim
of the work is mainly on the energetics of the studied processes,
we consider the used level of computation to be accurate enough.

Astrochemical Modeling
To assess the implications of our new computations on the
chemical composition of the molecular cloud gas, we used
the GRAINOBLE code (Taquet et al., 2012, 2013). Briefly,
GRAINOBLE is a gas-grain time-dependent astrochemical
model, which takes into account the grain-surface hydrogenation
and oxidation plus the multilayered structure of the grain

Frontiers in Astronomy and Space Sciences | www.frontiersin.org 4 April 2021 | Volume 8 | Article 655405

https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org
https://www.frontiersin.org/journals/astronomy-and-space-sciences#articles


Rimola et al. HCO+ With Interstellar Negative Grains

FIGURE 3 | BHYLP/6-31(1+,3+)G(d,p)-optimized structures for the interaction of HCO+ with the 20-water-molecule clusters with an extra electron localized at the
surface (A) and delocalized at the surface (B). Structures on the left correspond to the electron transfer from W−

20 to HCO+; structures in the middle correspond to
the H transfer from HCO+ to W−

20 (the transferred H is labeled by an asterisk); and structures on the right correspond to the dissociation of HCO resulting in the
adsorption of CO and H on the water ice clusters. Bare values are the calculated reaction energies taking as the zero energy reference the W−

20 + HCO+ asymptote;
values in brackets are the relative energies of the different complexes belonging to the same system. These energetics values are calculated at the
MP2/6-311(2+,3+)G(d,p)//BHYLP/6-31(1+,3+)G(d,p) theory level. Energy units are in eV, and bond distances are in Å.

mantles. We assumed the standard elemental abundances (see,
e.g., Agúndez and Wakelam, 2013), a cloud with a density
of 104 cm−3, a temperature of 10K, and a cosmic ray
ionization rate of 3 × 10−17 s−1 and run the code up to
108 year.

RESULTS AND DISCUSSION

Figures 2–4 show the optimized geometries for the relevant
species in the (1)–(3) processes. In the same Figures, the
reaction energies (bare values) and the relative energies (values
in brackets) are also shown. Different optimized structures were
obtained, but only the most stable ones are presented here for the
sake of clarity and brevity.

For all the W···HCO cases, the initial HCO+ species (a linear
molecule) becomes bent during the geometry optimization.

Analysis of the spin density confirms that the unpaired electron
is fully localized on the C atom, indicating that the extra
electron is transferred to form the HCO radical (process 1).
Moreover, in all the analyzed cases, the newly formedHCO group
interacts with the water ice clusters via hydrogen bond (H-bond)
interactions with both the H and O ends acting as donor and
acceptor, respectively.

For the HW···CO complexes resulting after the proton
transfer process (2), in all the considered cases, the incorporated
H atom remains accommodated in the ice as a H3O radical
species (labeled by an asterisk in the Figures), indicating that it
is stable under these conditions.

Finally, in the case of the dissociative electron–ion
recombination (3), the resulting H···W···CO complexes
feature the CO moiety interacting with the water ice clusters
similarly to the HW···CO systems, but the coproduct H atom is
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FIGURE 4 | BHYLP/6-31(1+,3+)G(d,p)-optimized structures for the interaction of HCO+ with the 24-water-molecule clusters with an extra electron inside the cavity
(A), localized at the surface (B), and delocalized at the surface (C). Structures on the left correspond to the electron transfer from W−

24 to HCO+; structures in the
middle correspond to the H transfer from HCO+ to W−

24 (the transferred H is labeled by an asterisk); and structures on the right correspond to the dissociation of
HCO resulting in the adsorption of CO and H on the water ice clusters. Bare values are the calculated reaction energies taking as the zero energy reference the W−

24

+ HCO+ asymptote; values in brackets are the relative energies of the different complexes belonging to the same system. These energetics values are calculated at
the MP2/6-311(2+,3+)G(d,p)//BHYLP/6-31(1+,3+)G(d,p) theory level. Energy units are in eV, and bond distances are in Å.
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not covalently bound to a water molecule but simply physisorbed
on water ice clusters.

