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The importance of the current role of data-driven science is constantly increasing within

Astrophysics, due to the huge amount of multi-wavelength data collected every day,

characterized by complex and high-volume information requiring efficient and, as much

as possible, automated exploration tools. Furthermore, to accomplish main and legacy

science objectives of future or incoming large and deep survey projects, such as James

Webb Space Telescope (JWST), James Webb Space Telescope (LSST), and Euclid,

a crucial role is played by an accurate estimation of photometric redshifts, whose

knowledge would permit the detection and analysis of extended and peculiar sources

by disentangling low-z from high-z sources and would contribute to solve the modern

cosmological discrepancies. The recent photometric redshift data challenges, organized

within several survey projects, like LSST and Euclid, pushed the exploitation of the

observed multi-wavelength and multi-dimensional data or ad hoc simulated data to

improve and optimize the photometric redshifts prediction and statistical characterization

based on both Spectral Energy Distribution (SED) template fitting and machine learning

methodologies. They also provided a new impetus in the investigation of hybrid and

deep learning techniques, aimed at conjugating the positive peculiarities of different

methodologies, thus optimizing the estimation accuracy and maximizing the photometric

range coverage, which are particularly important in the high-z regime, where the

spectroscopic ground truth is poorly available. In such a context, we summarize what

was learned and proposed in more than a decade of research.

Keywords: photometric redshifts, machine learning, astroinformatics, galaxies, data analysis

1. INTRODUCTION

Most open questions in cosmology, such as galaxy formation and evolution, the distribution of
dark matter, or the understanding of large-scale structure, rely on an accurate estimate of galaxy
distances. In the past, such distances could be obtained only for small samples of objects via
the displacement (redshift) of spectral features caused by the cosmological expansion, but the
time-consuming and expensive spectroscopy could not be effectively used, either on very faint
sources or on large samples of galaxies. This led to the development of alternative techniques,
collectively called photometric redshift estimation methods, first proposed by Baum (1962) and
better formalized by Butchins (1981) and in the seminal paper of Connolly et al. (1995).
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The true turning point, however, came with the era of Sloan
Digital Sky Survey (SDSS, York et al., 2000), the first extensive
multi-band and spectroscopic native digital survey of the sky.
Among many other applications, this survey made the widest
astrophysical community able to explore different approaches to
the evaluation of galaxy distances. With its enormous success,
SDSS also paved the way to present and future survey projects,
such as the Dark Energy Survey (DES, The Dark Energy Survey
Collaboration, 2005), the Kilo-Degree Survey (KiDS, de Jong
et al., 2013), Hyper Suprime-Cam Survey (HSC, Aihara et al.,
2018), Vera C. Rubin Observatory Legacy Survey of Space and
Time (LSST, LSST Science Collaboration et al., 2009), Euclid
(Laureijs et al., 2011), Cosmic Evolution Survey (COSMOS,
Scoville et al., 2007), James Webb Space Telescope (JWST,
Kauffmann, O. B. et al., 2020), and Roman Space Telescope
(Green et al., 2012), all driven by a new reliance on the possibility
to pursue precision cosmology by combining high precision and
deep photometry for very large samples of galaxies with a largely
incomplete spectroscopic knowledge.

The field of photometric redshift (photo-z) estimation
benefited from this new wealth of data. The idea behind this
line of research is simple: due to the cosmological expansion,
the spectrum of a galaxy is stretched toward the red end of
the spectrum and, therefore, in a given photometric system, the
spectrum of identical galaxies at different distances is weighted
differently. In other words: two identical galaxies at different
redshifts will have different photometric signatures (magnitudes
and colors). In practice, things are not so easy, since the function
mapping of a given photometric space into the redshift space z
is complex, depending on many factors (such as morphological
type, large scale structure, and evolutionary stage) and cannot be
uncovered analytically.

In the first approximation, photometric redshift estimation
methods can be grouped in two broad branches:

- Spectral Energy Distribution (SED) template fitting methods.
The redshift is derived by fitting the observed photometry of
a galaxy to a set of templates which can be either observed
or derived by averaging the spectra of similar galaxies or
computed via synthetic spectroscopy.

- Empirical Methods. This category is characterized by machine
learning (ML) or data-driven methods that learn how to map
photometric space onto z using, in the case of supervised
learning, a-priori knowledge provided by a subsample of
objects for which accurate spectroscopic information is
available or, alternatively, proceeding to self-organize the
photometric information, identifying regions of the parameter
space characterized by similarity factors.

In the early 2000, it became apparent that ML-based methods
were ideal and promising tools to deal with this kind of problems
(Firth et al., 2003; Tagliaferri et al., 2003).

Over the years, the positive aspects and intrinsic limitations,
as well as the complementary nature, of both methodological
branches were evident, depending on a variety of factors (Salvato
et al., 2019). For instance, the coverage and sampling of
the observable parameter space, i.e., an N-dimensional space,
where each dimension is defined by an observed photometric

quantity (either fluxes, magnitudes, or derived colors), the quality
of spectroscopic templates, the fraction of peculiar objects,
the redshift range, the depth and variety of the photometric
information, etc.

In what follows, the discussion is mostly centered on empirical
methods, based onML, by focusing the attention on some aspects
of the photometric redshift estimation problem, which seem to be
the most relevant.

In the following, all the quantities related to the photometric
redshift error measurement (1z = zphot − zspec) are considered
as normalized to (1+ zspec).

This review paper does not claim to be a review on the subject,
but rather a synthesis aimed at focusing attention on particular
aspects related to the photo-z problem and to the approach
based on data-driven methods, which we faced over the years.
Aspects that are primarily related to some crucial problems,
still open, by highlighting the state of the art of the proposed
solutions, both in terms of benefits and critical points. Therefore,
this review is primarily aimed at astrophysicists, already familiar
with data science techniques (typically astroinformaticians), who
are interested in the problem of prediction and estimation
of photometric redshifts with ML methodologies. Of course,
with the ultimate aim of improving the quality of the photo-z
estimation in view of their better scientific exploitation in large
astronomical survey projects.

1.1. Outline
Section 2 illustrates how ML is involved in photo-z estimation
and its relevant aspects in this field. In section 3, the critical role of
the parameter space and the selection of the features is discussed,
while, in section 4, we have drawn some conclusions, projected
on next future perspectives.

2. THE LEVERAGE OF ML ON PHOTO-Z
ESTIMATION

In order to be useful, photometric redshifts need to meet strict
requirements dictated by the specific application in mind. For
example, in the tomographic photo-z bins, the estimation error of
the true average redshift is required to be less than ∼ 0.002, with
a very low outlier rate, in order to be suitable for cosmic shear
estimations (Knox et al., 2006; Pasquet et al., 2019). For the LSST
survey project, a series of scientific requirements is envisaged,
aimed at avoiding the domination of the statistical background
noise of the cosmological sample by any systematics, in the
estimation of the photometric redshifts of several billion galaxies.
In this respect, the requirements specify that the photometric
redshift of any individual galaxy should have a bias below 0.003,
an estimation error σz < 0.02, and a 3σ outlier rate below 10%
(Schmidt et al., 2020).

Furthermore, in the case of gravitational lensing, i.e., the
image distortion of background galaxies due to the differential
deflection of their light, caused by the masses of foreground
sources, and the distortion of the coherent shape of galaxies are
called the shear of weak lensing and are usually much smaller
than the intrinsic ellipticity of galaxies. The measurement of
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these effects is feasible only in statistical terms, by evaluating the
average over a large sample of galaxies, but it is considered as one
of the most perspective tools to probe the distribution of the dark
matter (Mandelbaum, 2018). Being less sensitive to the precision
of the photometric redshift of individual galaxies, the three
metrics usually adopted to quantify the accuracy of photometric
redshifts, i.e., mean bias, scatter, and catastrophic outliers rate,
are not sufficient to quantify the efficacy of a photo-z method
for lensing. For example, some results show that the calibration
bias for higher photo-z estimation in the case of galaxy-galaxy
lensing can be as high as 30%, although the average redshift
bias is well below the dispersion (Mandelbaum et al., 2008). The
main reason is the non-linear dependence of the surface density
on the redshift of the source, which induces an asymmetrical
increase of the photo-z estimation errors. Therefore, the error
associated with photometric redshift measurements is a function
of the type and apparent magnitude of the galaxy, with the
lensing calibration being very sensitive to the details of the
uncertainty distribution on the photo-z estimation (Ma et al.,
2006; Mandelbaum et al., 2008; Fu et al., 2018).

