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Primordial black holes (PBHs) represent a natural candidate for one of the components of
the dark matter (DM) in the Universe. In this review, we shall discuss the basics of their
formation, abundance and signatures. Some of their characteristic signals are examined,
such as the emission of particles due to Hawking evaporation and the accretion of the
surrounding matter, effects which could leave an impact in the evolution of the Universe
and the formation of structures. The most relevant probes capable of constraining their
masses and population are discussed.
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1 INTRODUCTION

The hypothesis of the formation of black holes (BHs) in the early Universe was first suggested in 1967
by Zeldovich and Novikov (Zel’dovich and Novikov, 1967), and independently by Hawking in 1971
(Hawking, 1971). Soon after, the possibility that primordial black holes (PBHs) could account for at
least part of the DM became obvious (Chapline, 1975; Meszaros, 1975). At that time, the DM
question started to be outlined as one of the fundamental problems in cosmology [see, e.g., the
reviews in Sanders (2010); Bertone and Hooper (2018)]. DM (partly) composed by PBHs constitutes
an exciting possibility, presenting an enormous number of observable signatures which can constrain
its parameter space, as shall be detailed in Sec. 6. The variety of phenomenological effects produced
by PBHs allows placing stringent bounds on the abundance of PBHs, usually indicated by the energy
fraction of DM as PBHs, fPBH � ΩPBH/ΩDM, with ΩPBH and ΩDM the ratios of energy densities and
critical density. Moreover, since PBHs are usually expected to be formed before nucleosynthesis,
BBN constraints on the baryon abundance do not apply to them, as they do not intervene in the
nucleosynthesis of elements, and thus, can be regarded as non-baryonic DM (Carr and Kühnel,
2020). Several recent reviews are devoted to discuss PBHs in great detail (see, e.g., Sasaki et al., 2018;
Carr and Kühnel, 2020; Carr et al., 2020; Green and Kavanagh, 2021).

Shortly after the first detection of gravitational waves from a merger of ∼ 30M⊙ BHs by LIGO
(Abbott et al., 2016), the question whether these could be of primordial nature was raised (Bird et al.,
2016). Analysis of posterior data from the gravitational wave detectors LIGO and Virgo showed that
the detected mergers are compatible with the hypothesis of their components being of primordial
nature, although there is no strong preference over stellar BHs (Sasaki et al., 2016; Ali-Haïmoud et al.,
2017; Clesse and García-Bellido, 2017; Clesse and García-Bellido, 2018; Garcia-Bellido et al., 2020;
De Luca et al., 2020b; De Luca et al., 2021; Wong et al., 2021). PBHs with a lognormal mass function
have been claimed to better fit data than BHs from astrophysical origin (Dolgov et al., 2020),
although this is in contrast to the results of Hall et al. (2020), and a mixed population seems
compatible or even favored (Hütsi et al., 2021).

Unlike stellar BHs, formed from the collapse of a massive star, which can present masses only
above ∼ 3M⊙ [the Tolman–Oppenheimer–Volkoff limit (Oppenheimer and Volkoff, 1939; Tolman,
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1939)], PBHs could be produced with any mass. Thus, a positive
measurement of a BH with a mass lower than ∼ 3M⊙ would be a
confirmation of the existence of primordial, non-stellar BHs
(Clesse and García-Bellido, 2018). PBHs could also conform
intermediate mass BHs, with masses between ∼ 102 M⊙ and
105 M⊙, too massive to be originated from a single star. It is
the case of the merger event of BHs with masses ∼ 60M⊙ and
∼ 80M⊙, producing a remnant BH of ∼ 150M⊙, in a so far
mostly unobserved range of masses (Abbott et al., 2020).
Furthermore, PBHs could constitute the seeds for super
massive black holes (SMBHs), present in the nuclei of most
galaxies, with masses ranging from 105 M⊙ to 1010 M⊙, and
already existing at redshifts z > 6 (Carr and Silk, 2018). Such
massive objects can hardly be produced from accreting stellar
remnant BHs (Volonteri, 2010). However, the existence of
massive enough PBHs may act as seeds for the SMBHs, from
which they could have grown by accretion.

