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In a relativistic context, the main purpose of Extended Irreversible Thermodynamics (EIT) is
to generalize the principles of non-equilibrium thermodynamics to the domain of fluid
dynamics. In particular, the theory aims at modeling any diffusion-type process (like heat as
diffusion of energy, viscosity as diffusion of momentum, charge-conductivity as diffusion of
particles) directly from thermodynamic laws. Although in Newtonian physics this task can
be achieved with a first-order approach to dissipation (i.e. Navier–Stokes–Fourier like
equations), in a relativistic framework the relativity of simultaneity poses serious challenges
to the first-order methodology, originating instabilities which are, instead, naturally
eliminated within EIT. The first part of this work is dedicated to reviewing the most
recent progress made in understanding the mathematical origin of this instability
problem. In the second part, we present the formalism that arises by promoting non-
equilibrium thermodynamics to a classical effective field theory. We call this approach
Unified Extended Irreversible Thermodynamics (UEIT), because it contains, as particular
cases, EIT itself, in particular the Israel-Stewart theory and the divergence-type theories,
plus Carter’s approach and most branches of non-equilibrium thermodynamics, such as
relativistic chemistry and radiation hydrodynamics. We use this formalism to explain why all
these theories are stable by construction (provided that the microscopic input is correct),
showing that their (Lyapunov) stability is a direct consequence of the second law of
thermodynamics.

Keywords: relativistic hydrodynamics with dissipation, thermodynamics, Extended irreversible thermodynamics,
relativity -, hydrodynamic stability and instability

1 INTRODUCTION

In Newtonian physics, the Navier–Stokes equations emerge as an almost (Jain and Kovtun, 2020)
universal behavior of dissipative simple fluids when the following double limit is taken (Huang,
1987):

i- Small deviations from equilibrium.
ii- Slow macroscopic evolution in an assigned reference frame A.

Only when both these conditions are met, more fundamental descriptions (such as kinetic theory
or many-body dynamics) can be consistently replaced by the Navier–Stokes equations at the
macroscopic scale (Kadanoff and Martin, 1963). Unfortunately, this same approach in relativity is
known to be problematic. For example, the simplest relativistic generalization of the Navier–Stokes
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equations (the Eckart theory of dissipative fluids) has strong
drawbacks, among them the lack of stable solutions and the
acausal propagation of perturbations (Hiscock and Lindblom,
1983; Hiscock and Lindblom, 1985).

The requirement (i) that the fluid system is close to
equilibrium is a relativistic invariant statement. At the
mathematical level, it amounts to a linearization of the
equations around a reference state. This procedure is usually
harmless, meaning that the limit in (i) can be safely taken also in a
relativistic framework. However, the condition (ii) of slow
evolution is fundamentally observer-dependent (a slow process
in one reference frame may be fast in another reference frame),
and involves the potentially dangerous operation of neglecting
some higher-order derivatives in time in the reference frameA. In
general, this procedure changes the character of a differential
equation (typically from hyperbolic to parabolic), so that it can
also change the nature of the initial value problem. In relativity,
this is particularly problematic because, as a consequence of the
relativity of simultaneity (Gourgoulhon, 2013), different
observers impose their initial conditions on different time-
slices and may, therefore, deal with initial-value problems of
different nature (Gavassino et al., 2020a). The result is that, if we
take the slow limit, our final equations, although approximately
correct [in the technical sense of Geroch (1995)], may be
impossible to solve in any other reference frame B≠A, as
discussed by Kostädt and Liu (2000). This is due to the fact
that in B any initial condition, given with a finite precision, might
unavoidably contain fast-growing modes that are non physical
(Hiscock and Lindblom, 1985).

The solution proposed by Israel and Stewart (1979) consists of
dropping the slow limit assumption (ii) and working only under
the assumption of small deviations from equilibrium. In fact,
their theory includes a consistent description of the (possibly fast)
relaxation processes of the fluid elements toward local
thermodynamic equilibrium. The causal and stable
thermodynamics of Israel and Stewart provides a satisfactory
replacement of the unstable and non-causal models of Eckart and
Landau and Lifshitz: in the Israel–Stewart framework, the
observer-dependent slow limit can be avoided altogether and
the equations keep a well defined hyperbolic structure. The
structure of the Israel and Stewart’s theory can be seen as the
prototype for a general relativistic formulation of Extended
Irreversible Thermodynamics (EIT) (Jou et al., 1999; Rezzolla
and Zanotti, 2013).

Although the Israel–Stewart theory has satisfactory
mathematical properties (Hiscock and Lindblom, 1983) and is
in good agreement with kinetic theory (Israel and Stewart, 1979),
it fails to be a universal theory (Callen, 1985). The reason is that
the slow limit (ii) was a necessary element to extract a universal
behavior out of the linearized equations, which may otherwise
exhibit exotic dynamics (Denicol et al., 2012; Heller et al., 2014)
and may posses an infinite number of degrees of freedom
(Denicol et al., 2011). As an example, even in the simple case
of pure bulk viscosity, there is an infinitely large class of systems
(consistently modeled using non-equilibrium thermodynamics)
that cannot be described within the Israel-Stewart theory
(Gavassino et al., 2021a). All this is discussed with the aid of

two simple examples (the Klein–Gordon field and photon
diffusion) in Sections 2–5, and more in general in Section 5.

The aim of the second part of this work (starting with Section
6) is to review and extend the approach of Israel and Stewart by
proposing a formalism that might have a more universal
applicability (if not as a precise limit, at least as a useful
approximation) and which constitutes a natural hydrodynamic
extension of non-equilibrium thermodynamics. We will refer to
this approach as Unified Extended Irreversible Thermodynamics
(UEIT), since it unites within a single formalism the relativistic
EIT theories [like the Israel-Stewart model and the so-called
divergence-type theories, see Liu et al. (1986))] with Carter’s
variational approach (Carter, 1991; Carter and Khalatnikov,
1992a), radiation hydrodynamics (Mihalas and Weibel
Mihalas, 1984) and relativistic chemistry (Carter, 1989). The
assumptions, and the associated limitations, of UEIT will be
discussed as well.

The main goal of UEIT is not just to provide a relativistic well-
behaved formulation of the Navier–Stokes equations (Anile et al.,
1998), a task that seems to be already perfectly achieved by the
frame-stabilized first-order theories (Kovtun, 2019; Bemfica et al.,
2020), but also to embed the principles of non-equilibrium
thermodynamics in an Einsteinian space-time. In fact,
contrarily to what is done in first-order theories, UEIT
overcomes the instability problem of the relativistic
Navier–Stokes approach by means of the same, fundamental,
thermodynamic principles that also guarantee the (Lyapunov)
stability of any other dissipative system (Prigogine, 1978;
Kondepudi and Prigogine, 2014; Gavassino et al., 2020a).
Therefore, as we will see, UEIT should not be considered as a
specific hydrodynamic theory, but rather as a thermodynamic
language, that can be used to formulate a class of classical effective
field theories which are connected with statistical mechanics in a
very natural way.

The ideas at the basis of UEIT have been around for a long
time, without being systematized in a global picture. For this
reason, our presentation will follow the structure of an
introductory review, collecting together some important results
on the topic. Formal aspects will be addressed with the aid of
simplified physical models, possibly referring to the original
research works for the formal and more technical details.

Our approach to the subject is complementary to that of most
of the other reviews on EIT, like Jou et al. (1999), Salazar and
Zannias (2020). In fact, the discussion usually revolves around the
thermodynamic foundations of the theory and on the principles
of transient thermodynamics that lead to EIT (e.g., the release of
variation postulate). However, we must recognize that, since
relativistic hydrodynamics is a phenomenological description
which finds application in diverse areas of physics (ranging
from heavy ion collisions to neutron star physics), EIT has
evolved in each area autonomously, partially losing its original
connection with the thermodynamic principles which led to its
formulation. For example, in dilute-gas physics EIT is regarded as
an approximation to the Boltzmann equation (Denicol et al.,
2012; Chabanov et al., 2021), whereas in dense-matter physics
EIT is a synonym of multi-fluid modeling (Rau and Wasserman,
2020; Gavassino et al., 2021a). For this reason, in this review we
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will privilege an effective field theory perspective, which, we
believe, clarifies the rationale of EIT and makes its physical
content more accessible.

As our main interest is to discuss the thermodynamic
interpretation of various models, the spacetime (not
necessarily flat in some sections) will be treated as a fixed
background, so we will not include the metric in the set of the
dynamical fields of the theory and the possible dependence of
some quantity on g]ρ will be tacit. We adopt the spacetime
signature (−,+,+,+) and work in natural units c � Z � kB � 1.
The space-time indices ], ρ, σ . . . run from 0 to 3, while the indices
j, k are always space indices and run only from 1 to 3. The indices
i, h are always abstract labels, counting the fields of a specific
hydrodynamic theory.

2 HYDRODYNAMICS AS A CLASSICAL
FIELD THEORY

To set terminology and notation, in this section we provide a
minimal introduction to relativistic hydrodynamics, interpreted
as a classical effective field theory (Dubovsky et al., 2012; Kovtun,
2012).

2.1 Constitutive Relations and
Hydrodynamic Equations
The bold bet of the hydrodynamic point of view is that it is
possible to use a limited set of macroscopic independent (but
possibly subject to some algebraic constraints) classical fields φi
on the spacetime manifold M to describe the large-scale
evolution of multi-particle systems (i is an index labeling the
fields). Such a description is useful if it enables to calculate the
values of

1. The (symmetric) stress-energy tensor T]ρ of the fluid system,
2. The entropy current s],
3. Any conserved current at every point of M, see e.g. (Israel,

2009). Therefore, once the choice of the fields φi is made, one
needs to provide some formulas

T]ρ � T]ρ(φi,∇σφi,∇σ∇λφi, . . . )
s] � s](φi,∇σφi,∇σ∇λφi, . . . )
n] � n](φi,∇σφi,∇σ∇λφi, . . . ) , (1)

which are called constitutive relations (Liu et al., 1986; Kovtun,
2012; Kovtun, 2019). For simplicity, we are assuming that there is
only one independent conserved particle (minus anti-particle)
current n], meaning that the fluid is a simple fluid (Misner et al.,
1973). In writing (1) we have implicitly made use of a locality
assumption, namely the physical tensors at an event depend only
on the fields and their covariant derivatives evaluated at the
same event.

To complete the hydrodynamic model, we need to specify the
evolution of the fields φi by prescribing a set of differential
hydrodynamic equations

Fh(φi,∇σφi,∇σ∇λφi, . . . ) � 0 . (2)

The quantities Fh are tensor fields and, again, the same locality
assumption has been invoked.

The constitutive relations (1) and the hydrodynamic Eq. 2
must be formulated in such a way to ensure the validity of the
fundamental conservation laws

∇]T
]ρ � 0 ∇]n

] � 0, (3)

and of the second law of thermodynamics

∇]s
] ≥ 0 , (4)

at least to the level of accuracy that the theory is designed to have.
A hydrodynamic theory is said to be non-dissipative when the
entropy production (4) is exactly zero, while it is said to be
dissipative otherwise.

Finally, any hydrodynamic model should (in principle) respect
some compatibility constraints with

i Equilibrium statistical mechanics: Isolated dissipative systems
should eventually converge (for t→ +∞) to a global
thermodynamic equilibrium state, whose properties should
coincide with those computed by means of the micro-canonical
ensemble 2. Therefore, this state must be stable against any
perturbation allowed by the hydrodynamic model. In non-
dissipative theories this thermodynamic equilibrium state still
exists and is stable under perturbations (i.e. the system shall not
spontaneously depart from it), but, since entropy is conserved, the
system does not converge to it for large times. More formally, we
may say that both dissipative and non-dissipative systems are
Lyapunov stable, but only dissipative ones are also
asymptotically stable.

ii Kinetic theory: If the system admits a kinetic description,
then the predictions of the hydrodynamic theory (within
its range of applicability) should coincide with those of
kinetic theory. As a consequence, the possible presence of
exact kinematic constraints, such as the traceless condition
for the stress-energy tensor of ultra-relativistic ideal gases
(Tv

v � 0), need to be carefully encoded into the
hydrodynamic model.

iii Causality: Fundamental principles of Quantum Field Theory
(namely, equal-time commutation/anticommutation relations
and Lorentz covariance) impose that information cannot
propagate faster than light (Peskin and Schroeder, 1995).
Therefore, this is a property of every physical system that
should be respected by phenomenological models of the kind
we are describing here (within the precision and physical limits
of the model).

While a hydrodynamic model may, in principle,
implement the requirements (ii) and (iii) only in an
approximate way, we will see that (i) is of central
importance for UEIT, especially if the model is dissipative.
In fact, the purpose of a dissipative model is to describe how a
system spontaneously evolves toward thermodynamic
equilibrium by converting the energy of the macroscopic
hydrodynamic motion into internal energy.
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2.2 Setting the Terminology: Perfect Fluids
To gain some initial insights, let us discuss a specific
implementation of Eq. (1) and (2). To set the terminology, let
us consider the perfect fluid. The most common way to formulate
its dynamical equations is within the Eulerian specification of the
flow over M; within this Eulerian framework, the fields can be
chosen as

(φi) � ( uσ , s, n ) , (5)

where the vector field uσ is interpreted as the fluid four-velocity,
while the scalar fields s and n are respectively the local entropy
and particle density, as measured in the reference frame defined
by uσ ,

uσ � nσ/ �����
−nλnλ

√
s � −sσuσ n � −nσuσ . (6)

Given the choice in (5), the constitutive relations (1) read

T]ρ � (U + Ψ)u]uρ + Ψg]ρ s] � su] n] � nu]. (7)

The quantities U and Ψ are respectively the energy density and
the pressure of the fluid, as measured in the frame of uσ . The
constitutive relation for the stress-energy tensor is completed by
an equation of state U � U(s, n), whose differential is

dU � Θds + μdn . (8)

The pressure Ψ is related to the energy density through the Euler
relation1,

U + Ψ � Θs + μn . (9)

Finally, the hydrodynamic Eq. 2 read

(U + Ψ)u]∇]uρ + (δ]ρ + u]uρ)∇]Ψ � 0
u]∇]s + s∇]u

] � 0
u]∇]n + n∇]u

] � 0.
(10)

Combining the constitutive relations together with the
hydrodynamic equations immediately leads to (3) and (4),
with ∇]s] � 0, i.e. perfect fluids are non-dissipative.

The same system can be described by using two arbitrary
independent thermodynamic variables as fundamental fields
(Misner et al., 1973). For example, an alternative to (5) could
be (Kovtun, 2019)

(φi) � ( uσ , Θ , μ ) . (11)

The two descriptions are related by a change of variables, where s
and n should be written in terms of Θ and μ. This can be
conveniently done by trying to obtain an expression of the
kind Ψ � Ψ(Θ, μ). In fact, from (8) and (9), one can derive
the differential

dΨ � sdΘ + ndμ , (12)

which immediately provides the relations s(Θ, μ) and n(Θ, μ).
Perfect-fluid dynamics can also be obtained starting from a

different perspective (as opposed to the Eulerian point of
view), namely via the Lagrangian specification of the flow.
In this approach, also known as pull-back formalism
(Andersson and Comer, 2007), the fields of the theory are
three scalar fields,

(φi) � (Φ1,Φ2,Φ3), (13)

representing the comoving Lagrangian coordinates of the fluid
elements (Comer and Langlois, 1993; Prix, 2004; Ballesteros et al.,
2016; Gavassino and Antonelli, 2020). These fields are sometimes
referred to as matter-space coordinates (Andersson and Comer,
2007), and are related to the fluid velocity u] through the
conditions

u]∇]Φ1 � u]∇]Φ2 � u]∇]Φ3 � 0. (14)

These conditions are automatically satisfied if the constitutive
relations for the currents have the form

s] � ε]ρσλS(Φ1,Φ2,Φ3)∇ρΦ1∇σΦ2∇λΦ3

n] � ε]ρσλN(Φ1,Φ2,Φ3)∇ρΦ1∇σΦ2∇λΦ3,
(15)

where S and N are two arbitrary functions, to be chosen to
reproduce the correct initial conditions (Andersson and Comer,
2007). Equation (15) provide a mapping between the Eulerian
and the Lagrangian descriptions: when inserted into the right-
hand sides of the equations in (6), we obtain the rules for the
change of variables

(uσ , s, n)→ (Φ1,Φ2,Φ3) . (16)

It is interesting to note that, while in the Eulerian framework the
conservation of s] and n] is imposed at the level of the
hydrodynamic equations 10, in the Lagrangian one they are
already implemented within the constitutive relations. This
means that they are satisfied both on-shell (i.e. by fluid
configurations that are solutions to the hydrodynamic
equations) and off-shell (i.e. on a generic spacetime
configuration of the fields Φ1,Φ2,Φ3), see e.g. (Comer and
Langlois, 1993; Gavassino and Antonelli, 2020).