These are just a few examples of the crucial role played
by photometric redshifts in Astrophysics, which justifies the
constant and massive proliferation of proposed solutions to
optimize their accurate and reliable estimation.
The strong dependence of lensing accuracy and galaxy
characterization from photo-z precision, together with the
required availability of a wide sample of sources, pushed many
large survey projects, like LSST, KiDS, and Euclid, to perform
an extensive investigation campaign dedicated to a comparison
among all the most popular photo-z methods (Hildebrandt et al.,
2017; Euclid Collaboration et al., 2020; Schmidt et al., 2020).

2.1. General Aspects of the Photo-z
Estimation With ML
In order to face the relationship between photo-z and ML, we
started by introducing a series of general aspects.

Photo-z estimation has now become an indispensable tool
in extragalactic astronomy, as the pace of galaxy detection
in imaging surveys far outstrips the rate at which follow-up
spectroscopy can be performed. A wide plethora of methods
and techniques have been, and are, studied and experimented
on a large variety of all-sky multi-band surveys, based either
on physical template models fitting the SED or on empirical
explorations of the photometric parameter space, trying to
learn its hidden cross-correlation with spectroscopic redshifts,
provided for a limited sample of objects. In general, theML-based
techniques are able to produce a high-quality photo-z estimation
within the photometric ranges imposed by the spectroscopic
training set but are less capable of reaching the same photo-z
estimation quality outside those ranges. Nevertheless, the positive
contribution of data-driven methodologies to the estimation
of distances for galaxies and peculiar objects, such as quasars
(Baron, 2019; Fluke and Jacobs, 2020), is well-known. Without
claiming to be exhaustive, we can cite the following methods
proposed in the literature, which testify to their diversity
of approach:

• supervised feed-forward neural networks (Collister and Lahav,
2004; Vanzella et al., 2004; Brescia et al., 2013, 2014, 2015, 2019;
Cavuoti et al., 2014; Almosallam et al., 2016; Sadeh et al., 2016);

• self-adaptive methods for the detection and removal of
anomalies from photometric and spectroscopic data (Hoyle
et al., 2015; Baron and Poznanski, 2017; Reis et al., 2019);

• Support VectorMachines (Zheng and Zhang, 2012; Zhang and
Zhao, 2014; Han et al., 2016; Jones and Singal, 2017);

• tree-based (Carrasco Kind and Brunner, 2013; Jouvel et al.,
2017; Meshcheryakov et al., 2018);

• k-Nearest Neighbors (kNN) (Graham et al., 2018; Curran,
2020);

• Gaussian processes (Bonfield et al., 2010; Almosallam et al.,
2016);

• Mixture Density Networks (Ansari et al., 2020);
• unsupervised models for clustering and for estimating the

coverage of the parameter space (Way and Klose, 2012;
Masters et al., 2015; Stensbo-Smidt et al., 2017) or for
calibration purposes (Hildebrandt et al., 2010; Masters et al.,
2015; Wright et al., 2020);

• deep Neural Networks, especially relevant for the photo-z
prediction from images (D’Isanto and Polsterer, 2018; Chong
and Yang, 2019; Pasquet et al., 2019);

• hybrid methods for the selection of photometric redshifts
considered particularly accurate and useful for cosmological
purposes (Bonnett et al., 2016; Leistedt and Hogg, 2017;
Morrison et al., 2017; Fu et al., 2018; Salvato et al., 2019).

For the sake of completeness, techniques based on prior physical
knowledge in the form of template SEDs, the so-called SED
template fitting methods, which are able to adapt to the
observed flows and to extrapolate the redshift through chi-
square minimization (Arnouts et al., 1999; Bolzonella et al., 2000;
Brammer et al., 2008), are available in an equally rich variety
of nuances, as well as in several hybrid methods exploiting the
Bayesian inference and nested sampling techniques (Benítez,
2000; Goodman and Weare, 2010; Feroz et al., 2019).

The crucial aspect of supervised ML methods applied
to photo-z prediction is that they require a knowledge
base to learn the complex relationship between broad-band
photometry and distance, mainly composed by a spectroscopic
redshift counterpart subsample of the photometric sources
used for training, validation, and blind testing. When it is
available a sufficient spectroscopic coverage of the photometric
parameter space, the ML models demonstrated a high photo-z
prediction accuracy, although within the limits imposed by the
spectroscopic sample (Brescia et al., 2019; Euclid Collaboration
et al., 2020; Schmidt et al., 2020).

A weakness of these methods is that the results of most
ML models are often biased in the presence of large numbers
of missing data within the training set. This can be easily
understood by realizing that these models require the definition
of a metric distance that, in order to work properly, needs
geometrical varieties characterized by the same dimensionality.
In Astronomy, the problem is further complicated by the fact that
missing data can be of different types, truly missing data (e.g.,
a given object has not been observed in one or more bands) or
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upper limits (i.e., the object has been observed but not detected),
and therefore result as a Not-a-Number in the dataset. This
second type of data carries information on the properties of the
objects, which need to be taken into account wherever possible.
In most cases, when only a relatively low fraction of the data
is plagued by missing values, it is an acceptable compromise to
reject the incomplete data or to apply any imputation technique
(Ejaz Awan et al., 2020). This approach, however, is not viable
in all those cases where a high amount of data is incomplete. In
these cases, a more reliable solution is to use methods which are
less sensitive to the problem, such as, the Probabilistic Random
Forest (Reis et al., 2019).

Finally, there are no standard rules for the random splitting of
the knowledge base in training, validation, and testing subsets,
neither in terms of relative percentages nor in terms of the
extraction mechanism (random extraction, decimation, etc). The
optimal partition and sampling strategy can be pursued on a
trial and error base, but, as a rule of thumb, in the presence
of a congruous data amount (at least few thousands), relative
percentages of, respectively, 60, 20, and 20%, randomly extracted
data are a standard choice.

2.2. Unity Is Strength. Virtuous Synergies
Among Methodologies
From earlier observations, it is clear that the SED template
fitting methods, based on the adaptation of multi-wavelength
photometric observations of objects to a synthetic or observed
model SED library, are able to simultaneously provide the
estimate of photometric redshifts, the PDF and the spectral type
of each source. However, such methods suffer, in particular, from
the potential mismatch among the synthetic models used for
the fitting and the physical properties of the selected sample
of observed galaxies (Abdalla et al., 2011), from color/redshift
degeneracy, bias induced by the attenuation law (Calzetti et al.,
2012; Calzetti, 2015), and from the incompleteness of the model
template library available. Nonetheless, they have the prerogative
of being able to derive an estimate of the redshifts, theoretically
without any limit in photometric depth.

Conversely, the supervised ML methods suffer from the
difficulty of obtaining good performances outside the regions
of the observed parameter space, adequately covered by the
reference spectroscopic sample. On the other hand, it has
been amply demonstrated that, where a sufficiently adequate
knowledge base is available, most MLmethods are more accurate
than SED fitting methods in terms of redshift prediction
(Hildebrandt et al., 2010; Cavuoti et al., 2012; Brescia et al., 2019).
This basic complementarity between the two methodologies has
recently inspired the hybridization of methods for estimating
photometric redshifts, in which it was possible to combine
the positive aspects of both techniques in order to overcome
their intrinsic limits. For example, the CPz method (Fotopoulou
and Paltani, 2018) combines the two techniques to derive
an automatic method to identify different types of sources,
estimating their photometric redshifts and identifying anomalies.
In another case, a hierarchical Bayesian combination of redshift
estimates from different models results capable of producing a

more accurate estimate of the performance of individual models
(Duncan et al., 2018).