PBH formation is already present in standard cosmologies,
although extremely unlikely. However, their production usually
requires some exotic inflationary scenarios or physics beyond the
Standard Model (BSM) in order to obtain a large enough
abundance. The typically considered formation mechanism of
PBHs arises from the direct collapse of primordial fluctuations,
whose power is enhanced at small scales as a consequence of some
inflationary potential, as we shall further comment on below.
There are, however, other scenarios which naturally predict a
population of PBHs as a result of phase transitions in the early
Universe and by the collapse of topological defects (Hawking
et al., 1982; Hawking, 1989; Polnarev and Zembowicz, 1991;
Garriga et al., 2016; Deng et al., 2017; Deng and Vilenkin, 2017).
Hence, the existence of PBHs would provide valuable hints about
the still unknown physics of the very early Universe (see, e.g.,
Polnarev and Khlopov, 1985; Khlopov, 2010; Belotsky et al.,
2014), and may allow to probe high-energy scales and
supersymmetric theories (Ketov and Khlopov, 2019).

In this review, the most relevant aspects of PBHs as DM are
briefly discussed, such as the mechanism of formation in Section
2, the initial abundance and mass distribution in Section 3, the
process of accretion in Section 4 and other PBH features, which
could leave imprints on different observables, in Section 5.
Current observational constraints on their population are
summarized in Section 6, and we conclude in Section 7.

2 FORMATION AND CONDITIONS OF
COLLAPSE

The mass of a BH which collapsed in the early Universe depends on
its formation time. A BH can be characterized by an extremely dense
amount of matter in a very compact region, i.e., within the well-
known Schwarzschild radius, RS � 2GMPBH/c2 ∼ 3MPBH/M⊙ km.
Thus, the mean density inside that region can be estimated as
ρS � MPBH/(4πR3

S/3) ∼ 1018(M/M⊙)− 2 g cm−3. On the other
hand, the mean density of the universe in the radiation era scales
with time as ρc ∼ 106(t/s)− 2 g cm−3. In order to have PBH
formation, densities at least of the order of the mean inside the
BH horizon, ρc ∼ ρS, are needed. Therefore, themass of the resulting

PBHs should be of the order of the horizonmass at that time, i.e., the
mass within a region of the size of the Hubble horizon,MPBH ∼ MH

(Carr, 1975), which is defined as

MH � 4
3
ρ( c

H
)3

� c3

2GH
∼ 1015 g ( t

10−23s
) . (1)

PBHs with masses of ∼ M⊙x2 × 1033 g would have been
formed at around the QCD phase transition, at t ∼ 10− 6 s.
Since the PBH mass is roughly given by the mass within the
horizon, it means that fluctuations entering the horizon can
collapse into PBHs. A detailed calculation shows that
MPBH � cMH, where the proportionality factor c depends on
the details of gravitational collapse, and gets values lower than 1.
Early estimates showed that it can be approximated as
cxc3/2s x0.2, with cs � 1/3 the sound speed at the radiation
epoch (Carr, 1975) More refined results show that the PBH
mass is given by a scaling relation with the overdensity δ,
MPBH � κ(δ − δc)α (Niemeyer and Jedamzik, 1998; Niemeyer and
Jedamzik, 1999), where κ and α are order unity constants, which
depend on the background cosmology and on the shape of the
perturbation (Niemeyer and Jedamzik, 1998; Niemeyer and
Jedamzik, 1999; Musco et al., 2005), and δcxc2s is the collapse
threshold [see, e.g., Escrivà et al., 2021; Musco et al., 2021 for
recent accurate computations]. Figure 1 depicts a sketch of the
process of PBH formation.

Since PBHs are formed when fluctuations cross the horizon by
the time of formation, tf , their mass can be related to the
wavelength of perturbations. When the mode of wavenumber
k crosses the horizon, the condition a(tf )H(tf ) � k holds. Since
the mass of PBHs is proportional to the horizon mass at the
moment of formation,MPBH ∝ cH−1, at the radiation dominated
era (Sasaki et al., 2018),

MPBHx30M⊙ ( c

0.2
)(2.9 × 105Mpc

k
)2

. (2)

Hence, probing a given scale k could constrain a PBHpopulation
of its corresponding mass. Furthermore, an enhancement in the
power spectrum around that scale would result in a large number of
PBHs of such masses. In this review, we shall only consider PBHs
formed during the radiation era. Those produced before inflation
ends would have been diluted due to their negligible density during
the inflationary accelerated expansion. PBHs formed during the
matter-dominated era, or in an early matter domination era
previous to the radiation era, have also been considered in the
literature, and may have different imprints, since the conditions of
collapse are less restrictive, and could start from smaller
inhomogeneities (see, e.g., Green and Kavanagh, 2021).