An alternative formulation of the Lagrangian approach has
been proposed by Dubovsky et al. (2012), which can be shown to
be equivalent to the one summarized here (Gavassino and
Antonelli, 2020). Moreover, the Lagrangian point of view finds
many applications in multifluid hydrodynamics (Carter and
Khalatnikov, 1992a; Andersson and Comer, 2007), elasticity
theory (Carter and Quintana, 1972; Andersson et al., 2019),
and models for dissipation (Grozdanov and Polonyi, 2013;
Andersson and Comer, 2015; Montenegro and Torrieri, 2016;
Celora et al., 2021).

2.3 Non-interacting Scalar Field
For later convenience, we also introduce another minimal
example, that is intimately different from the perfect fluid: the
complex scalar field,

(φi) � (φ) . (17)

1Similarly to what is done in non-relativistic thermodynamics, the Euler relation is
often derived from an additivity property of the system, see e.g. Florkowski et al.
(2018) or Gavassino et al. (2021a) for the slightly more general case of perfect
multifluids.
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For simplicity, we assume flat spacetime with global inertial
coordinates x] and impose that the dynamics is governed by
the Klein–Gordon action (Weinberg, 1995)

I[φ] � ∫
M
[ − z]φ z

]φ −m2φφ]d4x m> 0. (18)

For what concerns us, this (phenomenological) model defines the
classical dynamics of a macroscopic complex field with mass m,
which is often used (for theoretical purposes) as the minimal
example of an unconventional kind of fluid, whose equation of
state is a differential equation (Kaup, 1968). When coupled with
gravity, this theory is also used in modeling boson stars2 (Liebling
and Palenzuela, 2012). The constitutive relations (1) can be
computed directly from the action principle:

T]ρ � 2 z(]φ zρ)φ − gμ](zαφ zαφ +m2φφ)
s] � 0
n] � i(φ z]φ − φ z]φ), (19)

where T]ρ is the Belinfante–Rosenfeld tensor of the model, while
n] is the Noether current associated with the U(1) symmetry of
the action. We imposed the condition s] � 0 as a zero-
temperature assumption (the model is non-dissipative). The
hydrodynamic equation (2) is given by the usual Klein-
Gordon equation obtained from the action (18),

z]z
]φ � m2φ , (20)

implying that the conservation laws (3) are ensured by
construction on-shell. The solution of (20) reads

φ(x) � ∫[apeip]x] + bpe
−ip]x]] dp1dp2dp3(2π)3 ���

2p0
√ (21)

where the four-momenta p] must satisfy the constraints

p]p] � −m2 p0 > 0 0 p0 �
��������
m2 + pjpj

√
. (22)

Since every small perturbation can be decomposed into modes
with real frequencies, any solution is stable under small
perturbations. In addition, the dispersion relation (22) imposes
a subluminal signal propagation, ensuring causality.

2.4 Hydrodynamic Degrees of Freedom: The
Scalar Field and Perfect Fluid Examples
To introduce the fundamental concept of hydrodynamic degree
of freedom, we start by considering the minimal Klein-Gordon
model introduced in the previous subsection, as it builds on the
single field in (17). All the relevant information about the system
is contained in this single function (φ : M→C), meaning that
every physical quantity can be computed at each point of M
directly from any given solution of the form (21).

A standard hydrodynamic problem is, however, typically
formulated as an initial value problem, where one imposes a set of
initial conditions on a space-like 3D Cauchy hypersurface Σ (e.g. the
surface t � 0). Then, the evolution of the hydrodynamic quantities in
the causal future of Σ (e.g. the portion of the spacetime t > 0) is
studied. The number of independent real functions which must be
assigned on Σ to identify a unique solution is the number of
hydrodynamic degrees of freedom D of the model.

Since Eq. 20 is of the second order in time, the knowledge of
the initial condition

φ : Σ→C (23)

is not enough to uniquely evolve the field configuration. However,
it is possible to recast the evolution as two complex first-order
equations of the Hamilton type,

ztφ � ΠKG ztΠKG � zjz
jφ −m2φ , (24)

where the conjugate momentum is

ΠKG :� δI
δ(ztφ) � ztφ . (25)

Now, if together with (23) we prescribe also the initial conditions
of the conjugate momentum,

ΠKG : Σ→C , (26)

we have a well-posed initial value problem. Hence, the
Klein–Gordon model has D � 4 degrees of freedom (i.e. two
complex functions). We remarked this basic and well know fact to
stress the idea that, in general, the number of degrees of freedom
differs from the number of (real) algebraically independent
components of the fields φi. The difference between the two
typically depends on the order of the hydrodynamic equations, on
the possible presence of gauge freedoms, and on the possibility of
some equations to play the role of constraints on the initial
conditions (e.g. as in the well known case of Maxwell equations).

For the case of perfect fluids in the Eulerian framework, we
have five first-order independent dynamical Eq. 10 for five
variables (5), which constitute a closed system with D � 5. It
is interesting to note that, while within the Eulerian specification
of the flow field the number of independent components of the
fields coincides with the number of degrees of freedom, this is no
longer the case when we move to the Lagrangian point of view. In
fact,Φ1,Φ2,Φ3 are three real scalar fields, obeying 3 second-order
differential equations, which can be obtained by performing the
change of variables (Eq. 16) in the first equation of (10).
Considering that there is a gauge freedom which can be used
to change the value of one free function without altering the
physical state of the system (Comer and Langlois, 1993), we are
left again with D � 2 × 3 − 1 � 5.

3 SLOW LIMIT OF THE NON-INTERACTING
SCALAR FIELD

We explicitly discuss the slow limit procedure, by using the
complex scalar field as a guiding example. In its simplicity, the

2In fact, the free Klein-Gordon classical field ϕ can be interpreted as the
macroscopic description of a zero-temperature condensate of (strictly) non-
interacting scalar bosons of mass m, with order parameter
φ(x) ∼ 〈N|φ̂(x)|N + 1〉, see e.g. Landau et al. (1980), Parker and Zhang (1993),
Chavanis and Harko (2012).
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Klein–Gordon model contains most of the field theory features
we are interested in.

3.1 The Slow Limit Removes Degrees of
Freedom
The slow limit is a necessary element to extract (in ergodic
systems of interacting identical particles with no broken
symmetries) the universal Navier–Stokes equations. The main
reason is that this limit removes all the fast degrees of freedom.
Let us see how this mechanism of suppression of degrees of
freedom works for the non-interacting scalar field. We anticipate
that this slow limit can not be Navier–Stokes, since the existence
of an “order parameter” prevents the emergence of a universal
behavior (Ruffini and Bonazzola, 1969). In fact, it is well known
that the slow limit of the Klein–Gordon equation is the
Schrödinger equation: following the standard textbook
approach [e.g. (Zee, 2003)], it is possible to define

φ � e−imtψ / ���
2m

√
(27)

that, when used into Eq. 20, allows to obtain

− 1
2m

z2tψ + iztψ � − 1
2m

zjz
jψ . (28)

To recover the slow limit we have to recall that 1/m sets an
intrinsic timescale: demanding ψ to be a slow degree of freedom
amounts to require that∣∣∣∣z2tψ∣∣∣∣≪m

∣∣∣∣ztψ∣∣∣∣ . (29)

In this limit, we obtain, as expected,

iztψ � − 1
2m

zjz
jψ . (30)

Contrarily to the original Klein–Gordon equation, Eq. 30 is of the
first-order in time, meaning that we are left only with D � 2. To
see what has happened to the remaining 2 degrees of freedom, we
can take the small-momentum limit (pj → 0) of the generic
solution (Eq. 21) and cast it into the form

φ � 1���
2m

√ (e−imtψ+ + eimtψ−) , (31)

where we have introduced the two functions

ψ+(x) � ∫ apexp(ipjxj − i
pjpj

2m
t) d3p

(2π)3

ψ−(x) � ∫ bpexp( − ipjx
j + i

pjpj

2m
t) d3p

(2π)3
(32)

Direct comparison of Eq. 27 with Eq. 31 gives ψ � ψ+ + ei2mtψ−.
Since ei2mt oscillates fast, while ψ+ and ψ− are slowly evolving, the
only way for ψ to fulfill (Eq. 29) is that

ψ− � 00ψ � ψ+. (33)

This condition is the reason for the halving ofD in the slow limit.
In fact, from Eq. (32) it is evident that ψ+ and ψ− are two
independent functions, where ψ+ is governed by Eq. (30), while

ψ− is governed by the time-reversed Schrödinger equation. Thus,
the couple (ψ+,ψ−) constitutes a convenient representation of the
D � 4 degrees of freedom of the theory for small momenta. Only
when the slow-limit is taken we have

(ψ+,ψ−)→ (ψ+, 0) (34)

and the second-order (in time) Klein–Gordon equation boils
down to a first-order one. To understand the physical
implications of Eq. (33), consider the total four-momentum
P] and the U(1) charge Q of the system:

P] :� ∫T0]d3x � ∫ p](apap + bpbp) d3p

(2π)3

Q :� ∫ n0d3x � ∫(apap − bpbp) d3p

(2π)3
(35)

Their structure implies that apap and bpbp can be interpreted as
the average number of particles and antiparticles with four-
momentum p]. Hence, by imposing equation (Eq. 33), which
implies bpbp � 0, we are excluding antiparticle excitations from
the model (Heyen and Floerchinger, 2020).

In conclusion, we have shown that the slow limit of a field
theory has, in general, less degrees of freedom than its fast
counterpart. As a result, when we impose a condition of slow
evolution, we typically constrain the initial conditions to
belong to a particular subset (of measure zero) of the full
state-space.

3.2 Dispersion Relations
Thanks to the minimal example provided by the Klein–Gordon
model, we have seen that the slow-limit lowers the order of
temporal derivatives of the dynamical equations. It is natural to
ask whether there is a more systematic technique to study the

FIGURE 1 | Absolute value of the dispersion relations of the complex
Klein-Gordon field ψ, as given in Eq. 37. The blue curve refers to the gapless
mode ω+, the red line is the gapped mode ω−.
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effect of the slow limit also on other systems. A way of doing this
is via the spectral analysis of the modes of the linearized model
around a homogeneous stationary configuration. What follows is
a discussion of the results of the previous subsection from this,
more general, point of view.

We consider solutions of the full Klein–Gordon equation (Eq.
28) of the kind

ψ � ψ(0)
+ + δψ ei(pjxj−ωt) , (36)

where ψ(0)
+ and δψ are constants; the pre-factor δψ is

infinitesimal. Since the hydrodynamic equation is already
linear, the factor exp(ipjxj − iωt) must be an exact solution of
Eq. 28. For every wave-vector pj, there are two oscillation modes
of ψ, with frequencies

ω± � −m ±
��������
m2 + pjpj

√
. (37)

The absolute values of these dispersion relations are presented in
Figure 1. In the small wave-vector limit, Eq. 37 becomes

ω+ ≈
pjpj
2m

ω− ≈ −2m − pjpj
2m

. (38)

The mode evolving with ω+ contributes to ψ+, while the mode
evolving with ω− contributes to ψ−. The small-momenta behavior
of the two modes is

lim
p→ 0

|ω+| � 0 lim
p→ 0

|ω−| � 2m≠ 0 , (39)

and we will refer to ω+ as the gapless mode, and to ω− as the
gapped mode, with gap 2m.

Figure 1 gives an intuition of what happens in the slow limit
ω→ 0: the full solution must be a superposition of modes which
are in the proximity of the x-axis when the slow limit is taken.
Since the gapped dispersion relation does not touch the x-axis, in
the limit of small ω the full solution must be a superposition of
only the ω+ modes, so that Eq. 33 is enforced automatically.
Imposing that the final solution can be fully described with only
one dispersion relation (ω+) implies that we are replacing a
second-order differential equation with a first-order one, and
this is exactly what happens in the slow limit.

3.3 Hydro-Modes and Thermo-Modes
It is instructive to give a physical interpretation to the presence
and the role of both gapped and gapless modes. We will limit
ourselves to systems that do not exhibit the so-called gapped
momentum modes, see e.g. Baggioli et al. (2020).

First, let us focus on the modes with gapless dispersion relation
ω+. As they contribute only to ψ+, we can conclude that they
describe ordinary density fluctuations in the medium. They are,
essentially, the analogue of sound-waves: we call themHydro-modes,
because they are (in this context) the common hydrodynamicmodes
expected in practically every fluid. In our minimal example the
dispersion relationω+ is not linear (i.e. we do not have a phonon-like
dispersion relation) simply because the system is free: by adding a
term of the kind φ2φ2 in the action (18), we would recover the
expected linear phonon-like behavior of ω+ for small momenta.

On the other hand, the modes with gapped dispersion relation
ω− are present whenever the antiparticle fraction is non-zero.
Hence, contrarily to the Hydro-modes, these modes do not
simply describe the evolution of an inhomogeneity (i.e. a
deviation from the homogeneous state). They give rise,
instead, to a non-stationary behavior that survives even in the
absence of spatial gradients: this is the physical meaning of the
gap. We can gain further intuition if we imagine to switch on a
small interaction term in the action. Now, particle-antiparticle
reactions are allowed and the antiparticle fraction is rapidly
converted into thermal energy. Therefore, states with ψ− ≠ 0
are out of equilibrium with respect to pair production/
annihilation processes. We can conclude that the gapped
modes arise from the possibility to have homogeneous states
that are, however, non-equilibrium states (a situation that is
typical when it comes to model chemically reacting
substances). Since the theory which deals with such reacting
systems is non-equilibrium thermodynamics (Prigogine, 1968),
we may call these modes Thermo-modes.

In the next section we will show that the division of the modes
of the full (non-slow) theory into Hydro-modes and Thermo-
modes still holds also for more general systems of interacting
particles and is key to understand the emergence of
hydrodynamics as the slow limit of more fundamental
theories. We anticipate that, in a generic dissipative fluid, in
principle we may deal with an infinite number of degrees of
freedom, that generate an infinite number of dispersion relations
(Denicol et al., 2011). However, almost all these dispersion
relations are gapped (the associated Thermo-modes describe
the tendency of the fluid elements to relax toward local
thermodynamic equilibrium). The only modes that survive in
the slow limit are the few gapless ones, which describe the
transport of conserved quantities (Glorioso and Liu, 2018) and
are (almost 1) universally described by the Navier–Stokes
equations (another reason we call them Hydro-modes). This
mechanism will be explored in detail in Section 4.4, starting
from a kinetic description. A similar argument is at the origin of
the hydrodynamization mechanism in heavy ion collisions
(Florkowski et al., 2018).

3.4 Lorentz Boosts Can Generate Spurious
Gapped Modes
We briefly discuss why the slow limit can be problematic in
relativity. So far, we worked in the reference frame in which the
slow limit was taken. As long as the description is limited to this
frame, there is no fundamental difference between the Newtonian
and the Einsteinian description of the spacetime. Problems with
the slow limit in relativity, however, appear when we decide to
work in a different reference frame from the one in which the
limit itself is taken. To see exactly what can happen, we consider
the minimal example of the Schrödinger limit of the
Klein–Gordon model.

Let us assume that an observer (say Alice, moving with
four-velocity u]A) has prepared a condensate that is at rest in
her laboratory, while Bob (who is moving with four-velocity
u]B ≠ u

]
A), wants to describe the evolution of this same

Frontiers in Astronomy and Space Sciences | www.frontiersin.org June 2021 | Volume 8 | Article 6863447

Gavassino and Antonelli Unified Extended Irreversible Thermodynamics

https://www.frontiersin.org/journals/astronomy-and-space-sciences
www.frontiersin.org
https://www.frontiersin.org/journals/astronomy-and-space-sciences#articles


condensate in his own reference frame. Bob may start from
the assumption that the condensate is in the slow limit from
Alice’s point of view and, therefore, argue that Eq. 30 should
hold in her reference frame. Recalling the definition (27), Bob
will conclude that φ obeys the equation (formulated on the
basis of the principle of covariance)

iu]
Az](φ e−imuσAxσ ) � −(g]ρ + u]Au

ρ
A) z]zρ2m

(φ e−imuσAxσ ) . (40)

In this way, Bob is making sure that any solution he may find will
correspond automatically to an exact solution of the Schrödinger
equation in Alice’s reference frame.