Cavuoti et al. (2017b) started from the assumption that the
spectral type classification provided by the SED fitting method
allows to derive statistical errors as a function of the spectral
type for ML models, thus making possible a more accurate and
specific characterization of the prediction errors. In other words,
it is possible to assign a specific spectral class to each source
and build specialized (i.e., gated expert) regression models for
each spectral type class, thus refining the photometric redshift
estimation process. At the end of the hybridization process and
the improvement of the quality of the redshifts obtained by the
expertML regression estimator on single spectral types of objects,
the proposed method was able to reduce the overall photo-z
estimation error by more than 10% compared to the whole blind
test set. This improvement was mainly a consequence of the
reduction in the percentage of outliers. This result, combined
with the prerogative of total arbitrariness in the choice of SED
fitting and ML methods to be used, demonstrates the potential of
optimizing the accuracy of the photometric redshifts estimation
through themutual cooperation among theoretical and empirical
methods (Cavuoti et al., 2017b).

More recently, Soo et al. (2021) analyzed and optimized the
hybrid empirical-template method, Delight (Leistedt and Hogg,
2017), on a subset of the early Physics of the Accelerating
Universe Survey (PAUS) data release (Eriksen et al., 2019).
Delight is an algorithm for the determination of photo-z that
combines template-based and ML techniques. Delight constructs
a large collection of SED templates from training data, with a
template SED library as a learning guide for the model. Soo et al.
(2021) optimized Delight by calibrating its 40 narrow bands with
six broad bands in the COSMOS field and by performing an
interesting analysis of outliers, obtaining, as a preliminary result,
that narrow band filters produce a large amount of outliers (Soo
et al., 2021). This fact was experimented by performing photo-
z predictions with ML models with the 30-band COSMOS data,
composed of a variety of broad and narrow bands, and which was
also recently confirmed by Razim et al. (2021).

2.3. Combined Predictions of Photo-z and
Galaxy Properties
In the context of upcoming and future large survey projects, such
as LSST, Euclid, and JWST, which will extend our knowledge of
the dependence of galaxy populations on environments, as well as
the characterization of large scale structures, the determination of
star-forming activity, such as the Star Formation rate (SFR) and
stellar mass from UV, optical, or IR luminosity, will be crucial.
Their traditional study was based on complex models and prior
knowledge of the properties of the galaxy, which limited their
capability to accurately describe peculiar categories of extended
sources, such as passive galaxies, which are of particular interest
in the study of large-scale structures. It is worth emphasizing
that the derivation of such physical quantities of galaxies cannot
be separated from an accurate and reliable estimate of their
distances, and that the redshifts and the physical properties of
galaxies are intrinsically correlated.
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Ideally, spectroscopic data are needed not only to calculate
redshifts but also to estimate the SFR and stellar mass properties
(Brinchmann et al., 2004; Delli Veneri et al., 2019). However,
spectroscopy is not always available and is extremely expensive
in terms of observing time, becoming even more prohibitive
when the goal is to characterize the properties of galaxies in
large surveys. A potentially effective and alternative method
of deriving such quantities in a combined framework, based
on the exploitation of the supervised paradigm of ML, has
recently been proposed. For example, Bonjean et al. (2019)
approached a Random Forest model to simultaneously estimate
SFR and stellar masses of galaxies from a sample of WISE NIR
sources and related redshifts, by training the model on the
SFR and stellar mass values extracted from spectra of the SDSS
DR8. The encouraging results, although restricted to a limited
redshift range, i.e., up to z < 0.3, prompted the use of this
methodology to derive redshift and stellar mass in a combined
way from a selected sample of galaxies from the DES survey,
training the Random Forest on COSMOS2015 data, achieving
interesting performances even in the regime of a limited space of
photometric parameters (Mucesh et al., 2020). The preliminary
results demonstrate that ML could be a powerful methodology
to find intrinsic correlations among photometric redshifts and
galaxy physical parameters, which are extremely useful for large
galaxy survey projects like Euclid (Laureijs et al., 2011; Bisigello
et al., 2020).

2.4. Is the Photo-z Point Estimate Enough?
Due to the wide variety of proposed solutions to the estimation
of photometric redshifts, the need of a fair comparison among
different methods is naturally needed. There are many studies
in which people tried to compare their own method with
what was available in literature (Laurino et al., 2011; Brescia
et al., 2013, 2019; Polsterer, 2016; D’Isanto and Polsterer, 2018).
Furthermore, over the last decade, within large survey projects,
there was a rise in challenges dedicated to the comparison among
different methods following common rules and using same data,
specifically provided for these contests. The Photo-z accuracy
testing (PHAT) challenge (Hildebrandt et al., 2010; Cavuoti et al.,
2012) was among pioneers of such initiative, more recently
followed by the Euclid and LSST challenges (Euclid Collaboration
et al., 2020; Schmidt et al., 2020). In all such contests, a portion
of the dataset, used for the final comparison analysis, was kept
hidden from the participants in order to allow a blind test,
thus providing a fair comparison in the same conditions (more
examples are in Abdalla et al., 2011; de Jong et al., 2017; Bilicki
et al., 2018; Tanaka et al., 2018; Amaro et al., 2019; Norris
et al., 2019), often with the purpose of testing a specific case
of interest. The evaluation of the results was usually performed
using standard statistical estimations, such as standard deviation,
bias, normalized median absolute deviation, root mean square,
and outlier percentage rate, all metrics commonly adopted to
evaluate the quality of photo-z predictions in terms of point
estimates and considered as sufficient and reliable for assessing
the results.

However, in the last few years, several studies showed that
the use of the point estimation to fully represent the quality of

photo-z’s is insufficient and could lead to biases (Mandelbaum
et al., 2008; Cunha et al., 2009; Myers et al., 2009; Wittman,
2009; Bordoloi et al., 2010; Abrahamse et al., 2011). For such
reason, there was the tendency to adopt the Probability Density
Functions (PDFs) in order to provide a wider confidence
range on the photo-z prediction reliability, which could result
in suitable assessing the accuracy of photo-z estimation in
cases where a higher precision is required, for instance, to
derive cosmological parameter measurements. For example,
Mandelbaum (2018) demonstrated that the weak lensing studies,
in particular, the measurement of the critical mass surface
density, require a reliable photo-z PDF estimation to remove any
calibration bias effect.

Within few years, the trend to provide both photo-z point
estimates and PDFs has now become a consolidated practice
(Sheldon et al., 2012; Carrasco Kind and Brunner, 2013;
Carrasco Kind and Brunner, 2014a,b; Bonnett, 2015; Cavuoti
et al., 2017a; Malz et al., 2018; Tanaka et al., 2018; Amaro
et al., 2019; Mucesh et al., 2020; Nishizawa et al., 2020). The
idea is that a PDF should be able to provide a more complete
information than the point estimation of the redshift. For
instance, they should embed the presence of a secondary solution
that, in presence of a degeneration of the parameter space, would
be systematically suppressed. Some studies (Viola et al., 2015;
Mandelbaum, 2018) showed that the PDFs allow to improve the
accuracy of cosmological and weak lensing measurements and
to ensure a sufficient analysis of the cosmological uncertainties,
from weak lensing tomography, to baryon acoustic oscillations.
For this reason, most of the surveys are now producing or
are planning to provide photo-z catalogs, including the PDFs
and their statistics, rather than just the point estimates [see for
instance KiDS (de Jong et al., 2017), Euclid (Euclid Collaboration
et al., 2020), and LSST (Schmidt et al., 2020)].

For SED fitting methods, it is well-established the usage of
the χ2 fit among data and a predefined set of galaxies (Abdalla
et al., 2011), which leads directly to the derivation of a PDF by
weighting all the possible solutions with their fit. Conversely,
in the case of empirical methods, there is not such kind of
homogeneity, and different methods provide PDFs in different
ways, spanning from the measure of the internal model error, by
performing several independent training (Sadeh et al., 2016), to
the measure of the effect due to the fluctuation in the parameter
space (see Cavuoti et al., 2017a and Schmidt et al., 2020 for a list of
different methods with different strategies for PDFs derivation).
It goes without saying that, in order to understand which is
the best strategy (and the best method), in the absence of an
objective analytical tool, a comparison among different methods
is required.