3 ABUNDANCE AND MASS FUNCTION OF
PBHS

It is possible to estimate the initial abundance of PBHs at the
moment of formation, taking into account all overdensities above
the threshold for collapse, δcx1/3. Assuming a Gaussian
probability distribution, P(δ), for the overdensities with
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variance σ2(M) at a mass scale M, the initial abundance, defined
as β(MH) � ρPBH(tf )/ρtot(tf ), is given by (Sasaki et al., 2018;
Green and Kavanagh, 2021)

β(MPBH)xc∫∞

δc

P(δ) dδxc

��
2
π

√
σ(MPBH)

δc
exp[ − δ2c

2 σ2(MPBH)] ,

(3)

where in the last equality, σ(MH)≪ δc has been assumed. For the
standard cosmological scenario with an initial scale invariant
power spectrum, at CMB scales, the amplitude of the fluctuations
is around σ(MPBH) ∼ 10− 5, leading to β ∼ 10− 5exp(−1010),
which is completely negligible (Green, 2014). Therefore, in
order to have a relevant population of PBHs, larger values of
the initial power spectrum are needed. On the other hand, the
assumption of a Gaussian distribution may not be consistent with
enhanced fluctuations and the presence of PBHs, so deviations
are unavoidable (Franciolini et al., 2018; De Luca et al., 2019b)
[except for specific inflationmodels presenting an inflection point
Atal and Germani (2019)]. Non-gaussianities could have a great
impact on the initial fraction and lead to a larger population, as
well as leaving detectable signatures in gravitational waves (Cai
et al., 2019). Finally, note that the above formula follows the
simple Press-Schechter approach, whereas to account for the
non-universal nature of the threshold, the use of peak theory
provides more accurate results (Green et al., 2004; Germani and
Musco, 2019). Its validity, however, is limited to relatively narrow
power spectra, while broader spectra require the use of non-linear
statistics (Germani and Sheth, 2020).

Nonetheless, although the initial fraction β is a very small
quantity, since matter and radiation densities scale differently
with redshift [∝ (1 + z)3 and ∝ (1 + z)4 respectively], the PBH
contribution can become relevant at current times. The fraction
β(M) can be related to the current density parameters of PBH
and radiation, ΩPBH and Ωc, as (Carr et al., 2010),

ΩPBH(M) � β(M)(1 + zf )Ωcxc1/2[ β(M)
1.15 × 10−8

](M
M⊙

)− 1/2

.

(4)

For initial fractions as low as β ∼ 10− 8 of solar mass BHs, the
fraction of energy in PBHs could be, thus, of order unity.

Depending on the specific mechanism of formation, a
population of PBHs with different masses could be generated.
The specific shape of the enhancement of fluctuations determines
the mass distribution function. Sharp peaks in the power spectrum
imply approximately monochromatic distributions. For instance,
chaotic new inflation may give rise to relatively narrow peaks
(Yokoyama, 1998; Saito et al., 2008). However, inflation models
with an inflection point in a plateau of the potential (García-
Bellido, 2017; García-Bellido and Ruiz Morales, 2017), or hybrid
inflation (Clesse and García-Bellido, 2015), predict, instead,
extended mass functions, which can span over a large range of
PBHs masses. In this review, we focus on monochromatic
distributions for simplicity, although it is possible to translate
constraints to extended mass functions, which can be very
stringent despite the fact of having more parameters to fit (Carr
et al., 2017; Bellomo et al., 2018). Nonetheless, even if there are
bounds that exclude fPBH ∼ 1 in the monochromatic case, there are
choices for the mass function which allow PBHs to constitute most
or all of the DM abundance (Lehmann et al., 2018; Ashoorioon
et al., 2020; Sureda et al., 2020).