There is, however, a complication. In fact, in every reference
frame, apart from the one of Alice, Eq. 40 is of the second order
in time, implying the paradoxical conclusion that Lorentz
boosts double the number of degrees of freedom of the
Schrödinger field. In fact, in the reference frame of Bob,
there are two dispersion relations, instead of just one. On the
other hand, if u]B approaches u]A, we recover the usual
Schrödinger equation, which predicts only one dispersion
relation. What happens to the second one?

To answer this question, we look for solutions of (40) which
are homogeneous in Bob’s reference frame,

φ∝ ei (m+ω) uσBxσ , (41)

as they allow for an immediate estimate of the possible gaps of the
two dispersion relations observed by Bob. Plugging (41) into (40)
we obtain

(c2 − 1)ω2 + 2m(c2 − c − 1)ω +m2(c − 1)2 � 0 , (42)

where c � −u]AuB] is the usual Lorentz factor. The two solutions
of (42) are

ω±

m
� 1 ±

�������
1 − 2w2

√
cw2

− 1 , (43)

where w is the relative speed between the two observers, namely
c2 � 1/(1 − w2). For small relative speed the two oscillation
modes in (43) read

ω+ ≈
2m
w2

ω− ≈
mw4

8
. (44)

Hence, in the limit w→ 0 of comoving observers, we have that ω−
becomes the homogeneous zero-frequency mode of the
Schrödinger equation. On the other hand, ω+ diverges. To
understand this peculiar behavior of ω+ we ask how its
associated mode looks like in the reference frame of Alice;
plugging (44) into (41) and recalling (27), we obtain

ψ∝ exp[i 2m

uk
BuBk

(uj
Bxj − t)] . (45)

It can be directly verified that this is indeed a solution of (30).
However, we also see that its associated wave-vector is

pj � 2mujB
ukBuBk

, (46)

which diverges in the limit of small ujB. Therefore, we can
conclude that this mode does not respect the assumption of
slow evolution in the Alice’s frame. This, in turn, implies that the
Schrödinger equation is not applicable along this mode, which
should, then, be discarded as an unphysical solution.

To summarize, we have shown that in the reference frame of
Bob there are two dispersion relations ω+ and ω− (instead of just
one as in Alice’s reference frame), where ω+ is associated with an
unphysical gappedmode, whose gap diverges when u]B → u]A. This
is the prototype of what we will refer to as spuriousmode, namely
an additional (and unphysical) gapped mode that may emerge as
a consequence of the straightforward uplift of a legit Newtonian
model to a covariant one, as done in (40).

3.5 A More General Discussion of the
Spurious Modes
The example analyzed in the previous subsection is a particular
case of a more general issue, whose aspects are qualitatively
summarized in the following points:

i When the slow limit of a covariant theory is taken in a given
reference frameA, space and time are not treated on equal footing
anymore: the slow limit typically involves some truncation in the
time-derivative expansion, so that the order in time of the final
equations is typically lower than the order in space.

ii When we boost to a reference frame B≠A, the derivatives in
space become linear combinations of both derivatives in space
and time,

z

zx
� c

z

zx′
− cw

z

zt′
, (47)

increasing the order in time of the equations. This gives rise to
gapped dispersion relations ωB which do not exist in the
Newtonian theory (Gavassino et al., 2020a).

iii As B→A, the dispersion relationsωB cannot change smoothly,
because they do not exist for B � A. The limit

lim
B→A

ωB (48)

usually results in an infinity, showing that the corresponding
mode is unphysical.

iv Therefore, if we want any solution of the boosted system of
equations to be physical, we must first make sure that it does
not contain any contribution coming from the modes ωB, at
least to the level of precision we are interested in.

The last point is what can make the slow limit problematic in
relativity. In fact, depending on the sign of Im(ωB), achieving the
condition in (iv) may be easy, difficult or even impossible for
some systems.
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When Im(ωB)< 0, then the spurious unphysical modes are
naturally damped; whatever the initial condition, the solution
converges to a physical one and the predictions of the model
become reliable after a time of a few 1/|Im(ωB)|. This is the
“easy” case.

If Im(ωB) � 0, as in the case of the Schrödinger equation (for
2w2 ≤ 1), these modes oscillate with constant amplitude: if the
gapped modes are negligible at the beginning of the evolution,
they will not become important later. Hence, if we want to find
solutions which are physically acceptable, we have to enforce the
(approximate) absence of the spurious modes in the initial
conditions. This tuning of the initial condition may be
complicated to achieve, but it does not come unexpected. In
fact, when Bob makes the assumption that the fluid is slow in the
reference frame of Alice, it becomes immediately clear that he is
restricting his attention to those solutions that are compatible
with this constraint.

Finally, it may happen that the unphysical modes grow
exponentially, Im(ωB)> 0. Even if we fine-tune the initial
conditions in such a way to approximately remove the
spurious modes, these modes will appear after a time-scale
1/Im(ωB). The only way to avoid this explosion would be to
select some initial conditions in which the unphysical modes have
been removed exactly, making the theory impossible to use in
numerical simulations, where one is forced to deal with a finite
precision.

In the next section we verify that, unfortunately, the spurious
modes of the Navier–Stokes–Fourier approach display an
explosive behavior (Im(ωB)> 0).

4 THE ROLE OF THE SLOW LIMIT: THE
DIFFUSION EQUATION

In this section, we consider the case of photon diffusion in a
medium to see in more detail how the Navier–Stokes-Fourier
approach3 emerges in the slow limit of a relativistic dissipative
system. For simplicity, we work under the assumption of a
perfectly rigid medium in a flat spacetime. Our purpose is not
to provide a framework for the realistic description of the photon-
matter system, but rather to illustrate the role of the slow limit
with an example. More complete discussions of radiation
hydrodynamics can be found in Anile et al. (1992), Udey and
Israel (1982), Farris et al. (2008), Sądowski et al. (2013),
Gavassino et al. (2020b).

4.1 Minimal Model for Photon Diffusion in a
Material
Consider a photon gas diffusing in a rigid material. Since the total
number of photons is not a conserved charge, the only relevant

conserved current n] is the baryon current of the material (we
assume that no additional chemical-composition degrees of
freedom are needed). This system can be described within the
assumptions of Section 2.1: despite there are two chemical
species (matter and photons), the photon transport is just a
form of heat conduction, as no transport of any Noether
charge is involved (Gavassino et al., 2020b; Gavassino, 2020).

We define the material rest-frame density and four-velocity as,
respectively,

n � �����−nρnρ
√

u] � n]/n , (49)

and assume the material to be rigid (in the Born sense), non-
rotating and non-accelerating, namely

∇β u
] � 0 . (50)

This condition implies that we can introduce a conserved energy
current J] as

J] � −T]ρuρ 0∇]J
] � 0 . (51)

Its associated conserved charge

U � −∫
Σ
J] dΣ] (52)

is the total energy of the system, as measured in the global inertial
frame defined by u], no matter which Cauchy hypersurface Σ is
chosen. In the following, we will focus on giving a constitutive
relation only to J], ignoring the remaining parts of the stress-
energy tensor.

Finally, to further simplify the analysis, we also require that the
rest-frame density n is homogeneous, ∇ρ n � 0. Combining this
condition with (50), we get the particle conservation ∇]n] � 0 as
an identity. Hence, no matter which fields φi we choose, the
constitutive relation for n] will always be n] � const.

4.2 Photon Diffusion: Constitutive Relations
and Hydrodynamic Equations
Following Weinberg (1971), we assume that the mean free path
and time of the particles comprising the material is infinitely
shorter than the one of the photons. Therefore, if we assume small
deviations from equilibrium but not slow evolution, then the
simplest effective field theory that is consistent with radiation
kinetic theory (Mihalas and Weibel Mihalas, 1984) is the M1

closure scheme (Sądowski et al., 2013).
In view of the assumptions made in the previous subsection, a

minimal M1 model for the diffusion of photons in a rigid material
can be built by using only two fields, (φi ) � (Θ , qσ ) . The field
qσ can be interpreted as the heat flux (as measured in the frame of
uσ) and satisfies the constraint qσuσ � 0. The scalar Θ is the
temperature of the material, which is in local thermodynamic
equilibrium, due to the infinitesimal mean free time of its
constituents. If we require that the radiation gas is sufficiently
close to local thermodynamic equilibrium, with the same
temperature of the material Θ (see Section 9 for the case with
different temperatures), then we may assume that the internal
energy density

3We recall that by “Navier–Stokes–Fourier approach” we mean the assumption
that the dissipative fluxes, such as heat flux and viscous stresses, are proportional to
the spatial gradients of a corresponding perfect-fluid field, such as the temperature
or the fluid velocity.
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U � T]ρu]uρ � −J]u] (53)

is given by the equilibrium matter + radiation equation of state.
We can thus postulate the constitutive relation 66

J] � U u] + q] U � U(Θ) , (54)

while the constitutive relation for the entropy current will not be
necessary.

Given the relevant constitutive relations, we now have to
specify the hydrodynamic equations, which can be derived
from kinetic theory. For simplicity, let us assume that photons
in the material undergo only absorption/emission processes (i.e.
scattering is negligible). Thus, if we work in an inertial frame, the
photon one-particle distribution function f obeys a transport
equation of the kind (Anderson and Witting, 1974; Udey and
Israel, 1982; Cercignani and Kremer, 2002)

p]z]f � −p]u]χ (feq − f ) , (55)

where χ > 0 is the absorption opacity (that we assume to be
independent from the photon energy), while feq is the usual
equilibrium Bose–Einstein distribution function,

feq � 2

(2π)3
1

e−p]u]/Θ − 1
. (56)

The second moment of the distribution function f is the radiation
stress-energy tensor (de Groot et al., 1980),

R]ρ � ∫ f p]p ρ d
3p
p0

(57)

that must satisfy an equation analogous to (55), namely

z]R
]ρ � −χ u](R]ρ

eq − R]ρ) , (58)

where R]ρ
eq is just R]ρ but computed with feq in place of f. Working

in the global inertial frame defined by u], and recalling that the
material is in local thermodynamic equilibrium, we find

R0j
eq � 0 R0j � qj. (59)

Furthermore, close to local thermodynamic equilibrium, the M1

closure scheme imposes (Gavassino et al., 2020b)

Rkj � 1
3
aRΘ4 ηkj , (60)

where aR is the radiation constant. Using (59) and (60) into the
jth component of (58) gives

ztqj + 4
3
aRΘ3zjΘ � −χqj . (61)

Recalling that also Eq. 51 must be valid, we end up with the
system of hydrodynamic equations

cvztΘ + zjq
j � 0 τztqj + qj � −κzjΘ, (62)

where, in complete agreement with Weinberg (1971), the
coefficients are defined as

cv � dU
dΘ τ � 1

χ
κ � 4aRΘ3

3χ
, (63)

which can be interpreted as the heat capacity per unit volume (at
constant volume) of the matter + radiation system, the heat
relaxation-time and the heat conductivity. System (62) is
comprised of four first-order equations for the four functions
(Θ, qj), implying that D � 4. The second equation of (62) is
known as the Maxwell–Cattaneo equation (Jou et al., 1999).

4.3 Photon Diffusion: Linear Analysis
Let us perform, for small deviations from equilibrium, a linear
analysis of the effective field model derived in the previous
subsection. Taking the divergence of the second equation in
(62), using the first one and linearizing the result, we obtain
the telegraph-type Eq. 12

τ z2tΘ + ztΘ � D zjz
jΘ , (64)

where we have introduced the photon-diffusion coefficient
D � κ/cv . The similarities between this equation and (28) are
evident. In the slow limit, formally given by τ

∣∣∣∣z2tΘ∣∣∣∣≪ ∣∣∣∣ztΘ∣∣∣∣, the
Cattaneo equation boils down to the diffusion equation4

ztΘ � D zjz
jΘ . (65)

This fact allows us, in analogy with Section 3.3, to interpret the
gapless modes of the theory as the Hydro-modes of the photon
gas. In fact, Eq. 65 describes how the photons tend to diffuse in
the material, by following a random walk, until Θ becomes
homogeneous.

To probe the possible presence of gapped modes we only need
to take the homogeneous limit of system (62), obtaining

zt Θ � 0 τztqj � −qj. (66)

We can, therefore, conclude that all the homogeneous solutions
of the theory are

Θ � const qj(t) � qj(0)e−t/τ (67)

which are the homogeneous limit of three independent gapped
modes, one for each component qj.

4.4 Which Degrees of Freedom Are
Suppressed in the Slow Limit?
It is interesting to see what happens when we make the transition
to the slow limit directly in the context of kinetic theory. We will
use our toy-model for photon diffusion, but analogous arguments
are also used to derive the Navier-Stokes-Fourier approach from
the kinetic theory of ideal gases (Huang, 1987; Cercignani and
Kremer, 2002). Let us introduce the function h � f − feq,
representing the deviation of the one-particle distribution f
from the equilibrium distribution (56). Thanks to the second
definition in (63), the kinetic equation (55) becomes

4The coefficient D � κ/cv differs from the standard thermal diffusivity coefficient
κ/cp (Landau and Lifshitz, 2013a) because we are working under the simplifying
assumption of a perfectly rigid material (in particular, ztn � 0). Indeed, the rigidity
assumption is usually justified in solids, where cp ≈ cv (Landau and Lifshitz, 2013b).
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τ

p0
p]z]h + h � − τ

p0
p]z]feq . (68)

From Eq. 56, we know that feq(x, p) � feq(Θ(x), p), which tells
us that the evolution of feq is completely determined by the
Cattaneo equation. Hence, Eq. 68 can be seen as a non-
homogeneous partial differential equation for h, with the
right-hand side playing the role of the source term. Its
solution, then, reads

h(t) � h(0)e−t/τ − τ

p0
∫t/τ

0
(p]z]feq)∣∣∣∣∣t−τξe−ξdξ (69)

where all the quantities are computed along the geodesic path in
phase space (Misner et al., 1973) with parameter t

(t, xj + pj

p0
t, pj) . (70)

Now, we can finally explain what happens when we take the slow
limit. Since Eq. 68 is a dynamical equation for h, in the solution
(69) we are free to choose the initial conditions h(0) at will,
provided that they respect the assumptions underlying the
Cattaneo equation. This is why the heat flux

qj � ∫ h p j d3p (71)

see Eqs 57, 59, is a degree of freedom of (62): it represents the
freedom of preparing the photons with arbitrary initial momenta.
However, after a collision time-scale τ, all these momenta are
randomized and we lose information about the original
distribution h(0). This is reflected in the fact that, for t≫ τ,
Eq. 69 can be approximated as

h(t) ≈ − τ

p0
∫+∞

0
(p]z]feq)∣∣∣∣∣t−τξe−ξ dξ (72)

This loss of information about the initial non-equilibrium part of
the distribution function (a process that can occur also in the
homogeneous limit) is captured, at the level of equations 62, by
solutions of the form (67). These be can interpreted as transient
phases in which an initial flux of photons is rapidly damped by
the collision processes which randomize the photons’ momenta.
This is the dynamics expected for a Thermo-mode, as discussed
in Section 3.3.

After the aforementioned relaxation process has occurred, the
only non-equilibrium feature that survives are large-scale
inhomogeneities 57, which can now be safely assumed as
slowly evolving. This allows us to impose

(p]z]feq)∣∣∣∣∣t−τξ ≈ (p]z]feq)∣∣∣∣∣t for ξ ≲ 1 (73)

and we finally obtain

h ≈ − τ

p0
p]z]feq . (74)

This equation is similar to (68), with the difference that we have
removed the first term on the left-hand side. This, however,
changes completely the character of the equation, as it converts it
from a dynamical equation for h into a constraint: (74) is a

relation where the value of h is expressed in terms of the gradient
of Θ, which is the field that defines feq. In fact, inserting (74) into
(71), it is easy to show that

qj � −κ zj Θ , (75)

which is the usual Fourier law. Plugging it into the first equation
of (62) we recover (65).

In conclusion, we have shown that the slow limit has the effect
of downgrading the heat flux qj from a degree of freedom to a
quantity whose value is completely fixed in terms of another field
of the model, here Θ. This means that, when working directly in
the slow limit, we are not free to set h(0) arbitrarily.