One of main differences among point estimates and PDFs is
in the way in which they are evaluated and optimized. While, for
point estimates, there is a common agreement on the statistical
metrics, for what concerns PDFs, there is still no general
agreement on how to assess their reliability. To demonstrate this,
it is sufficient to refer to the examples of Euclid and LSST. In
the first case, the quantities to optimize are the fractions of the
stacked PDF enclosed in±0.05 or in±0.15 (Euclid Collaboration
et al., 2020), named f0.05 and f0.15, respectively. Such kind of
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FIGURE 1 | Figure from Schmidt et al. (2020). Statistical comparison among different methods for photo-z PDFs within the LSST Challenge (see Schmidt et al., 2020

for further details). The panels show the QQ plots (red) and PIT histograms (blue) with the superimposed ideal QQ (black dashed diagonal) and ideal PIT (gray

horizontal) curves, including a residual plot for the QQ estimation with respect to the ideal diagonal (lower inset). In the last bottom right panel, TrainZ is the fake PDF

described in section 2.4.

metrics (as proved in Amaro et al., 2019) can be easily falsified
by using a simple dummy PDF, consisting of a single bin PDF
centered on the value of the photo-z point estimate.

Amaro et al. (2019) showed that, on a KiDS DR3 dataset
with zspec < 1, a simple dummy PDF is able to reach 93.1 and

99.0% in terms of f0.05 and f0.15, while well-assessed methods,
such as METAPHOR, ANNz2, and BPZ, reach, respectively, 65.6,
76.9, and 46.9% on f0.05 and 91.0, 97.7, and 92.6% on f0.15, thus
implying that those two parameters are only partially useful as
metrics within an exhaustive evaluation process of photo-z PDFs.
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In the second case (LSST, Schmidt et al., 2020), main drivers
are related to the property of the cumulative distribution
function (CDF), such as the probability integral transform (PIT,
Seillier-Moiseiwitsch, 1993) and the Quantile-Quantile plots
(hereafter QQ, Wilk and Gnanadesikan, 1968). Within the same
experiment, those metrics were falsified through the usage of
the same PDF for each point, corresponding to the redshift
normalized distribution of the training set (see TrainZ panel of
Figure 1). While it is clear that the optimization of one of those
estimators leads to meaningless PDFs, on the other hand, the
solution, that is to identify the correct estimator to optimize, is
not at all clear and still remains an open issue.

3. THE CRITICAL ROLE OF THE
PARAMETER SPACE

The utility of photometric redshifts, derived from broad-band
galaxy fluxes and colors rather than spectra, is now well-
established through the high quality and reliability probed by
many different techniques in a wide range of astrophysical
contexts. The accuracy of the photometric redshift estimate
certainly depends not only on the method used but also on a
complex combination of extension and distance of the galaxy,
on the set of photometric bands, on the signal/noise ratio
of photometry, and on the type of spectrum of the galaxy
(in general, intrinsically redder objects produce more accurate
photometric redshifts).

3.1. The Impact of the Photometric
Uncertainties
By considering the role played by the photo-z prediction
error, the blurring of the large-scale structure in the radial
direction, due to the photometric error of the redshift, degrades
the measurements of the clustering pattern. Nonetheless, on
physical scales greater than that implied by the redshift error,
the information is preserved. On the other hand, even on
smaller scales, the large area covered by an image survey can
potentially provide structural information very close to that
produced by a fully spectroscopic survey, which implies very
competitive cosmological constraints. However, it is known that
some sub-classes of galaxies exhibit better behavior in terms of
photometric redshift. For example, experience with ML on SDSS
data has shown that, on a sample of luminous red galaxies, we
were able to obtain a redshift accuracy at least twice as high as
that obtained on blue galaxies (Csabai et al., 2003; D’Abrusco
et al., 2007; Brescia et al., 2014). In particular, the availability of
sufficiently deep near infrared images is significant for galaxies
with redshift z > 0.4 (Bolzonella et al., 2000). Therefore, the
combined use of optical and infrared bands has been able to
improve the quality of distance predictions by exploiting the
entire population of galaxies, rather than particular subclasses.
However, Blake and Bridle (2005) have shown that a significant
optical depth (r ∼ 24) over an area of several thousand
square degrees is required to ensure the accuracy of photometric
redshifts useful for formulating measurements of cosmological
properties (Figure 2).

FIGURE 2 | Figure from Blake and Bridle (2005). Confidence boundaries of

photometric redshift imaging surveys with variable photometric error

thresholds. The probabilities are expressed as a rejection “σ number” for a

Gaussian distribution. A detection area of 10,000 deg2 is used.

This photometric limit may exceed in the coming years due
to survey projects, such as LSST, for which the photometric
detection of the redshift will cover an A� area, approximating
the entire sky to a depth of magnitude r ∼ 26.

Modern precision cosmology requires very small statistical
errors that, to be achieved, require the minimization of
systematic errors through an in-depth knowledge of the various
contributions to the loss of performance (Oyaizu et al., 2008). For
example, it was estimated that, for the tomographic investigations
on a cosmic scale, based on the sampling of the dynamic range
of distances, it is necessary to guarantee an uncertainty of ∼
0.003 or less for the bias and dispersion in each bin of redshift,
in order to control the constraints imposed by shot-noise on
the estimation of dark energy (Ma et al., 2006). Furthermore,
theoretically, a dependence on photometry errors would also be
expected. The photometric simulations of the redshift and the
subsequent modeling of the observed cases usually start from
the assumption that the photometric errors follow a Gaussian
distribution. However, the evidence of real data reveals a much
more complex situation. Several redshift estimation experiments
with MLmethods have shown that the statistical quantities of the
analysis of the prediction residuals, calculated with respect to the
spectroscopic knowledge base, are always altered by anomalies
induced by the tails in the distributions of photometric errors.
The presence of a quantity of sources in the tails equal to about
10% of the analyzed sample can cause an alteration in terms of
dispersion of the prediction precision of more than 2σ compared
to the impact of a halving of the S/N ratio (Wittman et al., 2007).
This, therefore, implies the need to minimize the amount of error
tails in magnitude and color, especially for the photometric bands
more sensitive to noise sources, such as the U band.

This problem obviously has also a strong impact in the
tomographic analysis of the distribution of photometric redshifts,
for which the only viaticum would be the substantial increase of
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the reference spectroscopic sample for the training of prediction
models. Therefore, regardless of the photometric quality of
the data, limiting the presence of tails in the photometric
distributions can reduce the dependence on the spectroscopic
sample, especially in the context of wide photometric surveys.

Concerning the contribution of the photometric errors to
the accuracy of photo-z predictions with data-driven methods,
despite the errors not being widely used in literature as
input features to improve redshift estimation, there are a few
exceptions. For instance, in Laurino et al. (2011), the errors on
each SDSS color are used, while, in D’Isanto et al. (2018), the

feature defined as
√

σ 2
rmodel

+ σ 2
rdev

, where σrmodel
and σrdev are

the errors, respectively, on model and dev magnitudes in the r
band1, has been selected as the third most important for redshift
estimation of QSO in the SDSS DR7.

Certainly, a positive aspect of data-driven learning methods
is that they are automatically able to correctly learn the
characteristics of the noise model. This requires that the learning
data should be characterized by a parameter space sufficiently
extended to acquire the right information on the non-Gaussian
characteristics of photometry, in addition to the need for the
training and complete data sets to be homogeneous with each
other in terms of uncertainty rate. In these cases, setting limits
to the tails of the photometric error distribution can induce a
greater control over the errormodel, minimizing the photometric
dispersion of distances.

3.2. The Characterization of the
Photometric Space
In the case of normal galaxies, a high efficiency of photo-z
estimation with the supervised ML model MLPQNA, a neural
network based on the Multi-layer Perceptron with two hidden
layers (Rosenblatt, 1963), was experienced, which uses the
Quasi Newton approximation of the Hessian error matrix as
learning rule (Nocedal andWright, 2006). This model performed
particularly well for galaxies from the SDSS DR9 (Brescia et al.,
2014) and in the PHAT (Photo-z accuracy testing) challenge
(Hildebrandt et al., 2010; Cavuoti et al., 2012), achieving excellent
statistical results, according to the usual set of metrics, i.e., bias,
scatter rate, and outliers rate. This level of prediction accuracy
was particularly unexpected in the case of the PHAT contest,
which was a sort of worst case for machine learning methods.
In fact, in that case, the very limited amount of training data (∼
500 sources) evidenced their applicability limits with respect to
SED fitting techniques, whenever the knowledge base is strongly
lacking, regardless of the intrinsic wavelength extension and the
quality of the photometry (Hildebrandt et al., 2010).