4 ACCRETION ONTO PBHS

One of the consequences of the existence of PBHs with greater
impact on different observables is the process of accretion.
Infalling matter onto PBHs would release radiation, injecting
energy into the surrounding medium, and strongly impacting its
thermal state, leaving significant observable signatures. The
physics of accretion is highly complex, but one can attempt a
simplified approach considering the spherical non-relativistic
limit, following the seminal work by Bondi (1952). In this
framework, the BH is treated as a point mass surrounded by
matter, embedded in a medium which tends to constant density
far enough from the BH. The relevant scale is the so-called Bondi
radius, defined by

rB � GMPBH

c2s,∞
, (5)

where cs,∞ is the speed of sound far enough from the PBH. At
distances around ∼ rB, the accretion process starts to become

FIGURE 1 | Sketch of the formation of PBHs from overdensities for three different successive moments. When fluctuations larger than a critical threshold δc ∼ c2s
enter the horizon, i.e., their wavelength λ � 2π/k (which characterizes the size of the perturbation) is of the order of the Hubble horizon (aH)−1, the overdense region
collapses and a PBH is produced. As can be seen in Eqs 1, 2, longer modes (large λ, low k) enter the horizon later and lead to more massive PBHs.
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relevant, and the velocity of the accreted matter reaches v ∼ cs,∞,
when the density is still close to the boundary value, ρ∞. Taking
into account the velocity of the BH relative to the medium, vrel,
one can write the accretion rate as (Bondi, 1952)

_MPBH � 4π λ ρ∞
(GMPBH)2(c2s,∞ + v2rel)3/2 , (6)

where the parameter λ is the dimensionless accretion rate and
depends on the equation of state, but it is order ∼ 1 for the cases
of interest (Ali-Haïmoud and Kamionkowski, 2017). In the early
Universe, vrel can be estimated as the baryon-DM relative
velocity, computed in linear theory. Its root-mean-square
value is approximately constant before recombination,
dropping linearly with 1 + z at later times (Ali-Haïmoud and
Kamionkowski, 2017).

On the other hand, real BHs spin and form an accreting disk.
Thus, the spherical symmetric case may not be applicable. Even
though PBH spins are expected to be small, an accretion disk
would form if the angular momentum is large enough to keep
matter orbiting at Keplerian orbits at distances much larger than
the innermost stable orbits, which are roughy given by the
Schwarzschild radius (Agol and Kamionkowski, 2002).
Applying this criterion, the formation of accretion disks
around PBHs has been suggested to occur if the condition
fPBHMPBH/M⊙ ≪ [(1 + z)/730]3 is fulfilled (Poulin et al.,
2017b). This is satisified for MPBH ≳M⊙ and large enough
abundances at the epoch of CMB decoupling or at later times.
Some of the results outlined above are still valid if the
dimensionless accretion rate λ is suppresed by roughly two
orders of magnitude, after accounting for viscosity effects and
matter outflows through jets (Poulin et al., 2017b).

The matter falling onto BHs is greatly accelerated, which gives
rise to radiative emission of high-energy photons by processes
such as bremsstrahlung. The luminosity of accreting BHs is
proportional to its accretion rate, and can be written as (Xie
and Yuan, 2012)

Lacc � ϵ( _MPBH) _MPBH , (7)

where ϵ( _MPBH) denotes the radiative efficiency, which is in
general a complicated function of the accretion rate _MPBH,
and depends upon the geometry, viscosity and other
hydrodynamical considerations.

If the accretion disk is optically thin, most of the energy
released through viscous dissipation is radiated away, and the
luminosities obtained can be close to the Eddington luminosity,
LEdd, explaining the extreme brightness of many far Active
Galactic Nuclei (AGN) (Shakura and Sunyaev, 1973).
However, PBHs, like nearby astrophysical BHs, may radiate in
a much less efficient way, through the Advective-Dominated-
Accretion-Flow (ADAF) (Ichimaru, 1977; Rees et al., 1982;
Narayan and Yi, 1994; Narayan and Yi, 1995) (see, e.g., Yuan
and Narayan, 2014 for a review). In this scenario, the dynamics is
ruled by advective currents, forming a hot thick disk. Most of the
emitted energy is deposited in the same accretion disk, heating it
up. Thus, only a small portion of energy is released to the

surrounding medium, the radiative process being inefficient. In
the ADAF scenario, the efficiency function can be fitted by a
broken power-law formula, with the slopes and amplitudes
dependent on the mass range and the specific modeling of
viscosity effects (Xie and Yuan, 2012).