In a fully non-linear regime (but under the assumption of
small spatial gradients), the tendency of dissipative fluids to lose
degrees of freedom, by transforming dynamical equations into
phenomenological constraints, has been rigorously proved by
Lindblom (1996), who called this process Relaxation Effect. He
showed that, after an initial transient (which is nothing but the
non-linear analogue of the initial fast decay of the Thermo-
modes), dissipative fluids asymptotically relax to physical
states that are essentially indistinguishable from Navier–Stokes
fluids.

4.5 Boost-Generated Spurious Modes
Analogously to the Schrödinger equation, also the heat equation
65 produces a spurious gapped mode when boosted (Kostädt and
Liu, 2000). Below, we study this spurious mode following the
same reasoning as in Section 3.4.

Assume that the material is at rest (and the system is slowly
evolving) in the Alice frame defined by u]A � u]. Again, Bob,
moving with u]B ≠ u

]
A, models the evolution of the photon gas in

his own reference frame by assuming that (65) holds in Alice’s
frame, and promoting it to the covariant form

u]Az]Θ � D(g]ρ + u]Au
ρ
A)z]zρΘ . (76)

This equation is of the second order in time in any reference
frame, apart from the one of Alice (in the frame of Bob there will
be two dispersion relations, instead of just one). To study the
possible presence of gaps, we look for solutions which are
homogeneous in Bob’s reference frame,

Θ∝ eiω uσB xσ . (77)

This converts Eq. 76 into the algebraic equation

iDcw2ω2 + ω � 0 , (78)

whose two solutions are

ωA � 0 ωB � i
Dcw2

. (79)

We see that the gapped dispersion relation has exactly the same
pathological character discussed in the previous section: as
u]B → u]A the gap diverges and it can be verified that its
associated mode is unphysical as it is strongly acausal 7.
Furthermore, we have that Im(ωB)> 0, making the diffusion
equation impossible to use (in Bob’s reference frame) with any
finite precision method.
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The existence of the unphysical gappedmodeωB, whichmakes
the initial value problem ill-posed (Kostädt and Liu, 2000), is at
the origin of the generic-instability problem of first-order theories
described byHiscock and Lindblom (1985). In fact, the theories of
Eckart (1940) and Landau and Lifshitz (2013a) predict spurious
modes of the kind exemplified above. In view of the present
discussion, this is not surprising, since they arise from the
straightforward application of the Navier–Stokes–Fourier
approach in the fluid’s rest-frame.

4.6 Is the Navier–Stokes–Fourier Approach
Wrong?
Before moving on with the general discussion, let us briefly
comment on a natural question that may arise at this point: is
equation (76) “wrong”?

Since the Navier–Stokes–Fourier approach describes fluids
which turn out to be acausal and unstable, it is possible to
interpret this fact as a sign that this approach should be
discarded in relativity (Hiscock and Lindblom, 1985; Rezzolla
and Zanotti, 2013). On the other hand, Kostädt and Liu (2000)
pointed out that, for realistic physical states (and therefore in the
absence of spurious modes), the superluminal propagation of
signals happens only on small time-scales and length-scales.
Hence, given that the Navier–Stokes description is an
approximation for the large-scale and slow behavior of the
fluid (namely, it becomes valid only in the limit of
infinitesimal spacetime gradients), causality violations already
fall outside the range of validity of the theory (even in the
Newtonian limit!). In addition, Kostädt and Liu (2000)
remarked that the diffusion-type equations have a preferred
reference frame by construction, namely the reference frame
of the material. Thus, the fact that the diffusion equation can
be solved only in this particular frame is by no means a good
reason for considering it wrong.

We adopt the interpretation of Kostädt and Liu (2000). In fact,
we may think of the diffusion equation as arising from a
symmetry-breaking (Ojima, 1986), where the symmetry group
is the proper orthochronous Lorentz group SO+(3, 1): certainly
the fundamental equations governing the system must be fully
covariant under the action of SO+(3, 1), but we are expanding
them around a particular reference state (the system’s equilibrium
state) that is not invariant under the full action of SO+(3, 1), as it
has a well defined center-of-mass four-velocity. From this point
of view, there is no reason to insist on the well-posedness of the
initial value problem in an arbitrary frame, as covariance has been
broken at the level of the fundamental assumptions underlying a
model for diffusion.

We believe that one of the deepest insights on the issue of
the diffusion equation being “right” or “wrong” has been given
by Geroch (1995). He proposed that we should think of
relation (76), not as an equation to be solved for arbitrary
initial conditions, but rather as the observation that the
difference between its two sides is too small to be
measurable in many physical states. This point of view is
fully confirmed by kinetic theory and by the work of
Lindblom (1996). In fact, as we have verified in Section 4.4,

the relations (74) and (75) emerge only as approximate large-
time slow-limit features of the solutions of (68). There is no
reason to believe that they should produce a well-posed initial
value problem of their own, as we already know that they
become valid only on late times (t≫ τ).

In conclusion, if Eq. 76 is valid on a given domain, then it is
valid in the sense of Geroch (1995) in any reference frame. On the
other hand, it can be used to generate a well-posed initial value
problem only in the preferred reference frame of the material and,
therefore, in this frame it can be solved with finite precision
methods. The corresponding solutions are, then, approximately
causal and have physical significance within the range of validity of
the theory (ω→ 0). The problems usually attributed to the
Navier–Stokes–Fourier approach appear again in all those
situations in which a global rest frame of the material does not
exist. This is the case for example of a fast-rotating relativistic body
(such as a millisecond pulsar) or, more simply, a generic
inhomogeneous fluid motion (in the non-linear regime). This
possibility is one of the driving forces for developing alternative
theories, which will be the topic of the next section.

It is, finally, important to remark that the search for a
hyperbolic alternative to Navier–Stokes–Fourier is a problem
of interest also in a Newtonian context. It naturally arises
whenever one wishes to model, using a hydrodynamic
approach, the dynamics of systems which are not in the slow
limit, e.g. the early phase (t ≲ τ) of (69). Contrarily to what
intuition may suggest, abandoning the slow limit does not
necessarily imply that a hydrodynamic description becomes
unfeasible (Anile et al., 1998; Jou et al., 1999; Herrera and
Pavón, 2001), as we explicitly verified in Section 4.2 with our
simple toy-model.

5 TWO APPROACHES TO SOLVE THE
INSTABILITY PROBLEM

In this section we present the two most promising ways to
overcome the instability problem of the Navier–Stokes–Fourier
approach: the frame-stabilized first-order approach and the
second-order approach. The latter will constitute the starting
point of UEIT.

5.1 A Thermodynamic View on the Instability
Problem
In order to have a complete picture of the origin of the boost-
generated spurious modes, we need to answer a final question:
why does it happen that Im(ωB)> 0 ? In fact, this is both the
origin of the instability discussed by Hiscock and Lindblom
(1985), and the cause that makes the initial value problem ill-
posed. Within a Lagrangian framework, a deep mathematical
explanation of the instability has been given by Montenegro and
Torrieri (2016), who showed that the action of Navier–Stokes
does not have a global minimum. However, here we will focus on
a more recent thermodynamic argument.

A simple answer to the question of what causes the instability
is that the total entropy of the system grows as we increase the
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amplitude of the spurious gapped modes (Gavassino et al.,
2020a). This mechanism is summarized in Figure 2. The
existence of the spurious modes converts the equilibrium state
from the absolute maximum of the entropy into a saddle point. As
a consequence, if the second law of thermodynamics is imposed
as an exact mathematical constraint (i.e. a constraint valid at all
the orders), the spurious modes have a tendency to grow. From
this point of view, the positive sign of I(ωB) is a consequence of
the fact that also the spurious gapped modes contribute to the
increase of entropy in time. In Appendix A, we consider the
example of the diffusion equation, which has not been discussed
explicitly in Gavassino et al. (2020a).

This new insight immediately points toward two possible
solutions of the problem. The first consists of realizing that,
since the spurious modes are unphysical, so is the entropy profile
along them. Hence, there is no reason to constrain the entropy
production to be non-negative along them: this is the path leading
to the frame-stabilized first-order theories. The second solution
consists of trying to improve the form of the entropy, by including
additional pieces which restore the presence of an absolute
maximum, instead of a saddle point. This leads to the second-
order theories.

5.2 The Frame-Stabilized First-Order
Approach
The frame-stabilized first-order theory, that we will call
Bemfica–Disconzi–Noronha–Kovtun (BDNK) theory, is a
causal and strongly hyperbolic hydrodynamic model for
relativistic dissipation (Bemfica et al., 2020). The BDNK
approach is based on the fundamental postulate (upon which

also Navier–Stokes is based) that the fields of the theory are
exactly the same as those of the perfect fluid (Kovtun, 2019):

(φi) � (uσ ,Θ, μ) , (80)

see Eq. 11. This implies that also this theory is assumed to have
physical applicability only in the slow regime. The constitutive
relations are expanded in the derivatives of the fields and
truncated at the first-order as

T]ρ � T]ρ
pf +T]ρσi∇σφi

s] � s]pf − Θ−1(uρT
]ρσi + μN]σi)∇σφi

n] � n]
pf +N]σi∇σφi.

(81)

The subscript “pf” refers to the perfect-fluid constitutive relations
(which do not involve derivatives) and we are using the Einstein
summation convention for the repeated index i � u,Θ, μ. The
tensor fields

T]ρσi � T(]ρ)σi(uσ ,Θ, μ) N]σi � N]σi(uσ ,Θ, μ) (82)

are the first-order coefficients of the derivative expansion and
carry an additional hidden index in the case i � u. The
constitutive relations (81) are the most general possible, given
the choice of fields (80) and the first-order truncation in the
derivatives; no thermodynamic or geometrical argument is used
to impose constraints onT]ρσi andN]σi. In this sense, the BDNK
approach makes manifest the effective field theory nature of
hydrodynamics, according to which uσ ,Θ, μ are just evocative
names for the dynamical fields upon which the model is built:
they do not need to carry any deep physical meaning out of
equilibrium.

The hydrodynamic equations are simply the conservation laws
(3), which, given the constitutive relations above, are clearly of the
second order. Hence, there are 4 + 1 � 5 second-order equations
for 3 + 1 + 1 � 5 independent functions (the independent
components of the fundamental fields), producing a system
with D � 2 × 5 � 10 degrees of freedom. The fact that D is
exactly twice the number of degrees of freedom of Navier-
Stokes generates many spurious gapped modes with no
Navier–Stokes analogue (Kovtun, 2019).

For these theories the total entropy computed from s] still
behaves as in Figure 2. However, since along the gapped modes
the time-derivatives are necessarily not infinitesimal (due to the
presence of the gap that forces ω to be finite), the derivative
expansion is no longer applicable. This, apart from confirming
that the gapped modes are unphysical in a first-order approach,
shows us that the entropy current given in (81) is necessarily
incomplete along these modes. Hence, there is no reason for
imposing the validity of the condition ∇]s] ≥ 0 also along the
gapped modes (and more in general for large gradients).

It turns out that leaving T]ρσi and N]σi completely free
(without imposing any thermodynamical or geometrical
constraint on them) allows one to regulate them in a way that
both the gapped and the Hydro-modes decay with time. This
enforces the stability of the theory (Bemfica et al., 2019; Kovtun,
2019; Bemfica et al., 2020) at the expenses of allowing for ∇]s] < 0
when gradients are large (Gavassino et al., 2020a; Shokri and

FIGURE 2 | Sketch of the entropy S along the modes of a generic first-
order theory (arbitrary units). The green saddle point is the equilibrium state
(i.e. the homogeneous perfect fluid state) of a generic Navier–Stokes–Fourier
model, the blue linemarks the states accessible by the Newtonian limit of
the model. Along the Hydro-modes the entropy decreases: these modes are
damped if we impose the validity of the second law. Along the spurious modes
the entropy grows: the second law forces them to grow indefinitely, originating
the instability.
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Taghinavaz, 2020). This a posteriori regulation of T]ρσi and N]σi

is commonly referred to as choice of hydrodynamic frame (not to
be confused with reference frame 24), hence the name frame-
stabilized theory.

In this way, we end up with a relativistic dissipative first-order
theory that allows us to set the initial conditions arbitrarily. In fact,
given a generic initial state, we only need to integrate the equations
for a characteristic time-scale (given by the inverse of the imaginary
part of the gaps), so that the gapped modes have time to decay and
the system relaxes to a physical solution. This mechanism is similar
to the Relaxation Effect described by Lindblom (1996). The
philosophical difference is that, while in the case of Lindblom
(1996) the hydrodynamic theory has the ambition of providing a
consistent description also of the early time evolution (so, in some
sense, the aim is to develop a theory that is more fundamental than
Navier–Stokes), in the first-order BDNK approach the early
transient is considered to be unphysical.

5.3 The Second-Order Approach
Let us consider again Section 4.4, and let us focus on the complete
kinetic Eq. 68. As we said, if we can neglect the first term on the
left-hand side we are left with (74). From this we recover the
Navier–Stokes–Fourier approach, which emerges as the slow-limit,
large-scale, late-time behavior of the fluid. If, on the other hand, we
neglect the right-hand side of (68), we are left with the solution

τ

p0
p]z]h + h � 00 h(t) � h(0)e−t/τ , (83)

along the geodesic path (70). We have recovered the early time
relaxation typical of a non-equilibrium thermodynamic system.
Therefore, a “realistic” fluid system, prepared with arbitrary
initial conditions (but still close to equilibrium), is expected to
exhibit two distinct behaviors: an initial fast local thermodynamic
evolution of the fluid elements, whose dynamics can only be
captured by some Thermo-modes, and a late-time hydrodynamic
evolution of the Hydro-modes. With this in mind, it seems
natural to seek a complete description of the fluid that unites,
within a single formalism, non-equilibrium thermodynamics and
dissipative hydrodynamics. These two theories should emerge as
limiting behaviors of such a unified formalism when only one of
the two classes of modes is considered:

Thermo−modes (gapped)→Non− equilibrium Thermodyamics

Hydro −modes (gapless)→Navier − Stokes − Fourier approach

Clearly, for a consistent connection with non-equilibrium
thermodynamics to be possible, we have to expand the entropy
at least to the second order in any deviation from equilibrium, by
replacing the non-realistic profile of Figure 2 (which is the direct
product of a first-order truncation of the entropy current) with the
profile in Figure 3 (which is what we must obtain, for small
deviations from equilibrium, if we truncate at the second order).

The aforementioned reasoning constitutes the rationale of
Extended Irreversible Thermodynamics (Jou et al., 1999),
which naturally leads to the formulation of the second-order
theory of Israel and Stewart (1979). The structure of this

hydrodynamic model, as a classical effective field theory, will
be discussed later. For the time being, we only mention that the
theory treats the dissipative fluxes, such as heat flux and viscous
stresses, as the only non-equilibrium thermodynamic variables,
which are subject to their own relaxation processes, producing the
Thermo-modes. The downside of this approach is that it
necessarily leads to a hydrodynamic theory with D � 14
degrees of freedom. Because of this, the second-order theory
of Israel and Stewart (1979) can not have the same universality
property of non-equilibrium thermodynamics, which can, in
principle, deal also with a larger number of independent
thermodynamic variables. As a consequence, standard
Extended Irreversible Thermodynamics (EIT) cannot be used
to capture the dynamics of many exotic fluids, such as those that
arise from strongly coupled gauge theories (Denicol et al., 2011;
Heller et al., 2014).

However, the idea of EIT of considering heat conduction and
viscosity as arising from the dynamical coupling between the internal
evolution of non-equilibrium thermodynamic variables and the
hydrodynamic evolution is the starting point of a formulation of
a more universal non-equilibrium thermodynamic theory for
relativistic fluids, which contains EIT as a particular case (Carter,
1989; Gavassino et al., 2021a). The second part of this review will be
devoted to presenting thismore general theory, whichwewill refer to
as Unified Extended Irreversible Thermodynamics, that, in extreme
synthesis, is just non-equilibrium thermodynamics applied to the
local fluid elements.

6 UNIFIED EXTENDED IRREVERSIBLE
THERMODYNAMICS

We introduce the principles of Unified Extended Irreversible
Thermodynamics (UEIT) and list its fundamental features. Many

FIGURE 3 | The physical entropy S of a generic fluid (arbitrary units). The
green absolute maximum point is the equilibrium state, namely the
homogeneous perfect fluid state. The blue line crosses the states accessible
by the Navier–Stokes theory. Any deviation from equilibrium reduces the
entropy and therefore must decay when the second law is imposed.
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of the following ideas already appear (in different forms) in the
literature, but here we aim at giving a more systematic
presentation, referring to the original works whenever possible.