Another interesting use case was the photo-z estimation of
galaxies provided by KiDS, a wide-area optical imaging survey in
the four filters (u, g, r, i), performed by the VLT Survey Telescope
and the OmegaCAM camera (de Jong et al., 2013). These
redshifts are currently being used by the KiDS collaboration for
several studies related to the evolution of galaxy stellar masses

1See https://www.sdss.org/dr12/algorithms/magnitudes for further details.

and the structural parameters with redshift (Roy et al., 2018;
Scognamiglio et al., 2020; Tortora et al., 2020).

The KiDSDR2 contains 148 tiles observed in all four filters (de
Jong et al., 2015). In order to derive the photometric redshifts,
the multi-band source catalogs, based on source detection in
the r-band images, were used, for which it was extracted from
the training sample after having filtered objects having close
and bright companions, affected by blending or bad pixels. The
training spectroscopic redshifts were composed by merging data
from SDSS DR9 and GAMA DR2 (Driver et al., 2011), therefore
dominated by GAMA galaxies at low-z (z . 0.4) and by SDSS at
the higher redshift regime (out to z ∼ 0.7), with r < 22, while
using 4 and 6 arcsec diameter apertures for the photometry, thus,
obtaining an overall 1σ uncertainty of 0.0305 with a very small
average bias of 0.0011, a low NMAD of 0.021, and a low fraction
of outliers, i.e., 0.39% above the standard limit of 0.15 (Cavuoti
et al., 2015).

Main differences between the KiDS-ESO DR3 and previous
releases were the inclusion of GAaP type magnitudes (Kuijken
et al., 2015) and the combined set of 440 survey tiles,
including large contiguous areas and achieving a refinement
of the photometric calibration that benefits both the overlap
among single filter observations and the stellar colors across
filters. In the specific case of the KiDS-ESO DR3, two
distinct experiments within different spectroscopic ranges were
performed, respectively, 0.01 ≤ zspec ≤ 1 and 0.01 ≤ zspec ≤

3.5. The statistics obtained in the first case were a bias = 0.0014,
σ = 0.035, and NMAD = 0.018, with 0.93% of outliers (|1z| >

0.15(zspec + 1)), while, in the second case, a bias = 0.0063,
σ = 0.101, and NMAD = 0.022 with 3.4% of outliers rate
were reached. These results are shown in Figure 3. In terms
of accuracy, within the spectroscopic limit of zspec ≤ 1, our
model (also in this case a MLPQNA, Cavuoti et al., 2015) shows
comparable results, while, as expected, the scatter and outlier rate
efficiency decreases at fainter distances, due to the lower amount
of sources available within the training sample. By looking at the
histograms of the residual distributions of Figure 3, a peculiar
behavior appears, very frequent in the case of photo-z prediction
with ML methods, as also it occurred for photo-z estimation in
the SDSS galaxy experiments (Brescia et al., 2014), characterized
by a leptokurtic and symmetric distribution, i.e., an over-density
of sources within the central region, populated by objects with
a small error, which also reflects on the very low percentage of
outlier rates and a low NMAD value.

The MLPQNA neural network was also applied to the
evaluation of photometric redshift for optically selected quasars
(Brescia et al., 2013) using a multi-wavelength photometric space
composed by GALEX, SDSS, UKIDSS, andWISE data, achieving
very good levels of accuracy (bias = 0.004 with a SD of σ = 0.069)
and a reduction of the number of catastrophic outliers to <3%.
The comparison of performances reached by varying the number
of bands (Figure 4), from the optical SDSS photometry to the
complete multi-band photometry and from UV of GALEX to
mid-IR of WISE, clearly shows that, in the case of QSOs, a wide
photometric coverage improves the quality of predicted photo-z,
by using psf type magnitudes, instead of the aperture type, which
is more efficient for galaxies (Brescia et al., 2013).
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FIGURE 3 | Merged diagrams from Cavuoti et al. (2015) and de Jong et al. (2017). Upper panels: Photo-z results obtained with KiDS DR2 data. In the right diagram,

the dashed line represents the Gaussian fit to the residual distribution. Lower panels: Results of photo-z experiments with KiDS DR3 data. The left and central panels

are the scatter plots for the experiments limiting the spectroscopic redshifts, respectively, to 1 and 3.5. On the right, the superimposed histograms of the residual

distributions for the two cases are shown.

Another example of the positive contribution of near-IR
bands to the photo-z prediction accuracy was discussed by Fu
et al. (2018), where they compared the cosmological constraints
of σ68 and �M , under the 3CDM model, obtained by using
the photometric redshifts derived from two different parameter
spaces, respectively, with only four optical bands [u, g, r, i from
VOICE (Vaccari et al., 2016)] and with eight bands, by adding
the near-IR bands [Y , J,H,Ks, obtained from VIDEO (Jarvis
et al., 2013)]. The comparison, shown in Figure 5, clearly reveals
that, in the 4-band photo-z case, the contours appear to have
shifted to the higher σ68 and �M side, coherent with the fact
that the near-IR contribution correctly assigned the 15% of
the high-z galaxies to low-z regime (see Fu et al., 2018 for
more details).

In general, therefore, given that the photo-z estimation
is particularly crucial for acquiring knowledge about the
formation and evolution of galaxies, by expanding the statistical
sample available with respect to spectroscopic distances, it
is possible to obtain a reliable knowledge of the distances
even in regions of photometric space usually less covered
by spectroscopy. Naturally, this implies a careful choice of
photometric bands by large survey projects in the regions of

interest, as well as ensuring the widest possible multi-wavelength
coverage in order to minimize the occurrence of parameter
space degeneration.

3.3. Anomalies in the Training Set
Another important aspect in the photometric redshift prediction
experiments concerns the identification of anomalies in the
training set, which are potentially capable of leading to erroneous
distance estimations. This aspect is directly related to the
identification of regions of the photometric and spectroscopic
parameters space that are undersampled from the training data.
This analysis is particularly important, as it can provide useful
information to optimally and efficiently guide the follow-up
spectroscopy, in order to optimize the training data set. This
information can also be used to evaluate the effectiveness of
different combinations of photometric features by obtaining a
statistical prediction of the redshift quality. For example, in
the case of the Random Forest model, it is possible to verify
the informative contribution of the photometric features, using
the Out-Of-Bag (OOB) sampling technique, which consists of
the random extraction of a sample of data excluded from the
training during the construction of the various decision trees.
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FIGURE 4 | Figure from Brescia et al. (2013). Scatter plots of photo-z

predictions for QSOs referred to the multi-band photometry using bands from,

respectively, (A) SDSS, (B) GALEX + SDSS, (C) SDSS + UKIDSS, (D) GALEX

+ SDSS + UKIDSS, and (E) GALEX + SDSS + UKIDSS + WISE. Gray points

are catastrophic outliers.

This subsample of extracted data can then be used to estimate the
relative importance of each photometric feature present in the
parameter space. It is, therefore, an effective method to identify
and remove features whose information entropy is redundant or
even misleading (Breiman, 2001).

The informative contribution of the features can also be used
to better understand the training data, to verify if it is possible
to reduce the dimensionality of the problem, and to identify
areas of the space of the mapped parameters where the new
training data can be incorporated in the most effective way. This
prerogative can be obtained with supervised methods, as in the
case of the TPZ model (Carrasco Kind, 2015), and unsupervised
methods, as in the case of the Self OrganizingMap (Masters et al.,
2015) model. In the second case, the spectroscopic information
on the target is not used in the process of constructing the
Kohonen maps (Kohonen and Mäkisara, 1989), but only, in

offline, to identify the objects that belong to a cell in order tomake
predictions from the two-dimensional map.

In the case of Active Galactic Nuclei (AGN), the huge
potential of the catalogs available for their science remains
practically untapped, because most sources lack a redshift. The
above techniques are routinely applied to galaxies, but their
application to AGN (where the nuclear contribution to the global
emission is unknown and depends on the type of source) is
not straightforward. For this reason, SDSS photometric redshifts
have a low level of reliability for X-ray selected sources, especially
at redshift below z ∼ 1.