By comparing the energy content of the possible final
complexes, it is clear that the formation of W···HCO is more
favorable than the formation of HW···CO and H···W···CO by
ca. 1.15–1.78 eV and 0.15–0.80 eV, respectively. Even though the
system will have enough energy to overcome those differences
because of the large amount of energy liberated in all the three
families of processes (1)–(3), these results imply that HCO+

neutralization on a negative grain is a possible route of HCO
formation directly on the ice and without the need to surmount a
potential energy barrier. This is at variance with HCO formation
via H addition to CO for which a sizable barrier is present (Woon,
2002; Marenich and Boggs, 2003; Goumans et al., 2007, 2008;
Andersson et al., 2011; Peters et al., 2013; Rimola et al., 2014). In
other words, the interaction of HCO+ with a negatively charged
grain readily leads to the formation of HCO directly adsorbed on
the ice.

Interestingly, all the three situations are below the “W−

+ HCO+(gas)” asymptote and accordingly the three products
arising from process (1)–(3) can be populated. Nonetheless,
the energy liberated in the formation of W···HCO by (1) is
very large (between −7.0 and −8.0 eV) and it is reasonable to
consider that part of this large nascent energy can be used to
break the H–C bond of the HCO radical yielding the formation
of the H···W···CO complexes, which is process (3). We have
calculated the energy barriers for the H–C fission in the W24-
cav···HCO, W24-loc···HCO, and W24-deloc···HCO cases. Their
values (1.75, 1.35, and 2.01 eV, respectively) are still largely below
the asymptote, thus supporting this idea. On the other hand,
the energetics involved in the formation of W···HCO, process
(1), is dictated by the difference in the electron affinity of
HCO+ and of neutral water ice, while in HW···CO, process (2)
is dictated by the proton affinity of CO and W-, respectively.
The value of the electron affinity for HCO+ and the W24-
cav water ice cluster (here W24-cav is used here as a test case
of the water ice) is −7.67 and −0.52 eV, respectively, in our
calculations (see reactions entitled “Electron affinity” of Table 1),
while the calculated proton affinity of CO and W−

24-cav is,
instead,−6.51 and−13.01 eV, respectively (see reactions entitled
“Proton affinity” ofTable 1). The larger electron affinity of HCO+

compared to W24-cav indicates that the solvated electron prefers
to be transferred to HCO+ to form HCO, whereas the larger
proton affinity of W−

24-cav compared to CO indicates that proton
transfer to W−

24-cav to form HW24-cav is also energetically
favorable. Thus, it seems there is a competition between processes
(1) + (3) and (2), namely, between electron–ion recombination
(dictated by electron transfer) and proton transfer. Additionally,
for process (2), an energy barrier associated with the H transfer
from HCO+ to form the H3O radical is expected, since the
formed H3O radical is a metastable species in the clusters. Such a
stability of the solvated H3O radical has already been reported by
Chulkov et al. (2009).

By considering the involved energy, the competition between
these processes seems to be favored by the electron–ion
recombination (the calculated reaction energies for these
processes are shown in Table 1 indicating that for the electron

TABLE 1 | Reaction energies (1E, in eV) calculated at the
MP2/6-311(2+,3+)G(d,p)//BHYLP/6-31(1+,3+)G(d,p) theory level corresponding
to (i) the electron affinity of W24-cav and HCO+, (ii) the proton affinity of W−

24-cav
and CO, (iii) the electron transfer from W−

24-cav to the HCO+ cations, and (iv) the
H+ transfer from the HCO+ cation to W−

24-cav.