Finally, the energy emitted in the accretion processes is
deposited through different channels into the medium. The
energy deposition rate for each channel reads (Ali-Haïmoud
and Kamionkowski, 2017; Poulin et al., 2017b)

( dEc

dVdt
)

dep

� fc(z) Lacc nPBH � fc(z) Lacc
fPBH ρDM
MPBH

, (8)

where the subscript c denotes the channel in which energy is
deposited, namely: ionization, heating, or atomic excitations
(where the Lyα transitions are the most relevant ones). The
energy deposition factors fc(z) quantify the fraction of energy
which goes to the different channels, and has been computed
numerically (Slatyer, 2016). This energy injection would affect
different types of observables, as we briefly outline below.

5 OTHER GENERIC FEATURES

A noteworthy phenomenon of BHs is that of evaporation. Due to
quantum effects in curved spacetimes, BHs may emit particles at
their event horizon, as was noticed in Hawking (1974). The
emitted radiation would have a nearly thermal black body
spectrum, with a temperature given by (Carr et al., 2010)

TBH � Zc3

8πkBGM
∼ 10− 7 K

M⊙

M
, (9)

which is known as Hawking temperature. Due to this
emission, BHs would slowly lose mass until completely
evaporate. The lifetime of a PBH of initial mass M is
(Lopresto, 2003)

τ(M) ∼ 1064 yr(M
M⊙

)3

. (10)

Thus, the lower the PBH mass, the earlier it evaporates. Those
with masses of 1015 g or below would have already evaporated by
now, having lifetimes shorter than the age of the Universe (Page,
1976), so they cannot contribute to the current DM abundance.
These evaporation products or the effects they produce in
different observables can be search for in a variety of
experiments, probing different mass ranges. Detailed
computations of the emitted spectra can be performed by
codes such as BlackHawk Arbey and Auffinger (2019).

Another important feature is that of clustering. If fluctuations
are originally Gaussian distributed and around a relatively narrow
peak, PBHs are not expected to be originated in clusters, being
initially randomly distributed on small scales (Ali-Haïmoud,
2018; Desjacques and Riotto, 2018). However, either
primordial non-gaussianities or a broad peak in the power
spectrum could lead to a significant initial clustering
(Ballesteros et al., 2018; Suyama and Yokoyama, 2019)
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[although broad spectra have also been argued not to produce
appreciable clustering (Moradinezhad Dizgah et al., 2019)].
Anyway, PBHs could become bounded as the Universe
evolves. A proper determination of their clustering properties
at later times is of great importance, for instance, in order to
estimate their merger rates (Desjacques and Riotto, 2018; De Luca
et al., 2020a). Indeed, the formation of clusters could alleviate
some constraints on the PBH abundance (Belotsky et al., 2019).

On another hand, since PBHs would be formed from the
collapse of high density peaks relatively spherically symmetric,
their torques and angular momentum are expected to be small
(Chiba and Yokoyama, 2017; Mirbabayi et al., 2020). It is usually
quantified with the dimensionless spin parameter,
S � S/(GM2

PBH), where S is the spin. Estimations of for PBHs
show that it is a small quantity, equal or lower than 0.01 (De Luca
et al., 2019a). In contrast, astrophysical BHs are expected to have
substantially larger spins, since angular momentum must be
conserved during the collapse of their stars of origin, which are
often rotating. Hence, the spin can serve as a good proxy to
distinguish the nature of a population of BHs. The
measurement of low spin parameters could represent a hint for
the detection of PBHs. The latest Bayesian analyses of LIGO/Virgo
mergers suggest that low values of the spin parameter are strongly
preferred by data, regardless of the assumed priors (Garcia-Bellido
et al., 2020). Note, however, that the PBHmass and spin depend on
the accretionmechanism and their time evolution is correlated (De
Luca et al., 2020c).