Nevertheless, recent studies have shown that the hybridization
of empirical and SED fitting methods can provide encouraging
results in the estimation of photo-z for mixed populations of
galaxies and AGNs (Duncan et al., 2018; Fotopoulou and Paltani,
2018), although the efficiency achieved for galaxies hosting AGN
is not comparable to that obtained for inactive galaxies. In fact,
the problem is that the extent of the AGN contribution to the
total emission in the various bands is a priori unknown, causing
uncertainty in determining a correct set of template models in the
case of SED fitting (Salvato et al., 2011; Ananna et al., 2017). This
is true, except in the case of Seyfert galaxies (with low redshift and
low luminosity), where the quality of the photo-z can reach that
of normal galaxies, as long as a narrow/intermediate filter band
photometry is available, like in the case of the COSMOS survey
(Salvato et al., 2009). Similarly, for empirical models based on the
supervised paradigm, the limit is the availability of a sufficiently
large and complete training spectroscopic sample (Budavári et al.,
2001; Bovy et al., 2012). In this respect, it must be pointed out
that, since most spectroscopic samples are usually extracted from
optically selected galaxy catalogs, this problem unavoidably leads
to an unbalanced distribution of AGNs (or any other peculiar
objects), which are underrepresented. The effects of this bias on
future radio surveys (such as those to be performed with SKA) is
clearly shown in Norris et al. (2019).

However, empirical methods, which are implicitly less
sensitive to differences in photometry, offer better performance
but show the need to identify the most suitable photometric
parameter space. In this scenario, the ∼3 million sources, that
eROSITA (Extended Roentgen Survey with an Imaging Telescope
Array, Merloni et al., 2012) should observe, constitute the
positive turning point. A recent work (Brescia et al., 2019)
investigated the contribution provided by the photometry, with
an incremental number of bands, of the counterparts of the X-
ray sources detected in the Stripe 82X (LaMassa et al., 2013a,b,
2016), to the quality of photo-z of AGN sources estimated
with ML methods. The photometric catalog included GALEX,
SDSS, UKIRT, VHS, SPITZER/IRAC, and WISE with sufficient
depth to detect X-ray sources, at least to the depth of eROSITA
(Ananna et al., 2017). The results of the comparison between
spectroscopic and photometric redshifts, obtained by our neural
network for the sources in each wavelength subsample and by a
SED fitting model, are shown in Figure 6. Looking at the various
diagrams, as it is reasonable to expect, the photometric coverage
limited to the optical bands causes an excess of high redshift
values for sources that actually have a low redshift. This effect
can be reduced by adding the mid-IR bands of WISE, which
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FIGURE 5 | Figure from Fu et al. (2018). (Left) The normalized histogram of photo-z estimated using photo-z derived using, four optical bands (green dash line) and

eight (optical plus near-IR) bands (blue solid line). (Right) Diagram of marginalized posterior density contours (68.3 and 95.5%) for �M and σ68 in the case of flat

3CDM. The blue contours are the constraints related to the 8-band photo-z, while for blue contours, the results using 4-band photo-z are shown.

show a better contribution than the near-IR bands of VHS. In
particular, the addition of these bands allows a drastic removal
of outliers, although it reduces the sample of available sources
by about 35%. A further improvement in statistical accuracy is
achieved by adding the IRAC bands, a case in which the empirical
model proves to be better than the SED fitting method, both
in terms of a lower rate of outliers and an almost total absence
of systematics.

However, at the depth of eROSITA, the two methods turn out
to be comparable, especially in terms of percentages of outliers,
as it can be seen from Figure 7. This diagram is particularly
significant since it shows the recurrent phenomenon of a low
rate of source outliers common to both prediction methods. This
reveals the problem of the dependence of the outliers on the
method used, which however excludes the peculiar nature, from
the astrophysical point of view, of the uncommon outlier objects.

As a concluding remark, in the presence of a conspicuous
parameter space, for example magnitudes, colors, and ratios
on tens of photometric bands, the removal of less important
features is able to improve the quality of redshift prediction. The
photo-z prediction accuracy through empirical methods has a
complex dependence on the observed source types, the amount
and quality of photometric bands, the spectroscopic quality and
coverage of the photometric parameter space, and the size of
training set.

3.4. The Impact of Spectroscopic Reliability
Despite the existing plethora of photometric redshift estimation
solutions, so far, none of the methods have been found to
be able to achieve the accuracy of the spectroscopic redshifts
measurement, which is of the order of ∼ 10−3 (e.g., Le Fèvre
et al., 2005; Biviano et al., 2013; Rosati et al., 2014; Karman et al.,
2015; Hasinger et al., 2018; Scodeggio et al., 2018; Angora et al.,
2020). While the best quality of photometric redshifts, obtained

with broad-band photometry, can reach an error of σ ∼ 0.02
(Brescia et al., 2014; Salvato et al., 2019; Euclid Collaboration
et al., 2020; Schmidt et al., 2020), which has a higher order
of magnitude.

The accuracy of the photometric redshifts, obtained through
supervised learning, has a natural dependence on the degree of
completeness and the quality of the spectroscopic catalogs used
as ground truth. In fact, the incompleteness of the spectroscopic
sample, although usually accentuated in the faint part of the
photometric parameter space, can induce an altered selection
effect that can be found throughout the parameter space. In
addition, the residual error in estimating spectroscopic distances
can affect the reliability of the metrics used for the validation
of training by ML models, thus directly affecting the quality
of the photo-z. The typical quality of spectroscopic redshifts,
between 95 and 99%, implies that between 1 and 5% of the
training sample is unreliable. Also, the real problem is that it
is not possible to establish a priori for samples contaminated
by such spectroscopic uncertainties, compared to those induced
by photometry. A further complication is the impracticability
of manual analysis methods, based on visual inspection, in
the catalogs obtained from large survey projects, hence the
need to explore automatic mechanisms and procedures capable
of distinguishing the different sources of uncertainty in the
data available.

In a recent study, Razim et al. (2021) proposed a method to
identify the unreliable spectroscopic sample and consequently
isolate the set of sources whose photometric parameter space
is correctly mapped onto the spectroscopic sample. Obviously,
with the ultimate goal of improving the quality of the photo-z
estimation by exploiting the spectroscopy fromCOSMOS and the
Deep Imaging Multi-Object Spectrograph (DEIMOS, Hasinger
et al., 2018) catalogs, together with the 30-band photometry of the
COSMOS2015 catalog (Laigle et al., 2016), used to produce the
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FIGURE 6 | Figure from Brescia et al. (2019). Comparison between spectroscopic redshift and photo-z for the sources cut at the eROSITA flux and divided on the

basis of available photometry. For comparison, the result from Ananna et al. (2017) are reported in the lower right panel. By comparing the accuracy and the fraction of

outliers in all panels, it appears clearly that using only optical bands for bright X-ray sources is not sufficient.

photometric redshifts, the proposed method was based on two
ML models, the Self Organizing Map (SOM, Kohonen, 1982) for
data analysis and cleaning, the MLPQNA for photo-z prediction,
and the SED template fitting photo-z catalog, described in Laigle
et al. (2016), as an additional testing and validation tool.

As known, an SOM produces a topographic map formed by a
grid of neurons becoming selective representatives of the various
input patterns and changing their topological location during
the course of the competitive learning. The final topology of
the grid identifies more dense areas that result as overdensities
(proto-clusters or cells) within the output space, corresponding
to subsets of input patterns sharing some similarities in terms of

internal features. The unsupervised model SOM was introduced
to identify and reject the unreliable spectroscopic redshifts,
by introducing the coefficient Kspec to quantify the difference
between a given galaxy spectrum and the average spectra of
all galaxies located in the same SOM cell after training and
then reject objects above a given threshold in Kspec. Such a
coefficient had the multiple effect to reduce the outlier rate
of about the 88% and the 1σ scatter by a factor of ∼ 2
within the photo-z predicted by MLPQNA, and at the same
time, to reveal a high sensitivity to the physical variance of the
galaxy population, thus becoming a reliable parameter to evaluate
the correct mapping between spectroscopic distance and the
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FIGURE 7 | Figure from Brescia et al. (2019). Difference between

spectroscopic redshift and photo-z computed via the MLPQNA neural

network and the SED fitting method, LePhare, for the subsample including the

complete photometry available (SDSS, VHS, WISE, and IRAC), regardless of

their X-ray flux. Sources that are outliers for MLPQNA (LePhare) are plotted in

cyan (orange). For this subsample, the two methods have a similar

performance behavior. Nevertheless, the majority of the outliers are such only

for one of the two algorithms. For the common outliers along the black

one-to-one line, the two methods agree in terms of predicted photo-z.

photometric parameter space of the sources. Furthermore, using
the DEIMOS spectroscopic catalog as validation set, the so-called
galaxy occupation map concept was exploited, to verify that the
sources of the validation sample and those of the knowledge
base used by the MLPQNA model for the estimation of the
photometric redshifts, occupied the same area of the SOM map,
thus ensuring a correct correspondence between photometry and
spectroscopic distances. Such a procedure reduced the outliers
rate from∼11 to∼2%.