Process Reaction 1E

Electron affinity W24-cav + e → W−

24-cav −0.52

HCO+ + e → HCO −7.67

Proton affinity W−

24-cav + H+ → HW24-cav −13.01

CO + H+ → HCO+ −6.51

Electron transfer W−

24-cav + HCO+ → W24-cav + HCO −7.15

Proton transfer W−

24-cav + HCO+ → HW24-cav + CO −6.50

transfer is−7.15 eV whereas for the proton transfer is−6.50 eV).
In addition to that, from a dynamical point of view, electron
transfer is naturally favored by the much smaller mass of the
electron compared to the proton. We can also expect that the
interaction between HCO+ and the additional electron of the
water clusters will start at a much longer distance, as the impact
parameters and cross sections are usually much larger in the case
of electron transfer rather than proton transfer (Prigogine and
Rice, 1973). In other words, both energetics and the dynamical
considerations favor processes (1) + (3) as dominant over
process (2).

It is worth mentioning that these reaction energies are less
negative by some amount than the calculated reaction energies
for the formation of W24-cav···HCO and HW24-cav···CO from
the interaction of HCO+ with W−

24-cav (−8.38 and −6.80 eV,
respectively), because the W24-cav···HCO and HW24-cav···CO
structures account for the stabilizingH-bond interaction between
the two partners.

ASTROPHYSICAL IMPLICATIONS

The present calculations only offer a qualitative picture of the
title process, as they do not provide reaction rate coefficients
to be introduced in astrochemical models. The generation of
those rate coefficients would require a rigorous treatment of the
energy dissipation between all the degrees of freedom of the
cluster molecules (or better, of the icy mantle of interstellar grain)
once the energy associated with the electron–ion recombination
(or proton transfer) is liberated. Such a treatment is a daunting
task adopting state-of-the-art theoretical treatments, even though
the first studies are appearing in the literature (Fredon et al.,
2017; Fredon and Cuppen, 2018; Pantaleone et al., 2020). This
is probably one of the main challenges in the characterization
of chemistry occurring on interstellar ice. However, based on the
two cited works, a large fraction (≥70%) of the reaction energy is
absorbed very quickly, in<1 ps, by the water molecules of the ice.
Relevant to this study, Pantaleone et al. (2020) studied the fate of
the energy released by the H+CO reaction on the icy surface and
concluded that the 137 kJmol−1 released by the reaction is largely
absorbed by the icy molecules and that the newly formed HCO
only possesses <20 kJ mol−1, a too low energy for it to break the
bonds with the ice and be liberated into the gas.
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However, missing specific simulations for the case studied
here, namely, HCO+ + e−, we consider the two possible
scenarios. If most of reaction energy is quickly redistributed
along all the degrees of freedom of the ice-connected molecules,
then HCO can remain adsorbed on the ice as such; in this same
scenario, we might have the breaking up of the H–C bond,
but with both moieties still adsorbed on the ice. Alternatively,
the large amount of energy liberated by the electron–ion
recombination will induce the chemical desorption of the whole
HCO or even of its two moieties H and CO.

Trying to assess the possible effects of the electron–ion
recombination process on interstellar ice without knowing the
relative importance of the different scenarios, we will consider
two limiting cases: case (a) HCO remains in the grain as such,
thus becoming available to further hydrogenation up to H2CO
and, eventually, CH3OH; case (b) HCO survives as such, but it is
immediately released in the gas-phase by chemisorption.

Case (a)
By employing the GRAINOBLE code (Taquet et al., 2012, 2013),
the present authors have demonstrated that, when considering
the energy barriers determined by quantum calculations of
the same kind as those presented here to characterize CO
hydrogenation (Rimola et al., 2014), the amount of H2CO
that can easily be accounted for (in spite of the barriers and
thanks to the tunnel effect) is n(H2CO)/n(H) = 10−6-10−5.
Now, in the most favorable case, n(HCO+)/n(H) can be as
high as the HCO+ abundance, namely, about 10−8 (see section
Introduction). Therefore, even in the limiting case that all HCO+

is systematically converted into HCO adsorbed on water ice, this
process can only account up to about 1% of the total H2CO
produced on ice. In other words, the title process has a negligible
effect on the amount of H2CO produced on interstellar grains.