By UEIT we mean a description of dissipative fluids which
extends the language of non-equilibrium thermodynamics to a
hydrodynamic context. From a thermodynamic perspective, a
fluid is just a large thermodynamic system which may or may not
be in a state of global thermodynamic equilibrium. Dissipation is
the macroscopic manifestation of all the processes driving the
system toward the maximum entropy state.

The point of view of UEIT (which is supported by kinetic
theory, see Section 4.4) is that viscosity and heat conduction arise
because fluid elements can be driven out of equilibrium during
the motion generated by the presence of gradients: dissipation
occurs as the internal processes act to bring each element back to
equilibrium. As a consequence, the relationship between the
dissipative fluxes and the gradients, which in the
Navier–Stokes–Fourier approach is introduced at the level of
the constitutive relations, is dynamical in UEIT, resulting from a
coupling between the evolution of the internal (non-equilibrium)
thermodynamic degrees of freedom of a fluid element and the
gradients.

6.1 Basics of Non-equilibrium
Thermodynamics
In equilibrium thermodynamics, the state at a given time is
defined by assigning some state-variables which represent the
constants of motion of the system5, like the total energyU and any
conserved charge N (for simplicity we set the total momentum to
zero). In non-equilibrium thermodynamics (Prigogine, 1968), the
number of state-variables is enlarged to include some additional
parameters ξ1, ξ2, . . . , so that the state-space is now equipped
with the coordinate system

(Xi) � (U ,N , ξ1, ξ2, . . . ) . (84)

The variables ξ1, ξ2, . . . are some macroscopic quantities which
are not conserved and that can have a value different from the one
imposed by assuming full thermodynamic equilibrium.

Each point of the state-space is interpreted as a macrostate,
namely as the ensemble of all the quantum states of the system in
which the quantum observables (X̂i) take the average values (Xi)
within a small assigned uncertainty (Peliti, 2011). Given the
number of these microscopic states Γ(Xi), the entropy of the
macrostate is

S(Xi) � ln Γ(Xi) . (85)

Equation 85 generalizes the concept of equation of state when we
are out of equilibrium.

The description of an isolated non-equilibrium
thermodynamic system is, then, completed by assuming some
dynamical equations of motion (in the thermodynamic limit

random fluctuations are neglected) for the point in the state-
space of the form

_Xh � F h(Xi) , (86)

which must be consistent with the conservation laws

_U � 0 _N � 0 (87)

and with the second law of thermodynamics

_S≥ 0 . (88)

This scheme, defined by (84)–(88), is common in most
formulations of non-equilibrium thermodynamics (Prigogine,
1968). Then, for given values of U and N, it is possible to
identify the thermodynamic equilibrium state
(U ,N , ξeq1 (U ,N), ξeq2 (U ,N), . . .) by imposing the maximal-
entropy condition

zS
zξi U ,N

� 0
z2S

zξizξh

∣∣∣∣∣∣∣∣U ,N

< 0 .
∣∣∣∣∣∣∣∣∣ (89)

This thermodynamic equilibrium state is clearly also an
equilibrium state of the dynamics defined by (86) and, since S
is a Lyapunov function of the system, it is also necessarily
Lyapunov-stable (LaSalle and Lefschetz, 1961).

6.2 Incomplete Equilibrium vs
Relaxation-Time Approximation
It is important to understand under which conditions the scheme
defined by (84)–(88) is applicable. While the constructions in
(84) and (85) are always possible at the formal level, a critical
assumption hides in (86): the dynamics defined by (86) should
hold for the overwhelming majority of the microstates that realize
the macrostate (Xi), so that we can attribute a unique
macroscopic evolution to the ensemble itself. This amounts to
postulating that if we pick up randomly a quantum state
belonging to the class identified by (Xi) and we trace its
evolution (governed by the Hamilton operator Ĥ), then (86) is
respected almost-surely (within a certain level of approximation).
There are two possible situations in which this condition is
achieved.

The most common one is when the quantities ξi (although
being not conserved) are quasi-constants of motion, meaning that
they evolve on a time-scale τM which is much larger than the
microscopic time-scale τm on which the particles’ individual
momenta are randomized. If this is the case, the variables ξi
are almost constant on a time-scale τm and the state (84) can be
seen as an incomplete equilibrium state (Landau and Lifshitz,
2013b), or state of quasi-equilibrium. Then, assuming that the
variables ξi are the only quasi-constants of motion, a time-average
over τm coincides with a statistical average over the ensemble
represented by the macrostate (Xi). Thus, equation 86,
interpreted as a time-averaged equation, holds for almost any
microstate in the ensemble. In chemical kinetics, for example, the
variables ξi are non-conserved particle numbers or reaction
coordinates, which are assumed to evolve more slowly than
the typical timescale on which the particles’ momenta relax to

5We do not include parameters like the volume in the state variables because they
are external conditions that we assume fixed.
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the Maxwell–Boltzmann distribution (Prigogine, 1968). Another
example of time-scale separation are two-temperature systems,
which will be discussed in Section 9.

An alternative setting in which (86) is respected is when the
evolution equations for the observables Xi, neglecting small
fluctuations, decouple from the evolution of the remaining
(practically infinite) degrees of freedom of the system. In this
case, for the overwhelming majority of the microstates in the
ensemble, Eq. 86 are enforced by the microscopic dynamics itself,
even without imposing any time-average. For example, this is the
case when the relaxation-time approximation of kinetic theory
holds. The crucial aspect of this approximation is that each
observable follows a decay rule which is independent from the
exact value of most of the other observables. This allows us to
decouple some relevant dynamical variables from the rest of the
degrees of freedom, producing the effective dynamics in (86).

This second possibility constitutes the rationale of the Grad
14-moment approximation 10, as well as of any closure scheme
59, and is the standard setting considered in the framework of the
original Extended Irreversible Thermodynamics, where it is
assumed that all the complexity of the Boltzmann collision
integral is captured by a simpler relaxation process involving
the dissipative fluxes as the only relevant variables (Cattaneo,
1958; Jou et al., 1999).

6.3 The Fundamental Principles of UEIT
The intuitive idea of UEIT is to interpret hydrodynamics as a
non-equilibrium thermodynamic theory that also allows to
explicitly track the inhomogeneities of the fluid. Following this
philosophy, it is natural to promote the variables Xi (which
describe the global properties of a system) to fields φi
(carrying statistical information about the local state of matter
at every point): to move from non-equilibrium thermodynamics
to hydrodynamics, we just have to make the formal identification

(Xi)→ (φi) . (90)

There is, however, an important subtlety. The variables (Xi)
can be used to uniquely specify all the relevant properties of the
system at a given time t. In fact, each choice of the values (Xi)
specifies a unique ensemble at a given time t, which may then
be used to compute the expectation value A(Xi) of any
quantum observable Â(t). This implies that, if we want to
interpret φi as a “local analogue” of Xi, the fields φi should
specify all the relevant thermodynamic properties of the
system at a given space-time point x ∈ M. This means that,
if we know the value of all the fields φi at x, we also know the
local macrostate of the fluid in a small neighborhood of x and
we can, therefore, compute the average of any local observable.
We are, then, led to restrict our attention to the constitutive
relations of the kind

T]ρ � T]ρ(φi) s] � s](φi) n] � n](φi) . (91)

This implies that a fluid element in the neighborhood of x should
be considered as a small non-equilibrium thermodynamic
system, where φi(x) represents a set of values Xi for this
element: the fields φi play the role of local (non-equilibrium)

thermodynamic variables of the fluid elements. The bridge with
statistical mechanics is, thus, ensured by construction.

This transition from global to local by promoting the
thermodynamic variables to fields is nothing but the
generalization to the non-equilibrium case of what is usually
done to move from equilibrium thermodynamics to perfect fluids
(Misner et al., 1973). This description is expected to break down
in the limit of large accelerations due to quantum effects
(Becattini and Grossi, 2015), but as long as a perfect-fluid
description is feasible in equilibrium, it should be possible to
model non-equilibrium corrections with UEIT.

Regarding the total entropy of the fluid, in UEIT S still has the
same interpretation as in (85); moreover, it can be computed on a
spacelike hypersurface Σ as

S[Σ,φi] � −∫
Σ
s](φi) d Σ] (92)

and it is completely determined solely by the value of the fields
on Σ.

Let us, now, focus on the hydrodynamic equations. The dynamic
Eq. 86 are of the first order in time, due to the fact that the variables
(Xi) define the initial conditions completely (see Section 6.1): the
(Xi) must be the degrees of freedom of the thermodynamic model.
Therefore, we impose that the hydrodynamic equations in UEIT are
of the first-order in time. In this way, the fields (φi) are automatically
the degrees of freedom of the theory. Furthermore, by imposing that
this remains true in every reference frame, we are forced to rule out
higher order derivatives in space, so that the hydrodynamic
equations must take the form

Fh(φi,∇σφi) � 0 . (93)

In the case of a simple fluid, one can also require that all these
equations must be dynamical (i.e. involve derivatives in time in
every reference frame) and that they cannot be converted into
constraints on the initial conditions, implying that the number of
algebraically independent components of the fields coincides with
the number D of hydrodynamic degrees of freedom (this
condition cannot be imposed in a superfluid context, due to
the irrationality constraint of the superfluid momentum (Carter
and Khalatnikov, 1992b; Carter and Langlois, 1995).

As a consistency check, we see that, when we require the
validity of (3), by using the constitutive relations (91) we obtain
equations of the form (93). This shows the formal compatibility
of these hydrodynamic equations with the conservation laws.

The final piece of the puzzle we need to analyze is the validity of
the second law of thermodynamics. Aswe anticipated, the dynamical
Eq. 86 neglect fluctuations. We can, thus, use them as long as the
number of particles in each volume element is sufficiently large that
we can neglect the uncertainties6. This is the local version of the usual
thermodynamic limit: within this assumption, Eq. 93 must ensure
the validity of the second law as an exact condition (Huang, 1987).
Formally, we should require that

6This depends on the resolution we want to achieve. If this was not the case, we
would need to replace the ordinary dynamical equations with stochastic equations,
see e.g. Torrieri (2021).
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∇][s](φi)] :� σ(φi,∇σφi)≥ 0 (94)

for any possible choice of (φi,∇σφi) satisfying conditions (93) in
the point under consideration. Only in this way we can guarantee
that also (88) is automatically respected four for an arbitrary
initial configuration.

Collecting together all these ideas, the principles of UEIT are
summarized into three statements:

1. the constitutive relations do not involve derivatives of the
fields,

2. the hydrodynamic equations are all of the first order both in
space and in time,

3. the second law is enforced for any initial condition.

Any hydrodynamic model that is presented in a form that
respects the foregoing requirements is formally a UEIT-theory
and should admit, in principle, a direct bridge with non-
equilibrium thermodynamics.

6.4 The Near-Equilibrium and the
Slow-Evolution Assumptions in UEIT
In the formulation of the basic principles of UEIT no explicit
reference has been made to the near-equilibrium assumption. In
fact, the condition of quasi-equilibrium introduced in Section 6.1
does not necessarily imply a near-equilibrium condition. In fact,
the expression quasi-equilibrium refers to the fact that, due to a
time-scale separation, we can describe the system referring to the
ensemble (Xi). On the other hand, the near-equilibrium
assumption is the requirement that the average value of any
observable is close to the equilibrium value. A system in quasi-
equilibrium is also near-equilibrium if all the differences ξi − ξeqi
are small.

It is important to remark that in non-equilibrium
thermodynamics the near-equilibrium condition is, typically,
not necessary. For example, in chemistry one may model a far
from equilibrium reaction by using only a finite number of
reaction coordinates as free variables. Therefore, UEIT is, at
least in principle, non-perturbative and frame-independent (we
refer here to the concept of hydrodynamic frame described by
Kovtun (2019).

Clearly, the near-equilibrium hypothesis can still be invoked
for some specific UEIT models, or it may even be a practical
necessity, as there are situations where the quasi-equilibrium
assumption (or the relaxation-time approximation) holds only in
a neighborhood of equilibrium.

Regarding the slow limit, its role within the UEIT framework is
subtle. Since the original purpose of EIT is to avoid the formal
introduction of this limit, the slow-evolution assumption is not a
fundamental assumption of UEIT either. However, as mentioned
in Section 6.2, in many contexts the non-equilibrium
thermodynamic description is valid only on time-scales which
are much larger than the typical collision time τm. Therefore, the
slow-evolution assumption in UEIT may be necessary for the
predictions of a particular hydrodynamic model to be reliable,
even though it is not invoked as a fundamental postulate of the

theory. In any case, the important point is that, as we are going to
show, the structure of UEIT guarantees that the slow limit does
not compromise the stability of the equilibrium and can not
produce spurious gapped modes.

6.5 The Equilibrium in UEIT Must Be
Lyapunov Stable
To study the stability of the UEIT equilibrium state, let us assume
a fixed background spacetime that admits a global time-like and
future-oriented Killing field K]. Then, we also have a conserved
current J],

J] :� −T]ρKρ ∇]J
] � 0. (95)

Assuming that the fluid has a finite spatial extension, the Gauss
theorem ensures that the quantity (Carroll, 2019)

U[Σ,φi] � ∫
Σ
T]ρ(φi)Kρ d Σ] (96)

does not depend on the choice of the spacelike hypersurface Σ,
provided that this extends to infinity (Misner et al., 1973). The
same holds for the quantity

N[Σ,φi] � −∫
Σ
n](φi) d Σ] . (97)

We may identify the quantities U and N with the total energy7

associated with the Killing vector K and the particle (minus anti-
particle) number of the fluid. For simplicity, we assume that there
are no other Killing vector fields.

Now let us also assume that we can introduce a global
coordinate system (t, x1, x2, x3) such that K � zt . The surfaces
Σ(t) at constant time define a global foliation of the spacetime
and we can define S(t), U(t) and N(t) as the integrals in (92),
(96) and (97) for Σ � Σ(t). Recalling (94), we have that

dS
dt

≥ 0
dU
dt

� 0
dN
dt

� 0. (98)

Therefore, if we interpret the whole fluid as an inhomogeneous
thermodynamic system, we see that it obeys the same global laws
(87) and (88) as in standard non-equilibrium thermodynamics.

Now, let us move to the hydrodynamic equations in (93). By
working in the coordinate system (t, xj), we can recast (93) in a
form that is the analogue of (86) under the replacement (90),
namely8

zt φh � F h(φi, zjφi, x
j ) . (99)

This system in (99) describes an autonomous (i.e. time-
translation invariant) dynamical system, whose state-space is a

7Despite the formal similarity, the total energy U is not the Komar mass of the
system. In fact, the conservation of the Komar mass is a feature of systems
immersed in a dynamic spacetime, while we are working with a fixed background
spacetime.
8There is no explicit dependence of F h on t because the Killing condition for the
vector field K in this coordinate system reduces to zt g]ρ � 0, so that g]ρ � g]ρ(xj),
see e.g. 84.
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space of functions from R3 to RD, where D is the number of
degrees of freedom of the model, see Section 2.4. Casting the
hydrodynamic equations as in (99) is, at least in principle, always
possible because all Eq. 93 were assumed to be independent and
dynamical (so we can always identify a term with a time
derivative).

We can also rewrite S(t), U(t) and N(t) in the
aforementioned coordinate system as (84)

S(t) � ∫ st(φi(t, xj)) ������
−g(xj)

√
d3x

U(t) � −∫Tt
t (φi(t, xj)) ������

−g(xj)
√

d3x

N(t) � −∫ nt(φi(t, xj)) ������
−g(xj)

√
d3x .

(100)

Since the above integrals depend on time only through the fields
φi, the global quantities S(t), U(t) and N(t) can be seen as
functions on the state-space. Thus, in view of (98), the quantities
U and N are integrals of motions of the dynamical system (99),
while S is a strictly non-decreasing function of t. On the other
hand, if the total entropy is computed consistently with
microphysics, then there should be a state (φeq

i ) on Σ(t) such that
S[Σ(t),φeq

i ]> S[Σ(t),φi] (101)

for any φi ≠φ
eq
i such that

U[Σ(t),φeq
i ] � U[Σ(t),φi] N[Σ(t),φeq

i ] � N[Σ(t),φi].
(102)

All these results together tell us that S is a Lyapunov function for
the system. As a consequence, (φeq

i ), which is the state of global
thermodynamic equilibrium (i.e. the maximum entropy state), is
also an equilibrium state of the dynamics (99) and is Lyapunov-
stable.