Furthermore, due to the discrete nature of PBHs, a Poisson
shot noise contribution to the matter power spectrum, constant in
wavenumber, Psn(k)∝ f 2PBH n−1PBH ∝ fPBH MPBH, would be
expected (Afshordi et al., 2003; Gong and Kitajima, 2017).
PBHs fluctuations give rise to isocurvature modes (Afshordi
et al., 2003; Chisholm, 2006; Inman and Ali-Haïmoud, 2019),
and thus, affect only at scales smaller than the horizon at the
epoch of matter-radiation equality (Peacock, 1999). Therefore,
this leads to an enhancement in the matter power spectrum,
increasing the population of low-mass halos, which can be
constrained by large scale structure and Lyα forest analyses.
This effect is different from the one induced by other non-
CDM candidates, such as warm DM or fuzzy DM, which
suppress small scale fluctuations, washing out small structures.
This contribution becomes relevant for low-mass halos not large
enough to cool and collapse to form stars, which are commonly
known as minihalos. It has been argued that this enhancement
may produce a non-negligible 21 cm signal from the neutral
hydrogen in minihalos (Gong and Kitajima, 2017, Gong and
Kitajima, 2018). However, consistently accounting for the heating
of the IGM due to PBH accretion increases the Jeans mass and
suppresses the minihalo 21 cm signal, making it almost negligible
(Mena et al., 2019).

6 OBSERVATIONAL CONSTRAINTS ON
PBHS AS DM

PBHs can impact cosmology and astrophysics in a wide range of
ways, leaving different observational effects which allow to

constrain their properties. In this section, we review the most
important bounds on the current fraction of PBHs as DM,
fPBH � ΩPBH/ΩDM, for a wide range of masses MPBH, for
monochromatic mass functions. A collection of limits from
the different probes is depicted in Figure 2. For a more
comprehensive list of constraints, see Green and Kavanagh
(2021); Carr and Kühnel (2020).

Evaporation
Since BHs emit energy due to Hawking radiation, those with a
lifetime shorter than the age of the Universe must have
disintegrated nowadays, a fact which excludes PBHs with
MPBH <M*x4 × 1014 g to form part of the current DM (Page,
1976). Moreover, PBHs with masses small enough, although still
present, should emit a strong c ray and cosmic ray background
which could be observed. Absence of its detection strongly
constrains the range of masses MPBH ≲ 1017 g. In particular, the
maximum fraction allowed is fPBH ≲ 2 × 10− 8(MPBH/M*)3+ϵ,
with ϵ ∼ 0.1 − 0.4 (Carr et al., 2016). Comparable limits have
been found from INTEGRAL and COMPTEL observations of the
Galactic Center (DeRocco and Graham, 2019; Laha, 2019;

FIGURE 2 | Compilation of constraints on the PBH fraction (with respect
to DM) as a function of the PBH mass, assuming a monochromatic mass
function. The different probes considered are: impact of PBH evaporation
(red) on the extragalactic c-ray background (Carr et al., 2010) and on the
CMB spectrum (Clark et al., 2017); non-observation of microlensing events
(blue) from the MACHO (Alcock et al., 2001), EROS (Tisserand et al., 2007),
Kepler (Griest et al., 2014), Icarus (Oguri et al., 2018), OGLE (Niikura et al.,
2019b) and Subaru-HSC (Croon et al., 2020) collaborations; PBH accretion
signatures on the CMB (orange), assuming spherical accretion of PBHs within
halos (Serpico et al., 2020); dynamical constraints, such as disruption of stellar
systems by the presence of PBHs (green), on wide binaries (Monroy-
Rodríguez and Allen, 2014) and on ultra-faint dwarf galaxies (Brandt, 2016);
power spectrum from the Lyα forest (cyan) (Murgia et al., 2019); merger rates
from gravitational waves (purple), either from individual mergers (Kavanagh
et al., 2018; Abbott et al., 2019) or from searches of stochastic gravitational
wave background (Chen and Huang, 2020). Gravitational waves limits are
denoted by dashed lines, since they could be invalidated (Boehm et al., 2021).
Dotted brown line corresponds to forecasts from the 21 cm power spectrum
with SKA sensitivities (Mena et al., 2019) and from 21 cm forest prospects
(Villanueva-Domingo and Ichiki, 2021). Figure created with the publicly
available Python code PBHbounds (Kavanagh, 2019).
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Coogan et al., 2020; Laha et al., 2020). Furthermore, bounds from
the isotropic X-ray and soft gamma-ray background have also
been recently updated (Ballesteros et al., 2020; Iguaz et al., 2021).
Additionally, data on the diffuse supernova neutrino background
at Super-Kamiokande are also able to set constraints (Dasgupta
et al., 2020).