The scatter plots shown in Figure 8, taken from Razim et al.
(2021), show the results of the proposed filteringmethod in terms
of outlier reduction for the two involved ML and SED fitting
models. In particular, the third row of panels demonstrates the
predictions for the DEIMOS in the whole range of redshifts. Both
models evidently show their need of the proposed occupation
map filtering, in order to select the correct sources. Otherwise,
as shown in the panels of the first column, the results from the
SED fitting models affected an important amount of catastrophic
outliers in the whole range of spectroscopic redshifts, while
the ML model tends to systematically fail for sources with
specz > 1. Furthermore, the filtering method appears particularly
efficient in the case of outliers produced by overestimated
photometric distances.

It goes without saying that a proper coverage of the parameter
space is the only viable way in order to obtain reliable photo-
z. In fact, in the presence of portions of the parameter space,
not properly covered by the knowledge base, it would cause
a proliferation of outliers. On the other hand, the presence

of unreliable spectroscopic redshifts would result in a wrong
training of the ML methods, inducing further bias that are hard
to be handled.

3.5. The Importance of Feature Selection
The concept of feature selection is linked to the property of
the importance and relevance of features in the context of a
parameter space used for prediction/classification purposes with
methods based on ML. The importance of a feature is the
relevance of its informative contribution to the solution of a
learning problem, whereas a feature x is formally relevant if its
removal from the parameter space always causes a degradation
of the learning quality. Conversely, the feature x is considered
weakly relevant if there is at least a subset A of features for
which the accuracy of learning on A is worse than the union
between A and x. In all other cases, the feature is considered
irrelevant. Furthermore, on one hand, the computational cost of
most ML methods scales badly with the number of dimensions.
It, therefore, proves to be crucial to reduce the dimensionality by
projecting the original space onto spaces of lower dimensionality;
on the other hand, an important aspect of dimensionality
reduction is to avoid overfitting if the number of dimensions
is high.

This means that an increase in information does not always
correspond to an increase in knowledge in order to solve a
problem, primarily due to the fact that the expansion of a
parameter space inevitably causes an incremental dispersion
of the correlation between the data, regardless of the metrics
used to define their mutual distances. A further crucial factor
linked to feature selection is the possibility of obtaining a
better physical interpretation of the phenomena underlying the
problem addressed. In fact, by optimizing the parameter space,
the features capable of solving/characterizing a problem are
identified against those redundant or misleading.

These considerations introduce the taxonomy of approaches
to feature selection: (i) most-relevant feature selection, i.e.,
the selection of the smallest parameter space that provides
the best accuracy. There are many methods proposed in the
literature (cf. Guyon and Elisseeff, 2003), both for prediction and
classification problems [Principal Component Analysis (Jolliffe,
1986), leave-one-out, forward selection, backward elimination,
Random Forest (Breiman, 2001), PPS (Staiano et al., 2005),
Naive-Bayes (Ripley, 1996)]; (ii) all-relevant feature selection, i.e.,
the identification of the exact space of the parameters that are
relevant to a variable extent for the solution of a given problem.
Basically, in the second case, a predictive/classification model
is more likely to describe the various aspects of a problem,
although it is necessary to increase the complexity of the feature
selection method.

There are three general classes of feature selection methods.
Filters, based on arbitrary measures independent of any
forecast/classification model and that are not designed to find
complex correlations between features, are unable to solve
the all-relevant problem (Gheyas and Smith, 2010). Embedded,
which performs the feature selection at the same time of
the prediction/classification model training execution, optimizes
the feature set to improve accuracy. Such class is naturally
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FIGURE 8 | Figure from Razim et al. (2021). Scatter plots of machine learning (ML) and SED fitting photometric (photoz ) against spectroscopic (specz ) redshifts. The

photo-z were predicted by the MLPQNA neural network, trained on COSMOS spectroscopy and photometry and validated also on DEIMOS spectroscopic catalog.

The first left column of panels shows the datasets before SOM filtering. The panels of the second column show the results after having filtered only the spec-z outliers.

The third column panels report the plots after the filtering of only occupation maps, while, in the last column, the panels show the datasets after the combination of the

two cleaning methods. The dotted lines show outlier boundaries defined as photoz = specz ± 0.15. The top first two rows show the results for the test and DEIMOS

datasets limited to specz < 1.2 and photoz < 1.2.

designed to solve the most-relevant problem (Guyon and
Elisseeff, 2003). Finally there is the Wrapper class, a category
in which the selection of features is performed by a dedicated
prediction/classification model, in addition to the model used for
the prediction or classification training task (Kohavi and John,
1998). As for being specialized, it can use a deeper insight into
the data than the filter class. Therefore, it can solve both most-
and all-relevant problems.

One of the reasons why the all-relevant problem is more
complex, such that only the methods of the wrapper class
can address it, is that it is not always possible to use
prediction/classification accuracy as a criterion for declaring a
feature as not important. Indeed, the degradation of accuracy,
upon removing a feature from the parameter space, is sufficient
to declare the feature as important, but the lack of this effect is
not sufficient to declare it as unimportant. In these cases, nothing
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FIGURE 9 | Figure from Brescia et al. (2019). (Left) Results of the feature analysis performed with 8LAB. The importance of each feature is estimated for the case in

which only magnitudes are considered for the sample. (Right) The case in which a mixed parameter space (magnitudes and colors) is considered.

can be said about the importance of one feature in combination
with the others. Therefore, a more complex method for feature
selection is required.

For feature selection in the context of photometric redshifts
prediction, early studies relied on a trial-and-error approach.
In other words, among the possible features, experiments were
performed using all possible combinations of subsets of features,
selected according to the prescription of an expert. An alternative
was the so-called data driven approach, where a large subset (if
not all) of all possible combinations of features are tried and the
most performing one is selected, for instance, by using a forward
selection algorithm (Guyon and Elisseeff, 2003) in order to
identify the best set of feature for a given task (such an approach
has been used with good results in Polsterer, 2016; D’Isanto et al.,
2018). Brescia et al. (2013) selected the most significant features
by trying different combinations of magnitudes derived from a
combination of surveys, namely, GALEX (ultra-violet, Martin
et al., 2005), SDSS (optical), UKIDSS (near-IR, Lawrence et al.,
2007), and WISE (mid-IR, Wright et al., 2010). This approach,
however, also adopted by Donalek et al. (2013) and D’Isanto
et al. (2016), besides requiring a huge number of experiments and
being, therefore, prone to computing limitations, does not ensure
that the optimal performances are achieved. A more effective
approach is to identify objective grounds for all the features which
carry information useful to solve a given problem.

As known, Random Forest is one of the most suitable
methods to perform the evaluation of the importance of features.
It is mainly composed of a set (forest) of numerous simple
predictors/classifiers (i.e., decision trees), each one built from
different, randomly selected, combinations of feature subsets and
data samples. During the learning phase, which corresponds to
the forest tree building, each feature may have the same chance
of being included in the decision chain, so even weakly relevant
features will be statistically used in the forest construction
process. The contribution of any feature can be easily calculated
by considering all the trees that include that feature, so the
contribution of both highly and weakly relevant features is

well visible and measurable. Furthermore, Random Forest has a
limited number of hyperparameters and is relatively scalable with
the data and parameter space sizes.