It is interesting to note that the Lyapunov-stability follows
only from the three principles of UEIT discussed in Section 6.3
and from the consistency of the constitutive relations (91) with
microphysics. This is important because the details of the
hydrodynamic equations, which are typically a difficult part of
the model to determine, do not play any role in the final stability
criterion, implying that we are free to impose any kind of slow-
evolution approximation we wish, confident that this is not going
to compromise the stability of the theory.

6.6 The Importance of the Thermo-Modes
To appreciate the role of the Thermo-modes in UEIT, we have to
discuss the behavior of a generic UEIT model in the
homogeneous limit. For simplicity, we now assume a
Minkowski background spacetime and we restrict our
attention to perfectly homogeneous states. In this case, the
replacement (φi)→ (Xi) in (90) exactly maps a UEIT model
into a conventional non-equilibrium thermodynamic model.
This creates a formal bridge with statistical mechanics, that
could be used to derive the constitutive relations (91) from
microphysics. For homogeneous states, the hydrodynamic
equations assume the same form of (86), namely

ztφh � F h(φi) , (103)

which is a set of D ordinary differential equations. Since the
conservation laws (3) in this homogeneous limit become

ztT
t] � 0 ztn

t � 0 , (104)

the dynamics in (103) is subject to five independent constraints,
implying that the Thermo-modes can exist if and only if

D> 5 . (105)

This inequality is respected by any dissipative UEIT model of a
simple fluid (with one conserved charge), making the presence of
Thermo-modes unavoidable. In fact,D � 5 is already the case for
the perfect fluid, while a dissipative system must have a larger
state-space to account for non-equilibrium states of the fluid
elements.

The existence of any degree of freedom above five
corresponds, in the homogeneous limit, to the introduction of
a variable of the type ξi, the non-conserved quantities of Section
6.1. In fact, the Thermo-modes arise whenever the system is able
to occupy non-equilibrium homogeneous states (as discussed in
Section 3.3), and the variables ξi are coordinates on the resulting
extended state-space.

In conclusion, in UEIT the number of degrees of freedom
(D> 5) is the same in every reference frame and is given by the
number of independent components of the fields, so that the
existence of boost-generated spurious gapped modes is
automatically ruled out: every gapped mode has a clear
thermodynamic interpretation as a Thermo-mode.

6.7 Lindblom’s Relaxation Effect
We briefly present the seminal work of Lindblom (1996), as it
contains many ideas that are fundamental for UEIT. In doing this
we will omit important technical details, as our aim is to present
the physical meaning of Lindblom’s results and its implications
for UEIT.

We have seen that, in order to have a dissipative theory, we
must have D> 5. In principle, we may isolate five preferred
degrees of freedom, whose value at each x ∈ M identifies,
locally, a fiducial perfect-fluid state. Choosing the Eckart
hydrodynamic frame (Kovtun, 2019), Lindblom defines the
dynamical fluid fields

(ϕa ) :� ( uσ , n, U ) (106)

as

uσ � nσ/ �����
−nλnλ

√
n � −nσuσ U � Tσλuσuλ, (107)

and makes a change of variables

(φi)→ (ϕa,AA), (108)

where the remaining tensor fields AA can be constructed freely,
with the only constraint that AA � 0 at local thermodynamic
equilibrium (i.e. when we recover the perfect fluid on x). This
condition can always be imposed, as it is always possible to
perform the change of variables
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AA →A
� A

:� AA −AA
eq(ϕa). (109)

The fields AA are called dissipation fields; since D> 5 we always
have at least one dissipation field.

Now, the constitutive relation for the stress-energy tensor can
be decomposed as

T]ρ � T]ρ
pf (ϕa) + ΔT]ρ(ϕa,AA) , (110)

where T]ρ
pf is the perfect-fluid stress-energy tensor and

ΔT]ρ(ϕa, 0) � 0 , (111)

as we know by definition that, in local thermodynamic
equilibrium, the fluid must be in the perfect-fluid state. The
conservation laws (3) can play the role of five hydrodynamic
equations (using Einstein’s summation convention for the indices
a and A):

zT]ρ

zϕa ∇]ϕ
a + zT]ρ

zAA∇]A
A � 0 u]∇]n + n∇]u

] � 0. (112)

The remaining equations are equal in number to the number of
algebraically independent components of the dissipation fields.
Hence, Lindblom makes the assumption that they can be written
in the form

Mρ
AB∇ρA

B + ΞABA
B � −Mρ

aA∇ρϕ
a (113)

where the tensor fields Mρ
AB, M

ρ
aA and ΞAB are functions of

(ϕa,AA) and should obey some conditions that are listed in
72. The structure of (113) recalls the kinetic Eq. 68. In essence, it
tells us that the dissipation fields, which in the homogeneous limit
would undergo a thermodynamic relaxation toward equilibrium
(left-hand side), are dynamically coupled to the gradients of the
dynamical fluid fields (right-hand side). This can drive them out
of equilibrium. This same mechanism had previously inspired
also the Maxwell-Cattaneo equation, namely the second equation
of (62), see 79. Not every UEIT theory must be governed by such a
simple dynamics, but it is a common feature of many of them
(Geroch and Lindblom, 1991).

The key result of Lindblom is that, given an initial condition
with small spatial gradients, the system will eventually relax to a
state in which9

AB ≈ −(Ξ−1)BAMρ
aA∇ρϕ

a (114)

As a consequence, the deviation of the stress-energy tensor from
T]ρ
pf relaxes to

ΔT]ρ ≈
zT]ρ

zABA
B ≈ − zT]ρ

zAB(Ξ−1)BAMρ
aA∇ρϕ

a (115)

Hence, the Navier-Stokes behavior emerges only after an initial
relaxation, during which the dynamical Eq. 113 are converted
into the constraints (114), effectively introducing gradients in the
constitutive relations. Again, this clarifies why the Navier-Stokes

equations do not admit a well-posed initial value problem (at least
in relativity): the Navier-Stokes formulation can not admit an
arbitrary initial configuration of the fields, but rather it is valid
only for those initial states that are the end states of a relaxation,
after all the gapped modes of the complete UEIT theory have
decayed.

7 THE TWO CORNERSTONES OF UEIT

We present two remarkable dissipative theories that are
consistent with the principles of UEIT: the second-order
hydrodynamic model of Israel and Stewart (Israel and Stewart,
1979) and the phenomenological multifluid approach of Carter
and Khalatnikov (Carter and Khalatnikov, 1992a).

7.1 Israel-Stewart as a UEIT Theory
The hydrodynamic model of Israel and Stewart (1979) is probably
the most natural example of a UEIT theory. The fundamental
assumption on which the model is built is that we can take the
conserved fluxes as fundamental fields of the theory10, namely

(φi) � (nσ ,Tσλ) . (116)

Hence, given the symmetry of Tσλ, the number of degrees of
freedom of the model is

D � 14 � 5 + 9 . (117)

Given the fields in (116), the most general constitutive relations of
the form (91) are

T]ρ � δ]σδ
ρ
λ T

σλ s] � s](nσ ,Tσλ) n] � δ]σ n
σ (118)

The only non-trivial constitutive relation that should be provided
is the one for the entropy current, and this is where statistical
mechanics is required.

Concrete implementations of the Israel-Stewart theory are
typically formulated directly in Lindblom’s representation (see
Section 6.7): given the degrees of freedom in (116), a natural
choice for the dissipation fields is

(AA) � (Π, qσ ,Πσλ) , (119)

where (introducing the projector h]ρ � g]ρ + u]uρ)

Π � ΔTαβhαβ/3 qσ � −ΔTαβhσαuβ Πσλ � ΔTαβhσαh
λ
β − Πhσλ

(120)

can be interpreted as the bulk-viscous stress, the heat flux and the
shear-viscous stress 18. Together, the fields in (119) constitute the
nine additional degrees of freedom of the dissipative model, so
that the constitutive relation for the entropy current can be
equivalently rewritten in Lindblom’s representation as

9Note the analogy between Eqs (113)–(68) and (114)–(74): in the end the
dissipation fields AA are expressed in terms of the gradients of the dynamical
fields ϕa .

10Since this is the fundamental premise for most of the relativistic EIT theories, we
will use the collective name Israel-Stewart theory to indicate all those UEIT models
that build on this assumption.
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s] � s](ϕa,AA) � s](uσ , n,U ,Π, qσ ,Πσλ) . (121)

This formula is very convenient because it allows one to easily
separate the perfect fluid part from the non-equilibrium
correction, and possibly make a perturbative expansion in the
latter.

To complete the model, one must specify also the
hydrodynamic equations. It is natural to take the conservation
laws (3) as hydrodynamic equations, producing five independent
equations, but nine additional equations are left unspecified. Liu
et al. (Liu et al., 1986) proposed an elegant technique for
constructing the remaining nine equations in such a way that
all the principles of UEIT are respected. The idea is to postulate
that there are two additional tensor fields A]ρμ and Iρμ, with
constitutive relations

A]ρμ � A]ρμ(nσ ,Tσλ) Iρμ � Iρμ(nσ ,Tσλ) , (122)

to be determined from microphysics (note the absence of
gradients in the constitutive relations). Then, it is assumed
that the remaining hydrodynamic equations of the model are
given by

∇]A
]ρμ � Iρμ . (123)

In this way, it is guaranteed that the final equations have the form
(93). However, Eq. 123 contains in principle 16 independent
equations, leading to an over-determination of the system. The
solution proposed by Liu et al. (1986) is to require that

A]ρμ � A](ρμ) Iρμ � I(ρμ) (124)

and that (we have an additional - with respect to Liu et al. (1986)
due to the opposite metric signature)

A]ρ
ρ � −m2 n] Iρρ � 0 (125)

wherem is an appropriate constant. In this way, the independent
equations are reduced from 16 to 9, closing the system. When the
hydrodynamic equations of an Israel–Stewart theory can be
presented in this form, we may say that the model is of
divergence-type (Rezzolla and Zanotti, 2013).

Despite the construction of Liu et al. (1986) may seem just a
sequence of assumptions, Eqs 122–125 find their fundamental
justification within kinetic theory 68, where A]ρμ is the third
moment of the particle distribution function and Iρμ is its
collision production (in which case m is the particles’ rest-
mass). Interestingly, if Iρμ is modeled consistently with kinetic
theory, then the second law is directly enforced as a consequence
of the H-theorem. However, it should be kept in mind that any
UEIT model is fundamentally phenomenological, so that no
particular kinetic interpretation needs to be provided for A]ρμ

and Iρμ in principle: they can also be regarded just as elements of a
prescription for constructing the hydrodynamic equations (in
which case m may be set conveniently to 0), as discussed with
more details by Geroch and Lindblom (1990).

In Israel and Stewart (1979) a less abstract way of deriving the
hydrodynamic equations is proposed: a fiducial equilibrium state
is taken, and the entropy current is expanded to the second order
in the deviations from this state. Then, the constraints imposed by

the second law (which in UEIT must be enforced as an exact
relation at all the orders) are used to guess the hydrodynamic
equations. The resulting model is what is commonly referred to as
the original Israel-Stewart theory (Andersson and Comer, 2007;
Rezzolla and Zanotti, 2013). However, it is important to note that,
depending on the choice of the fiducial equilibrium state, the
equations that one is led to guess are different (this is just another
manifestation of the problem of the hydrodynamic frames 24), so
that it is possible to construct many different Israel–Stewart
theories (Hiscock and Lindblom, 1983; Olson, 1990): the
construction in terms of the phenomenological fields A]ρμ and
Iρμ directly reflects this freedom.

Most of the Israel-Stewart theories are known to be Lyapunov-
Stable (Hiscock and Lindblom, 1983; Olson, 1990; Geroch and
Lindblom, 1990), provided that the constitutive relations are
realistic, in agreement with the general argument of Section
6.5. Furthermore, if the stability conditions found by Hiscock
and Lindblom (1983) hold, then the entropy is a Lyapunov
function of the system, at least close to the equilibrium state
(Gavassino et al., 2020a).

7.2 The Carter-Khalatnikov Approach as a
UEIT Theory
Carter’s approach to hydrodynamics finds its application in
modeling reacting mixtures and conducting media (in
particular heat conduction and superfluidity) in general
relativity (Carter, 1989), and it is a convenient formalism for
modeling neutron star interiors (Chamel, 2017; Haskell and
Sedrakian, 2018). Its constitutive relations can be equivalently
derived either from a convective or from a potential variational
principle 20. A general introduction to Carter’s approach may be
found in Carter and Khalatnikov (1992a) and Andersson and
Comer (2007), see also Gavassino and Antonelli (2020) and
references therein for more formal aspects.

Contrarily to the premise (116) of Israel and Stewart’s model,
now Tμ] is not treated as a fundamental field. Instead, in the
simplest formulation of his approach, Carter postulates that it is
possible to identify a set of currents nσi which constitute the
degrees of freedom,

(φi) � (nσ
i ) . (126)

Two of the currents nσi can be chosen to be sσ and nσ , while the
remaining ones depend on the non-equilibrium thermodynamic
properties of the system under consideration. This theory can
thus be used to describe reacting mixtures, multi-temperature
systems, or the viscous interaction between different chemical
species11.

The most general constitutive relations of the form (91), that
are compatible with the choice of fields (126), are

T]ρ � T]ρ(nσi ) s] � δ]σ s
σ n] � δ]σ n

σ (127)

11Although in the present work we make the simplifying assumption that there is
only one conserved current, there may still be many non-conserved chemical
species, such as photons.
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The only non-trivial constitutive relation one needs to determine
is, therefore, the one for the stress-energy tensor. If, however, we
assume that the 10 relations T]ρ � T]ρ(nσi ) are all independent
from each other, then we are left with the formidable task of
computing, directly from microphysics, 10 different non-
equilibrium ensemble averages separately. To avoid this
problem, Carter postulates that all these 10 relations can be
derived from a single non-equilibrium equation of state: there
is a fundamental scalar field Λ with a constitutive relation (up to
now, the dependence of the fields on the metric was understood,
but in this case it is important to keep track of it explicitly)

Λ � Λ(nσ
i , gσλ) , (128)

that encodes, somehow, the non-equilibrium equation of state of
the fluid12, and such that

T]ρ � 2��∣∣∣∣g∣∣∣∣√ z( ��∣∣∣∣g∣∣∣∣√
Λ)

zg]ρ

∣∣∣∣∣∣∣∣∣ ��|g|√
nσi

. (129)

The convenient feature of assuming the existence of Λ and its
constitutive relation (128) is that we can decompose ∇]T]

ρ in a
convenient way: for each current n]h, it is possible to define an
associated covector

μh] :�
zΛ
zn]h

∣∣∣∣∣∣∣∣
nσi ,gσλ

(i, σ)≠ (h, ]), (130)

so that the divergence of the stress-energy tensor (129) reads
(Carter and Khalatnikov, 1992a)

∇]T
]
ρ � ∑

h

(μhρ ∇]n
]
h + 2n]

h ∇[]μhρ]) (131)

This suggests us that we may conveniently postulate that there are
some covector fieldsRh

ρ (one for each independent current), with

constitutive relations13

Rh
ρ � Rh

ρ(nσ
i ) , (132)

such that the hydrodynamic equations take the form

μhρ ∇]n
]
h + 2n]h ∇[]μhρ] � Rh

ρ . (133)

These equations have the structure (93). Furthermore, they allow
us to convert conditions (3) and (4) into algebraic constraints on
the relations (132):

∑
h

Rh
ρ � 0 Rn

ρn
ρ � 0

Rs
ρs

ρ

μsλs
λ
≥ 0 . (134)

In conclusion, the theory meets by construction all the
requirements for being a UEIT model.

Many extension of Carter’s formalism have been proposed.
For example, in an approach entirely based on currents it is not
obvious how to account for the possible presence of shear
viscosity. For this reason, Carter (1991) extended the approach
to include, among the fields of the theory, some symmetric
tensors τσλΣ , which contain the information about the shear
viscosity contributions (Priou, 1991).