Microlensing
If a compact object crosses the line of sight of a star, it may
produce a so-called microlensing effect, which implies a transient
and achromatic amplification of its flux. The range of masses of
the objects which can produce it span from 5 × 10− 10 to
∼ 100M⊙ (Paczynski, 1986; Green and Kavanagh, 2021). The
non-detection of these events leads to bounds on the maximum
abundance of PBHs about fPBH ≲ 0.01 − 0.1 by the MACHO
(Alcock et al., 2001) and EROS (Tisserand et al., 2007) surveys
in the Large and Small Magellanic Clouds, the Subaru Hyper
Suprime Cam (HSC) in M31 (Andromeda) (Niikura et al., 2019a)
and the Optical Gravitational Lensing Experiment (OGLE) in the
Galactic bulge (Niikura et al., 2019b). Nonetheless, the existence
of Earth-mass PBHs (MPBH ∼ 10− 5M⊙) with a fraction
fPBH ∼ 0.03 could explain the observed excess of six
microlensing events found in the OGLE data (Mróz et al.,
2017), which is consistent with other constraints in this range
of PBHs masses (Niikura et al., 2019b). Although this may
constitute a hint of their existence, it cannot be regarded as a
detection of PBHs, since these microlensing observations could
also be explained by free-floating planets. There are some caveats
regarding the results of the MACHO collaboration (Hawkins,
2015), since the limits reported are model dependent and could be
biased by the assumption of an over-massive halo. Moreover, the
results of the MACHO and EROS projects have been found to be
statistically incompatible. Therefore, these bounds are not
completely reliable, and PBHs could not be definitely ruled
out within this range of masses. Variations of the lensing
effect in type Ia Supernovae (Zumalacárregui and Seljak, 2018)
and gamma-ray bursts (Barnacka et al., 2012) have also been
proposed to constrain the PBH parameter space, although these
limits have been later invalidated (Garcia-Bellido et al., 2017; Katz
et al., 2018).

Gravitational Waves
The observation of BH mergers by LIGO and Virgo
collaborations can be employed to constrain the allowed
number of PBHs. Demanding that the predicted merger rates
of PBH binaries cannot exceed the ones measured by
gravitational waves, tight upper bounds of fPBH ≲ 0.01 have
been found for PBHs masses between 1 and 300 M⊙ (Ali-
Haïmoud et al., 2017; Kavanagh et al., 2018). The non-
observation of a stochastic gravitational wave background of
mergers expected from a population of PBHs has also been
used to constrain their abundace (Chen and Huang, 2020).
However, to derive these limits, BHs have been treated as
Schwarzschild BHs, while it would be more appropiate to use
cosmological BH solutions embedded in a FLRW metric, such as
the Thakurta metric (Thakurta, 1981). This implies a time-
dependent mass, and that PBH binaries created before galaxy

formation would have merged at much earlier times, allowing to
obtain merger rates consistent with the LIGO observations, and
completely avoiding these constraints (Boehm et al., 2021).

Dynamical Constraints
Due to two-body interactions, kinetic energies of systems of
different masses usually become balanced and match. If a
stellar system also has an additional MACHO population, its
stars would gain kinetic energy and, due to the virial theorem, the
system would expand. Therefore, the presence of PBHs would
dynamically heat star clusters, making them larger and with
higher velocity dispersions, leading to an eventual dissolution
into its host galaxy. Populations with high mass to luminosity
ratios are more sensitive to this effect, as happens with ultra faint
dwarf galaxies (UFDW), which would be disrupted by the
presence of PBHs. Making use of these effects, tight bounds
have been obtained at fPBH ∼ 10− 3 forMPBH ∼ 104 M⊙, weakening
at lower masses down to fPBH ≲ 1 for MPBH ∼ 10M⊙ (Brandt,
2016). In a similar way, wide binary stellar systems may be
perturbed by compact objects, potentially being disrupted after
multiple encounters. The separation distribution of wide binaries
restricts the PBH fraction from fPBH ≲ 1 forMPBHx3M⊙ down to
fPBH ≲ 0.1 atMPBH ≳ 70M⊙ (Monroy-Rodríguez and Allen, 2014).