Case (b)
The formyl HCO radical is one of the first molecules detected
in space (Snyder et al., 1976) and a rather ubiquitous molecule
found relatively easily in molecular clouds (e.g., Snyder et al.,
1985; Schenewerk et al., 1986, 1988; Caux et al., 2011; Frau et al.,
2012; Bacmann and Faure, 2016; Spezzano et al., 2017; Rivilla
et al., 2019). Its abundance in cold objects is about 10−11 (with
respect to H2; e.g., Bacmann and Faure, 2016; Rivilla et al., 2019),
where the gaseous HCO+ abundance is lower than about 10−9.

The main formation routes of gaseous HCO are reported
in the astrochemical databases KIDA (http://kida.astrophy.
u-bordeaux.fr/) and UMIST (http://udfa.ajmarkwick.net/):
neutral–neutral reactions, dominated by H2CO + OH (Ocaña
et al., 2017), and ionic routes, dominated by the recombination
of protonated formaldehyde H2COH+ + e− (Hamberg et al.,
2007). When comparing the theoretical predictions of the
HCO abundance based on these gas-phase reactions with those
measured in cold objects, both Bacmann and Faure (2016)
and Rivilla et al. (2019) concluded that the ionic route of the
formation of HCO can account for the measured values.

Yet, given the uncertainty in the H2COH+ + e− reaction
branching ratio, we verified whether the injection of HCO from

the recombination on the grain surfaces could have a non-
negligible role. The results of our GRAINOBLE simulations
confirm that, even assuming that all the HCO+ recombined on
the grain surfaces is released as HCO in the gas, this contribution
is at most 30% with respect to that derived using the KIDA
reaction rate coefficients. We, therefore, conclude that, in the
specific case of HCO+ the neutralization when they meet the
charged grains does not substantially affect the abundance of
gaseous HCO.

Finally, we would like to mention that this work exclusively
focused on an all-water icy grain model, with the aim to
be a first step toward studying the influence of a captured
electron by an interstellar grain on its chemical properties.
Thus, accounting for dirty ices (i.e., including other volatile
species such as CO, CO2, NH3, and CH3OH) and ice-processing
effects (e.g., cosmic rays’ impact or/and UV photon adsorption)
on the attached electron fate is beyond the scope of the
work. However, we find interesting to mention a plausible
scenario not considered in the (1)–(3) processes. It envisages a
possible transformation of the negatively charged ice grain, in
which OH radicals are also present in the grain, as generated,
for instance, by cosmic ray impacts. In this case, the OH
radical can scavenge the attached electron to give OH−, as
OH− would be more stable than the solvated electron. In
this situation, the adsorption of HCO+ does not cause the
electron transfer toward HCO+, as the OH− stabilized by the
surrounding water environment will attach to HCO+ to give
the neutral HCOOH. In the absence of direct neutralization
between HCO+ and OH−, HCO+ will interact with a neutral
H2O molecule, as investigated by Woon (2011), bringing to
the barrierless formation of HCOOH and the transfer of
the proton, formerly belonging to the reacted water, toward
OH− via a proton-reliance mechanism within the grain water
molecules. This scenario is obviously completely different to
our (1)–(3) processes. Nevertheless, this alternative route has
important consequences in the interstellar grain chemistry
because it opens up the possibility of ion–molecule chemistry
on grains, traditionally attributed to exclusively occur in the
gas phase.

CONCLUSIONS

The present work provides reliable evidence based on quantum
mechanical calculations that thermalized low-energy electrons
can be easily transferred to cationic molecular species upon
interaction to form the corresponding radical neutral ones. As
a test case, this has been investigated for the interaction of the
HCO+ ion with water clusters containing an extra electron.
Among the possible situations considered, results indicate that
spontaneous formation of the HCO radical by electron transfer
is the most favorable one from an energetic point of view.
Accordingly, interstellar grain particles can act as reservoir of
electrons, which in turn can trigger electron transfer processes,
which can be of relevance in the inventory of the interstellar
molecules and in the molecular evolution of the chemical
diversity of the Universe.
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