Originally, Carter built his formalism by using a hybrid
methodology: he derived the constitutive relation (129) from a
convective variational approach, treating the scalar field Λ as a
Lagrangian density, and postulating the hydrodynamic Eq. 133 as
natural fluid generalizations of Newton’s second law (Carter,
1991; Gavassino et al., 2020b). Given that the convective
variational approach is particularly well-suited for multifluid
modeling (Andersson and Comer, 2007; Gavassino and
Antonelli, 2020), there is ongoing research on whether it is
possible to derive the fully dissipative theory directly from a
convective action principle. In fact, it has been recently noted that
a particular class of theories resembling Carter’s original
formalism can be derived directly from an action principle
(Andersson and Comer, 2015; Celora et al., 2021). These
theories are constructed within a Lagrangian specification of
the flow field (which is the natural framework in which the
convective variational approach is formulated 35), see Section
2.2, so that are not presented in a natural UEIT form: the
hydrodynamic equations for the fields Φi are of the second
order and the constitutive relations involve first derivatives. It
is yet not completely understood under which conditions it is
possible to perform a change of variables and move to the
Eulerian description. As a consequence, we do not know
which conditions should be imposed on this kind of
variational models to meet the formal requirements of UEIT.
However, there are some specific cases in which such a mapping
has been shown to be possible (Andersson et al., 2017).

8 A UNIVERSAL UEIT MODEL FOR BULK
VISCOSITY

As a concrete example of the usefulness of the UEIT point of view,
we describe an almost14 universal model for bulk viscosity. In
other words, we construct the most general bulk-viscous simple
fluid model (Gavassino et al., 2021a) directly from the principles
of UEIT, invoking almost no additional assumption. The
resulting model encodes, as particular cases, the Israel-Stewart
theory for bulk viscosity and Carter’s approach for comoving
species.

8.1 The Fields of the Theory
A fluid is purely bulk-viscous (no shear viscosity and no heat
conduction) if, at each point of the spacetime, there exists an

12The double role of Λ as a thermodynamic potential and as a generating function
for T]ρ is extensively discussed, in the non-dissipative limit of the theory, in
Gavassino and Antonelli (2020).
13The more general constitutive relation where there is also a dependence on the
gradients of the currents, Rh

ρ � Rh
ρ(nσi ,∇λnσi ), has also been considered for

describing heat conduction (Lopez-Monsalvo and Andersson, 2011), superfluid
vortex dynamics (Langlois et al., 1998; Rau andWasserman, 2020; Gavassino et al.,
2021b) and radiation hydrodynamics (Gavassino et al., 2020b). 14See, e.g., Jain and Kovtun (2020).
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observer (defined by the four-velocity uσ) for which the local fluid
element is isotropic. Clearly, we can use uσ as a field of the theory.
Thanks to the isotropicity assumption, we must have that

uσ � nσ/ �����
−nλnλ

√
� sσ/ ����

−sλsλ
√

. (135)

The field uσ is the non-equilibrium notion of fluid velocity (no
frame ambiguity for the fluid velocity can exist in this case). We
also construct the scalar fields n and U using the prescriptions
(107) and analogously

s � −sσuσ . (136)

By definition, the fields n, U and s are the densities of particles,
energy and entropy, as measured by a local observer moving with
uσ . Since, in this case, it is more convenient to work with
quantities per particle, we define

v � 1/n ~U � U/n xs � s/n, (137)

which are the volume per-particle, the energy per-particle, and
the entropy per-particle (i.e. the entropy fraction), as measured by
the local observer moving with uσ .

Since the vector field uσ uniquely identifies the only preferred
direction defined by the fluid motion, all the remaining fields φi of
the theory can be taken to be scalar fields:

(φi) � (uσ , v, xs, α1, . . . , αD−5), (138)

where α1, . . . αD−5 are additional D − 5 independent scalar
fields15. Their number, properties and physical meaning are
dictated only by microphysics and can change from fluid to fluid.

The symmetry prescriptions, combined with the principles of
UEIT, reduce the space of the allowed constitutive relations to

T]ρ � (n~U + Ψ)u]uρ + Ψg]ρ s] � xsnu
] n] � nu], (139)

with

~U � ~U(v, xs, αA) Ψ � Ψ(v, xs, αA) . (140)

We have introduced the abstract index A � 1, . . . ,D − 5 for later
notation convenience (Einstein’s convention for this index will be
applied). Equation 140 shows us that the fields αA can be
interpreted as the additional non-conserved (i.e. of type ξi, see
Section 6.1) thermodynamic variables of an extended non-
equilibrium equation of state. The non-equilibrium
generalizations of the thermodynamic pressure and
temperature may be defined as

P :� − z
~U
zv

∣∣∣∣∣∣∣∣xs ,αA Θ :� z~U
zxs

∣∣∣∣∣∣∣∣v,αA , (141)

however, it is important to keep in mind that, out of equilibrium,
a unique proper notion of pressure and temperature does not
exist. One should not be tempted to attribute to p andΘ a primary
physical relevance. In fact, it is always possible to perform a field

redefinition, introducing arbitrary new fields αB′ � αB′(v, xs, αA),
and to take the partial derivatives in (141) at constant αB′ rather
than at constant αB, obtaining a different result. As a
consequence, out of equilibrium we have that in general P ≠Ψ,
sinceΨ is the physical stress tensor, which is necessarily invariant
under field-redefinitions. Finally, we introduce the generalized
affinities

AA :� − z~U
zαA

∣∣∣∣∣∣∣∣v,xs, (142)

so we can write the differential of the energy per-particle
explicitly as

d~U � − Pdv + Θdxs −AAdαA . (143)

The interpretation of AA as generalized affinities 27 comes from
the fact that, for given v and ~U , the entropy per particle xs is
maximized when

AA � 0 ∀A. (144)

Clearly, this is the condition of local thermodynamic equilibrium,
allowing us to identify AA with the Lindblom dissipation fields,
see Section 6.7.

8.2 Hydrodynamic Equations for Pure
Bulk-Viscous Fluids
Let us, now, move to the dynamical equations of the system. The
conservation laws (3) can be written in the more convenient form

(n~U + Ψ)uρ∇ρu] � −(δρ] + uρu])∇ρΨ
~U
·
� −Ψ _v

_v � v∇]u
]

(145)

where we have introduced the notation _f :� u]∇]f for any tensor
field f. The second equation can be equivalently rewritten as

Θ _xs � (P − Ψ) _v +AA _αA, (146)

where we made use of the differential (143).
Given that the degrees of freedom of the theory are the fields φi

themselves, we know from Eq. 138 that we need D first-order
equations to close the system. However, Eq. 145 already provides
five equations, so we need only other D − 5 equations. Recalling
the symmetry prescriptions, these equations can be presented in
the form

FA(φi,∇σφi) � 0 A � 1, . . . ,D − 5 , (147)

where each of the FA is a scalar. Now, if we go to the local inertial
frame of an observer instantaneously comoving with uσ , we can
rewrite (147) as

FA(v, xs, αB, _v, _xs, _αB, _u
j, zjφi) � 0 , (148)

where we have used the fact that _u0 � 0 in this reference frame. Given
that the fluid element is isotropic in this reference frame (and that
zjuj � _v/v), the only way for the scalarsFA to have a dependence on
_uj and zjφi is through quadratic couplings of the kind

15Contrarily to Lindblom’s dissipation fields AA, the αA do not need to vanish in
local thermodynamic equilibrium. On the other hand, we will soon introduce some
alternative variables which can be treated as dissipation fields.
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_uj _uj _ujzjφi zjφizjφh. (149)

Although the presence of such terms may not be excluded a
priori, we expect them to become relevant only for very large
gradients, and we will neglect them. In addition, we can use Eq
146 to replace _xs inside (148), to eliminate the explicit
dependence of FA on _xs. Therefore, we are left with

FA(v, xs, αB, _v, _αB) � 0 . (150)

Finally, we note that these equations can be interpreted as a
system ofD − 5 algebraic equations for theD − 5 unknowns _αB.
We can imagine to solve them and finally obtain

_αA � fA(v, xs, αB, _v) . (151)

The combination of (151) with (145) constitutes the complete
system of D first-order differential equations governing the
evolution of a generic bulk-viscous fluid within UEIT.

8.3 The Structure of the Universal Model
There is a final step we canmake to strongly simplify the structure
of the universal model. Let us expand (151) at the first order in _v:

_αA � DA + _vKA, (152)

where DA and KA are functions of (v, xs, αB) only. It may seem
that, by performing this expansion, we are restricting the validity
of the model only to slow systems. However, it should be kept in
mind that “small _v ” is not necessarily synonym of “slow
evolution”, since Thermo-modes can occur also in static fluids
(namely when uσ � δσt � const). Furthermore, in 17 it is shown
that (152) happens to be an almost exact relation for most
physical systems (in any regime in which a UEIT description
is applicable).

Inserting (152) into (146) and recalling (3) and (4) we obtain

vΘ∇]s
] � (P +AAKA − Ψ) _v +AADA ≥ 0 , (153)

where we have assumed Θ≥ 0.16 Now, let us work in the limit in
which the dissipation fields AA are small (i.e. close to local
thermodynamic equilibrium) and consider, first, the case in
which _v � 0. If we want the second law to be respected, we
need to imposeAADA ≥ 0 for any smallAA. This implies that DA

must be at most linear in AA at the leading order:

DA ≈ vΞABA
B with AAΞABA

B ≥ 0 ∀AA. (154)

Now, let us move to the case in which _v has a finite value. Since
AADA � vAAΞABA

B is an order 2 in the dissipation fields, the
term (P +AAKA − Ψ) _v needs to be in turn an order (AA)2, to
ensure the validity of the second law, implying that P +
AAKA − Ψ � 0 to the first order in AA. Thus we have shown
that Ψ and P must be related, in a way that depends on the
coefficients KA, which contain information about the intrinsic
evolution of the fields αA under a volume expansion. An
analogous identity has been derived on thermodynamic

grounds in 17, where it is also shown that such a relation,
which has been proved here for small dissipation fields, should
hold also far from equilibrium (provided that a UEIT
description remains possible).

In conclusion, we are allowed to split (153) into the two
following separate relations:

Ψ � P +AAKA Θ _xs � AADA ≈ vAAΞABA
B, (155)

where ≈ is valid only close to equilibrium, while � is assumed
to always hold. Note that in equilibrium the first relation
becomes Ψ � P, so that the thermodynamic pressure becomes
the isotropic stress. It is also useful to remember that we can
always rewrite the second equation of (155) in the equivalent
form

Θ∇]s
] � nAADA ≥ 0 . (156)

To summarize, given a choice of fields αA, the ingredients that
need to be computed from microphysics to build a UEIT model
for bulk viscosity are 2D − 9 constitutive relations, namely an
equation of state for ~U and the formulas for the 2(D − 5) kinetic
coefficients DA and KA.

8.4 Invariance Under Field Redefinitions
As we anticipated, there are infinitely many valid choices for
the fields αA in a UEIT model for bulk viscosity. Therefore, it
is important to verify that the equations of the theory are
invariant under a field redefinition. To check this invariance
property, we perform a generic change of variables

(uσ , v, xs, αA)→ (uσ , v, xs, αB′) , (157)

where αB′ � αB′(v, xs, αA) areD − 5 new arbitrary independent scalar
fields. Rewriting the differential (143) in terms of αB′ we find

d~U � −P′dv + Θ′dxs − BBdαB′ , (158)

with

P � P′ + BBzαB′

zv
Θ � Θ′ − BBzαB′

zxs
AA � BB zαB′

zαA
.

(159)

The hydrodynamic equations of the new fields can be obtained
from the chain rule:

_α′
B � zαB′

zv
_v + zαB′

zxs
_xs + zαB′

zαA
_αA (160)

and it is immediate to verify that they have exactly the same form
as (152),

_α′B � D′
B + _vK′

B, (161)

with

D′
B � zαB′

zαA
DA + zαB′

zxs

AADA

Θ K′
B � zαB′

zαA
KA + zαB′

zv
. (162)

Now, using Eqs 159, 155 and 162, it is finally possible to prove the
full covariance of the theory under field redefinitions, namely

16This is certainly the case at equilibrium, when Θ acquires the proper meaning of
temperature.
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Ψ � P′ + BBK′
B Θ′ _xs � BBD′

B (163)

This shows that, since Ψ is invariant under field redefinitions, but
p is not, the pieceAAKA in (155) plays the role of a counter-term
which restores formal covariance, fixing the intuitive (but non-
covariant) relation “Ψ � P”.17

8.5 Obtaining a Reacting Mixture Using a
Field Redefinition
The formal covariance of the theory under field redefinitions of
the kind (157) can be exploited to show that any theory for bulk
viscosity, when modeled within UEIT, can be mapped into an
effective chemical mixture of comoving species, if a convenient
choice of fields is adopted (Gavassino et al., 2021a). To show this,
we start with arbitrary fields αA and then perform a field
redefinition, introducing the D − 5 effective fractions
xB � xB(v, xs, αA), such that

K′
B � zxB

zαA
KA + zxB

zv
� 0 . (164)

This change of variables αA → xA is always possible, and it
provides a way to straighten the vector field

Wfr :� KA
z

zαA v,xs

+ z

zv xs ,αA

� z

zv

∣∣∣∣∣∣∣∣xs ,xB,
∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣ (165)

which is the generator of adiabatic expansions (i.e. reversible
changes in v) over the manifold of the thermodynamic states
{(v, xs, αA)}: this is the reason why it is convenient to make the
choice of fields (uσ , v, xs, xA), see Section 2 of Gavassino et al.
(2021a). Thanks to these new variables, we have that

Ψ � P′ � − z~U
zv xs ,xB,

∣∣∣∣ (166)

which is consistent with the interpretation of xB as effective
chemical fractions, or reaction coordinates (Prigogine, 1968).
The equations of motion (161) reduce to

_xB � D′
B. (167)

If we define the effective chemical currents

n]
B :� xBn

] , (168)

we obtain the familiar equation

∇]n
]
B � nD′

B ≈ Ξ′
BCB

C , (169)

which shows us that we can interpret nD’B as some effective
reaction rates. In fact, the entropy production reads

Θ′∇]s
] � nBBD′

B ≈ BBΞ′
BCB

C ≥ 0 , (170)

which shows us that in the non-dissipative limit ∇]n]B � 0. The
description that we have obtained is fully equivalent to the one of a
reacting mixture 22, showing that, within UEIT, every model for
pure bulk viscosity has a chemical analogue, whatever the
mechanism responsible for dissipation. It also implies that
multi-temperature fluids, reacting mixtures and perfect-fluid
radiation-hydrodynamics (in the limit of infinite elastic
scattering opacity) are, from the point of view of UEIT, nothing
more than bulk-viscous fluids, where any non-equilibrium degree
of freedom is a source for bulk viscosity (Gavassino et al., 2020b).

8.6 Israel–Stewart as a Particular Case of
the Universal Model
The Israel-Stewart theory for bulk viscosity is a UEIT model with
D � 6, where the bulk-viscous part Π of the isotropic stress is the
only additional dynamical variable of the kind introduced in
(138), namely α :� Π, so that the fields of the theory are
(uσ , v, xs,Π).

To simplify the calculations we work close to thermodynamic
equilibrium, where we can assume that the hydrodynamic equation
for Π can be approximated by the “truncated equation” (Hiscock
and Salmonson, 1991; Zakari and Jou, 1993; Maartens, 1995)

τ _Π + Π � −ζ∇]u
] , (171)

where the viscosity coefficient ζ(v, xs)> 0 determines the
magnitude of the isotropic stress relative to expansion in the
limit τ→ 0, where the usual (non-dynamical) Navier–Stokes
relation Π � −ζ∇]u] is recovered. Arranging the telegraph-type
equation 171 to match the standard form in (152), gives

_Π � −Π
τ
− ζ _v
τv

0DΠ � −Π
τ

and KΠ � − ζ

τv
. (172)

Israel and Stewart (Israel and Stewart, 1979) assumed an energy
per-particle expanded up to the second order in Π, namely

~U(v, xs,Π) � ~Ueq(v, xs) + β0(v, xs)
2n

Π2 , (173)

where β0 > 0 to implement the minimum energy principle
(Callen, 1985). From Eqs (141) and (142), we find that

P ≈ − z~Ueq

zv
Θ ≈ − z~Ueq

zxs
AΠ � − β0Π

n
, (174)

where we have made a first-order truncation in Π (it is evident
that in this theory both Π and AΠ can be considered Lindblom’s
dissipation fields, as they both vanish in equilibrium). Imposing
the defining relation for Π,

Ψ � −z
~Ueq

zv
+ Π ≈ P + Π, (175)

and requiring its consistency with the first identity of (155), we
immediately find the formula of Israel–Stewart for the Thermo-
mode relaxation time-scale 12:

17The idea of including additional terms which restore the formal covariance of a
theory under field redefinitions is a central feature of field theory and has important
implications in UEIT. In Carter’s approach, for example, this is known as the
problem of the chemical basis (Carter and Khalatnikov, 1992a; Gavassino et al.,
2020b), which in neutron star crusts results into a chemical gauge freedom (Carter
et al., 2006), which can have serious implications for superfluid vortex dynamics
(Gavassino et al., 2021b).
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τ � β0ζ > 0, (176)

showing that τ, β0 and ζ are not independent coefficients. This
condition can be used to show that Eq. 156 for the entropy
production reduces to

Θ∇]s
] � Π2 / ζ , (177)

which is consistent with the Israel-Stewart theory (Hiscock and
Lindblom, 1983).