Recently, in Brescia et al. (2019) and Delli Veneri et al. (2019),
8LAB (Parameter handling investigation LABoratory), a hybrid
method, based on the exploitation of the Random Forest model,
was introduced, incorporating properties of both wrapper and
embedding categories, thus designed to solve the all-relevant
feature selection problem. The basic idea is the conjugation
of two techniques, the inclusion within the parameter space
of the so-called shadow features (Kursa and Rudnicki, 2010),
a randomly noised version of real features and the L1 norm
regularization through Naive LASSO statistics (Least Absolute
Shrinkage and Selection, Tibshirani, 2013). For instance, in the
study by Brescia et al. (2019), this method was evaluated by
performing the feature selection on the multi-wavelength catalog
of the counterparts to the X-ray selected sources detected in
Stripe 82X (LaMassa et al., 2016; Ananna et al., 2017), to compare
the quality of photometric redshifts estimations between our ML
method, MLPQNA (Brescia et al., 2013), and the SED template
fitting, obtained by LePhare (Arnouts et al., 1999; Ilbert et al.,
2006). The optimization of the parameter space, composed in
the specific case of magnitudes and colors, enabled the extraction
of a complete subset of high and weak relevant features capable
of guaranteeing high precision in the estimation of redshifts
and, at the same time, avoiding the degeneration of performance
induced by the occurrence of redundant information, together
with the simplification of the problem by reducing the size of the
space of the photometric parameters.

As shown in Figure 9, the results of the all-relevant feature
selection confirm an usual trend within the photometric redshift
prediction cases, which has an intrinsic physical motivation.
By considering a multi-wavelength parameter space composed
only by magnitudes, the K band is, by far, the most relevant
feature. This can be easily motivated by considering that this
rest-frame band corresponds to the knee of the galaxy SED, thus
making it most suitable to determine the redshift than other
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bands. However, the relevance of this band and of magnitudes,
in general, drastically changes by introducing the continuous
information carried by colors, which become the most relevant
features. In fact, by looking at the right panel of Figure 9, the
first four features collect more than 60% of the total feature
importance carried by the whole parameter space.

The reduction of the number of dimensions in a parameter
space is convenient not only from the point of view of simplifying
the computing complexity but also, and above all, to overcome
the well-known problem of the curse of dimensionality (Bishop,
2006), in which ML models exhibit a performance degradation
when the number of features in the data representation space
becomes significantly higher than the optimal one.

3.6. Why Not Take Advantage of
Astronomical Images?
As evidenced from previous discussions, photometric redshifts
are characterized by two main limitations. First, their precision
decreases as the true redshift increases and, second, photometric
redshifts are affected by the degeneracy between photometric
colors and the spectroscopic redshifts, which means that, within
the source catalogs, there are a plenty of objects sharing same
color band ranges but at different redshift.

For such objects, any supervised ML method, working with
a photometric parameter space restricted to magnitudes and
derived colors, would be hopelessly induced into confusion.
Therefore, as also stated by Hildebrandt et al. (2012), one
of the strongest limiting factor of both empirical and SED
fitting techniques is the input information type used, i.e.,
the photometric measurements. They are directly affected by
blending sources, variations of the Point Spread Function, being
driven by the chosen aperture sizes or by the magnitude models,
which were able to bring a limited fraction of the information that
is potentially available from observed images.

The recent widespread diffusion of the deep learning
paradigm (Lecun et al., 2015) also involved various fields of
Astrophysics, from the morphological classification within a
population of galaxies, to strong lensing, time domain astronomy
and cluster membership recognition (Dieleman et al., 2015;
Pasquet-Itam and Pasquet, 2018; Metcalf et al., 2019; Angora
et al., 2020).

In a deep learning model, both tasks of extraction of the
input parameter space and the self-adaptive optimization are
embedded into a single model. The first task is performed by
the deep part of the model through a series of convolutions with
specific filters and pooling operations, while the last smaller part
of the hierarchical architecture is dedicated to the optimization
task, which can be performed by any kind of traditional
ML model. The outstanding property of deep learning to
automatically extract features from images, like color gradients,
disk inclination, peculiar shapes, size, and surface brightness of
galaxies, opens a new and very promising perspective in the
photo-z estimation field, becoming an efficient alternative to
the manual feature selection, in particular by avoiding biases
introduced during manual extraction and selection. There are
already several studies proposed in this respect, reaching high

FIGURE 10 | Figure from Pasquet et al. (2019). The bias as a function of both

spectroscopic (gray) and photometric redshifts predicted by the CNN (red),

with the corresponding redshift distributions and the comparison of results

with that of Beck et al. (2016). The yellow shaded zone represents the

requirement for Euclid (1z ≤ 0.002) in photometric redshift bins.

photo-z accuracy, at least competitive with other ML techniques
based on boosted decision tree, feed-forward neural networks, or
random forest. Chong and Yang (2019) proposed a convolutional
neural network (CNN) to predict galaxy morphological shapes,
provided through Galaxy Zoo (Willett et al., 2013), to determine
accurate photometric redshifts. Hoyle (2016) exploited a CNN on
multi-color SDSS galaxy images, by splitting the spectroscopic
redshift distribution into several bins, deriving a probability for
any source to belong to those bins and assigning its redshift based
on the most likely bin. An hybrid deep learning/ML, based on
the combined use of a CNN and a mixture density network, was
the choice of D’Isanto and Polsterer (2018) to obtain accurate
photo-z from SDSS image cutouts and colors, derived by a
pairwise subtraction of images, of galaxies and quasars. The five
band images from the flux-limited spectroscopic main galaxy
sample (MGS) of the SDSS were used as input data of a CNN
by Pasquet et al. (2019) for photo-z estimation. We take this case
to highlight an interesting property of deep learning applied to
photometric redshift estimation.

As it is shown in Figure 10, presented in Pasquet et al. (2019),
the CNN predicts photo-z estimated slightly outside the median
redshift of the training sample. This implies the presence of a
residual bias toward the most crowd redshift bins. However, such
bias appears strongly limited in 1σ , significantly smaller than the
bias induced by the kNN method, used for direct comparison. In
particular, no bias as a direct function of photo-z (such as galactic
extinction or galaxy inclination) was found.

The application of deep learning is to be considered a
prerogative extremely suitable for large survey projects, although
it still needs to be validated by comparing deep learning with
more accurate ML models and by performing a double check
between image and tabular features.
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4. CONCLUSIONS AND PERSPECTIVES

Astronomy is, by definition, a data-intensive science, especially
by considering the incoming and future photometric survey
projects, such as LSST, Euclid, and JWST, all of which are
examples that will require data processing and storage solutions
in peta- and exa-scale regimes. In such a context, data-driven
approaches are not an option, and a massive exploitation of
deep learning paradigms seems to be the only chance to provide
feasible solutions for analyzing those datasets. The massive
exploitation of deep learning could open the possibility to predict
photometric redshifts at the pixel level of calibrated images,
instead of just using the limited and biased information carried by
pre-processed catalogs. An indirect benefit of such strategy would
also minimize the serious problem of the right selection of the
photometric space, having to choose among different apertures,
psf or model magnitudes, luptitudes (Lupton et al., 1999), derived
colors, or magnitude ratios (D’Isanto et al., 2018).

Using fully data-driven methods, such as unsupervised
models, it is possible to identify regions of the multidimensional
feature space in which every single method performs better,
thus providing important insights not only on the methods
themselves but also within the parameter space at different
redshift regimes. Moreover, the data-driven paradigm can be
successfully employed to verify the right coverage balance
between photometric and spectroscopic spaces, to perform
combined predictions of distances and galaxy physical
parameters, as well as to disentangle different error contributions
to the training data.

We are convinced that the present and future trends, driven
by the demanding initiatives of large photometric surveys, are
based on the photo-z challenges, in which several methods are
carefully evaluated in a common and standardized framework,
including same real/simulated training and blind testing data,
as well as metrics, to evaluate the strengths and weaknesses
of each proposed solution. This is perfectly aligned with the

recent satisfactory efforts to identify hybrid solutions, based on
the combined use of empirical models, SED fitting methods,
and Bayesian statistics, showing that the best solution to
optimize the quality of photo-z is to mediate the different
prerogatives, in order to exploit, at best, the different useful
sources of information.
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