CMB
Radiation emitted either by accretion or from Hawking
evaporation may affect the CMB spectrum in two ways:
producing spectral distortions and modifying temperature
anisotropies. The energetic radiation can enhance the
ionization rate, delay recombination and shift the peaks of the
CMB anisotropy spectrum, as well as induce more diffusion
damping. The polarization spectrum could also be modified,
since the increase of the free electron fraction would increase
the Thomson optical depth and enhance the reionization bump at
large angular scales. Although early CMB analyses (Ricotti et al.,
2008) found very stringent bounds on the allowed abundance of
accreting PBHs, later works revisited these computations and
found much milder constraints (Horowitz, 2016; Ali-Haïmoud
and Kamionkowski, 2017). On another hand, while the former
constraints rely on the assumption of spherical accretion,
accreting disks have been argued to be more realistic for
PBHs, resulting in tighter limits (Poulin et al., 2017b). Taking
into account that PBHs could be immersed in DM halos with
higher densities than the background, their accretion rates would
be increased, also leading to more stringent constraints (Serpico
et al., 2020). CMB limits from accretion are currently the most
stringent ones for masses ≳ 10M⊙. The main caveat is their
dependence on some details of the accretion mechanisms, such as
the effective velocity and the accretion rate, which may not be
very well understood yet.

On the other hand, the energy injection from PBHs
evaporation would produce anisotropies and spectral
distortions in the CMB spectrum, which would also limit the
maximum abundance, leading to similar costraints to those
obtained from the extra-galactic c-ray background commented
above (Clark et al., 2017; Poulin et al., 2017a; Acharya and Khatri,
2020). Besides energy injection from accretion of BH evaporation,
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spectral distortions can also be produced by other means, such as
the diffusion of photons due to Silk damping at small scales. This
allows the translation of constraints on spectral distortions from
FIRAS to stringent upper bounds on the PBH abundance, for
masses MPBH > 105M⊙ (Nakama et al., 2018).

Lyα Forest
The discrete nature of PBHs would lead to a shot-noize
contribution to the matter power spectrum, enchancing small
scale fluctuations. Observations of the Lyα forest, which traces
matter distribution at small scales, have been employed to extract
limits on the maximum allowed fraction of PBHs (Afshordi et al.,
2003). The shot-noize contribution to the power spectrum
depends on the joint product fPBHMPBH, for which the upper
bound fPBHMPBH ≤ 60M⊙ has been obtained (Murgia et al., 2019).
The drawback of this method is on the priors of the reionization
modeling and, as any Lyα forest analysis, is model dependent.

21cm Cosmology
The 21 cm line signal from the hyperfine structure of the
hydrogen is highly sensitive to the thermal state of the IGM,
and thus, energy injection from PBH accretion or evaporation
may leave strong observable signatures. The first claimed
measurement of a global absorption dip by the EDGES
collaboration (Bowman et al., 2018) may lead to competitive
bounds on the PBH abundance, either from accretion processes
(Hektor et al., 2018) or from energy injection by evaporation
(Clark et al., 2018; Halder and Banerjee, 2021; Halder and
Pandey, 2021). It must be noted, however, that the EDGES
signal has not been confirmed yet by other experiments, and it
has been argued that it could be explained by alternative
mechanisms (Hills et al., 2018; Bradley et al., 2019; Sims and
Pober, 2020). On the other hand, although the cosmological
21 cm power spectrum has not been detected yet, forecasts with
future experiments such as HERA and SKA have shown that
21 cm power spectrum data from these two radiotelescopes
could potentially improve the bounds up to fPBH < 10− 2 − 10− 6
for masses above M⊙ (Mena et al., 2019). The 21 cm forest
observed as absorption troughs in the spectra of radio sources at
z ∼ 10 − 15 could also provide similar limits on the PBH

abundance, due to the Poisson shot noise and to the
accretion heating effect (Villanueva-Domingo and Ichiki,
2021).

7 CONCLUSION

The extremely rich physics involved in the formation, evolution
and distribution of PBHs implies a large number of observable
effects which allow probing them. A myriad of constraints are
present for a large range of PBHs masses. In recent years some of
these limits, as those from microlensing, femtolensing, CMB
accretion or BH mergers, have been revisited. Some of these
bounds have been significantly weakened or have even
disappeared, opening windows in the parameter space where
PBHs could still form a substantial part of the DM, if not all. On
the other hand, future experiments with better sensitivities may
be able to reach yet unexplored regions in the parameter space
and tighten up current limits. New probes, such as the 21 cm line
pursued in radio interferometers like SKA, will present a
promising and powerful way to proof or refute the existence
of PBHs formed in the early universe and their potential
contribution to the DM in the Universe.
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