9 A SIMPLE UEIT APPLICATION:
RADIATION-MEDIATED BULK VISCOSITY

We conclude our survey with a direct application of the UEIT
formalism. We derive the formula of Weinberg (1971) for the
bulk viscosity of a perfect fluid coupled with photon radiation
directly from non-equilibrium thermodynamics, by using only
the tools of UEIT. The original derivation of Weinberg was based
on the approximate (slow-limit based) solution of the Boltzmann
equation for the photon gas found by Thomas (1930). On the
contrary, in our approach, no reference to a slow limit is required
and there is no need to solve the kinetic equation explicitly.

9.1 The Udey-Israel Argument
Building on the kinetic calculations of Thomas (1930), Weinberg
(1971) showed that the dissipative interaction between a matter
fluid (with short mean free path) and a radiation gas (with amuch
longer mean free path) can give rise to an effective radiation-
mediated bulk viscosity. Later, Udey and Israel (1982) proposed a
simple and intuitive interpretation for this phenomenon. They
considered that, when a fluid element undergoes an adiabatic
expansion over a time-scale shorter than the one defined by the
opacity (i.e. ∼ 1/χ, see Section 4.2), then matter and radiation do
not have time to interact. This implies that the two components
will expand independently, each of them following its own
adiabatic curve. This generates (if matter is not an ultra-
relativistic ideal gas) a temperature difference between the two
components. The consequent exchange of heat, which tries to re-
equalize the two temperatures, gives rise to dissipation.

By using the methods of the so-called M1 closure scheme (see
e.g. Sądowski et al., 2013), it has been recently verified that
radiation-mediated bulk viscosity can be, indeed, modeled as a
pure two-temperature effect (Gavassino et al., 2020b): this provides
an explicit realization of the intuition of Udey and Israel. Here, we
revise this argument from the point of view of UEIT, proving also
its complete consistency with the kinetic derivation of Weinberg
(1971). Ourmain goal is to convince the reader that UEIT (like EIT)
is not just “hyperbolic Navier–Stokes”, but it is really a branch of
non-equilibrium thermodynamics 23.

9.2 Fluid + radiation System: Constitutive
Relations and Hydrodynamic Equations
Following the same logic outlined in Section 8.1, we isolate the
phenomenon of bulk viscosity and remove shear viscosity and

heat conduction by imposing an assumption of local isotropy for
the local observers defined by the four-velocity field uσ . In
addition, we beforehand assume that it is enough to model the
fluid + radiation system as a two-temperature fluid, in which we
allow the radiation gas to have a different temperature with
respect to the one of the matter fluid (Udey and Israel, 1982).
For simplicity, the matter fluid is treated as a perfect fluid (after all
we want to isolate and study the pure effects induced by the
presence of radiation). Hence, we choose the fields of the model as

(φi) � (uσ , sn, n,Θc) , (178)

where sn and n are respectively entropy and particle density of the
matter fluid (as measured in the frame of uσ), while Θc is the
temperature of the radiation fluid. Given (178), the resulting
UEIT model will necessarily have D � 6 degrees of freedom. By
symmetry, the constitutive relations are given by

T]ρ � (U + Ψ)u]uρ + Ψg]ρ s] � su] n] � nu]. (179)

Recalling that we assumed a perfect fluid model for the matter
sector, we impose the equation of state of the full matter + radiation
system to be separable into a matter and a radiation part (see e.g.
Mihalas and Weibel Mihalas 1984; Rezzolla and Zanotti, 2013):

U � ρ(sn, n) + aRΘ4
c , (180)

where ρ is the energy density of the matter fluid (as measured in
the frame of uσ), so that the temperature Θn and the chemical
potential μ of the matter fluid can be computed from the
differential

dρ � Θndsn + μdn . (181)

We assume that also the total isotropic stress Ψ can be
decomposed:

Ψ � Pn + 1
3
aRΘ4

c , (182)

where

ρ + Pn � Θnsn + μn . (183)

Similarly, the total entropy density is the sum of the matter and
the radiation contributions 69,

s � sn + 4
3
aRΘ3

c . (184)

Now that we have the explicit definitions for all the symbols appearing
into the constitutive relations (179), we only need to assign the
hydrodynamic equations. The conservation laws in (3) already
provide five hydrodynamic equations. The missing equation can
be computed directly from kinetic arguments. In fact, under the
aforementioned assumptions, Eq. 58 implies (for small Θn − Θc)

_Θc � χ (Θn − Θc) − Θc

3
∇]u

] , (185)

which is consistent with the intuition of Udey and Israel (1982).
In fact, during and expansion, in the absence of matter-radiation
interactions (i.e. when χ � 0), the radiation gas evolves along its
own adiabatic curve [namely, Θ3

cv � const (Leff, 2002)].
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9.3 The fluid + radiation System as a UEIT
Model for Bulk Viscosity
If we make the change of variables (uσ , sn, n,Θc)→ (uσ , v, xs, α),
then the fields of our system are exactly those of a UEIT theory for
bulk viscosity with D � 6. More explicitly, the change of
variables is

xs � s(sn,Θc)/n v � 1/n α � Θc, (186)

where the total entropy s(sn,Θc) is given in (184). Now, the
constitutive relations (179) already have the form (139).
Furthermore, the hydrodynamic Eq. 185 has the structure
(152), with

D � χ(Θn − Θc) K � − 1
3
nΘc . (187)

Hence, this simple hydrodynamic model is a legit UEIT model
for bulk viscosity, provided that the second law is valid for any
value of _v. The validity of the second law is guaranteed if
conditions (155) are respected and AD≥ 0. To verify this, we
first need to compute the thermodynamic derivatives given
in (143):

P � − z

zv
(U
n
)∣∣∣∣∣∣∣xs ,Θc

� Pn + aRΘ3
c(43Θn − Θc)

Θ � z

zxs
(U
n
)∣∣∣∣∣∣∣

v,Θc

� Θn

A � − z

zΘc
(U
n
)∣∣∣∣∣∣∣∣

v,xs

� 4aRΘ2
c

n
(Θn − Θc) ,

(188)

that can be easily used to obtain a formula for the isotropic stress,

Ψ � Pn + 1
3
aRΘ4

c � P +AK . (189)

Note that this relation holds arbitrarily far from equilibrium (i.e.
for large values of Θn − Θc), in accordance with the general
discussion of Section 8.3.

Finally, combining the second and third equation of (145)
with the constitutive relations (180), (182) and (184), thanks to
the hydrodynamic Eq. 185 we can compute the entropy
production,

Θ∇]s]

n
� Θn _xs � χ

4aRΘ2
c

n
(Θn − Θc)2 � AD≥ 0 , (190)

which is in agreement with the second condition in (155). This
completes the proof that the matter + radiation fluid is a UEIT
bulk-viscous fluid.

In Section 8.5 we showed that there is always a change of
variables which converts a UEIT model into an effective
description for a reacting mixture. To find this description one
has to make a change of variables that allows to straighten the
vector field

Wfr � −Θc

3v
z

zΘc

∣∣∣∣∣∣∣∣
v,xs

+ z

zv

∣∣∣∣∣∣∣xs ,Θc

. (191)

The simplest variable that is conserved along the flux generated
by Wfr is

xsc � 4 aR Θ3
c v / 3. (192)

Under this field redefinition, the theory reduces to the
hydrodynamic model for radiation-mediated bulk viscosity
presented in Gavassino et al. (2020b) (neglecting the photon-
number effects).

9.4 Recovering Weinberg’s Formula for the
Bulk Viscosity Coefficient
The formalism of UEIT allows us to find the formula for the
radiation-mediated bulk viscosity coefficient ζ by matching the
UEIT model with Israel-Stewart for small deviations from
equilibrium, something that can always be done since both
models have D � 6 (Gavassino et al., 2021a).

The first step consists of computing the viscous stressΠ, which
is defined as the first-order difference between the physical stress
Ψ and the stress that would be generated by the fluid if it were in
local thermodynamic equilibrium with the same n and U . We
adopt the following notation: given a thermodynamic variable f,
we call f its physical value and f + δf the value that f would have if
the fluid were in local thermodynamic equilibrium with the same
n and U . Hence, we can impose

δΨ � −Π δn � 0 δU � 0. (193)

In addition, from the minimum energy principle, we know that
the affinityAmust vanish at equilibrium, so we must require that

A + δA � 0 . (194)

Combining this condition with the second and the third
equations of (193) we obtain, working at the first order in the
differences δf ,

δΘc � cnv
cnv + ccv

(Θn − Θc) δΘn � − ccv
cnv + ccv

(Θn − Θc), (195)

where the heat capacities (per unit volume, at constant volume)
are given by

cnv �
zρ

zΘn

∣∣∣∣∣∣∣
n

ccv �
d(aRΘ4

c)
dΘc

� 4aRΘ3
c. (196)

Note that Eq. 195 is just the formula for the variation of the
temperatures of two interacting systems that evolve into a state of
thermal equilibrium (at constant volume).

Using (195) and 182, the first equation of (193) can be used to
compute the viscous stress Π,

Π � cnv c
c
v

cnv + ccv
(1
3
− 1
cnv

zPn

zΘn

∣∣∣∣∣∣∣∣
n

)(Θc − Θn) . (197)

Considering that we are dealing with small deviations from
equilibrium (as our goal is to match the theory of Israel and
Stewart), this formula for the viscous stress can be more
conveniently rewritten as
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Π � ccv(13 − zΨ
zU

∣∣∣∣∣∣∣n)(Θc − Θn) , (198)

where we made use of the equilibrium identity (B.4) proved in
Appendix B.1 (the thermodynamic derivative is performed
imposing Ψ � Ψeq and U � Ueq). This formula for Π is equivalent
to Eq. 33 of Udey and Israel (1982), once one realizes that in our two-
temperature model the quantity B that they introduce is given by

aRΘ4
c � aRΘ4

n(1 + B)0 aRΘ4
nB ≈ ccv(Θc − Θn). (199)

As a final step, we need to impose the equivalence between the
Israel–Stewart entropy production (177) and our formula (190);
this leads us to the identification

Π2

ζ
� χ ccv

Θc
(Θn − Θc)2 . (200)

Using (198) and isolating the bulk viscosity coefficient, we obtain

ζ � 4aRΘ4
c

χ
(1
3
− zΨ
zU

∣∣∣∣∣∣∣n)
2

, (201)

in exact agreement with the expression for the viscosity
coefficient given in Eq. 2.42 of Weinberg (1971).

Therefore, we have shown that Weinberg’s formula for the
radiation-mediated bulk viscosity coefficient ζ describes a pure
two-temperature effect, where dissipation arises from the heat
exchange between the matter and the radiation fluid. It is also
important to note that, given the equivalence between the present
UEIT model and the theory for radiation-mediated bulk viscosity
of Gavassino et al. (2020b),Weinberg’s formula (201) for the bulk
viscosity coefficient must also coincide with Eq. 142 of Gavassino
et al. (2020b). This is verified explicitly in Appendix B.2.

10 CONCLUSIONS

In the first part of this review (Sections 1–5) we have revised
the generic instability problem of relativistic Navier–Stokes
(Hiscock and Lindblom, 1985) from the perspective of
classical field theory. The existence of unphysical gapped
modes, typical of the first-order theories of dissipation, is a
common feature of field theories in the slow-evolution limit.
A first minimal example is the Schrödinger dynamics (the
slow limit of the Klein–Gordon model): in a boosted frame,
unphysical solutions appear.

The case of the diffusion equation is similar (as expected,
since the heat equation is the Wick-rotated version of the
Schrödinger equation), with the difference that these modes
have the tendency to grow with time and, therefore, they are a
source of instability. What really drives the instability in the
diffusion case, and more in general in the hydrodynamic
theories of Eckart (1940) and Landau and Lifshitz (2013a), is
the enforcement of the second law along these modes
(Gavassino et al., 2020a): the gapped modes give a positive
contribution to the total entropy, so that they can only grow
with time, leading to an instability. This analysis showed a
difficulty in connecting a first-order hydrodynamic model for

a relativistic dissipative fluid with the corresponding non-
equilibrium thermodynamic description.

In the second part (starting with Section 6), we have
introduced the ideas of Unified Extended Irreversible
Thermodynamics (already scattered in the literature, but
presented here in a systematic way), which aims to solve the
shortcomings of a first-order description, namely the
connection of the phenomenological hydrodynamic model
with non-equilibrium thermodynamics. In fact, we have
discussed how every phenomenological UEIT model has, at
least in principle, a natural connection with statistical
mechanics and is Lyapunov-stable by construction (provided
that the microscopic input makes sense). This connection also
ensures that the gapped modes are well behaved (i.e. are
expected to relax in a certain initial transient): most of UEIT
models are subject to the Relaxation Effect (Lindblom, 1996),
meaning that they exhibit a Navier–Stokes-type structure in the
slow limit (without manifesting the pathologies of relativistic
Navier–Stokes models).

In most non-UEIT formulations of hydrodynamics, a fluid is
characterized by its fluxes (T]ρ, s], n]) expressed in terms of some
equilibrium-type thermodynamic fields (uσ ,Θ, μ), as well as their
derivatives, via the so-called constitutive relations, and the dynamics is
governed by the associated conservation laws, see e.g. Kovtun (2012).
In these formulations, the constitutive relations are written as
derivative-expansions (namely, expansions in powers of
derivatives) of the fluxes. On the other hand, in UEIT, the fluid is
seen as a collection of non-equilibrium thermodynamic systems, one
for each fluid element, whose dissipative evolution is coupled to the
gradients dynamically, but not directly at the level of the constitutive
relations. In fact, the idea of UEIT is to enlarge the number of fields of
the theory, adding to the primary equilibrium-type fields (uσ ,Θ, μ)
some additional non-equilibrium thermodynamic variables (e.g. non-
conserved particle fractions, multiple temperatures, or even the stress
tensor itself), and modeling the entropy production directly from
thermodynamics. The gradients are assumed to be sufficiently small
on the scale of the fluid elements not to enter into the constitutive
relations (namely, individual fluid elements are approximately
homogeneous), but only into the hydrodynamic equations
(namely, in how different fluid elements interact with each other).

An important formal result, discussed in Section 7 concerns the
structure of the theories of Israel and Stewart (1979) and of Carter
(1991): we have shown that both are UEIT models, meaning that
they automatically inherit the desirable features of stability and well
posedness that stem from the UEIT principles (when fed with a
reasonable microscopic input), in agreement with Priou (1991).

Finally, to show a concrete example of how the UEIT
formalism works, we have re-derived the universal model
for bulk viscous fluids of Gavassino et al. (2021a). In the last
section, this universal theory for bulk viscosity has been used
to obtain the expression of Weinberg (1971) for the radiation-
mediated bulk viscosity coefficient directly from non-
equilibrium thermodynamics, without the need of solving
the kinetic equation of the photon gas. This provides a
thermodynamic proof for the argument of Udey and Israel
(1982), according to which radiation-mediated bulk viscosity
can be seen as a pure two-temperature effect.
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APPENDIX A: ENTROPY GROWTH ALONG
THE GAPPED MODES

We discuss the behavior of the total entropy along the boost-
generated gapped mode of the diffusion equation. The method is
the same as the one employed in Gavassino et al. (2020a). For
simplicity, we work in 1 + 1 dimensions and denote Alice’s
inertial frame by (t, x) and Bob’s inertial frame by (t′, x′). The
two coordinate systems are connected by the boost

t′ � c(t − wx) x′ � c(x − wt). (202)

We consider the first-order constitutive relations (neglecting
overall additive constants)

J] � ( cvΘ
q

) s] � ( cvlnΘ
q/Θ ). (203)

Assuming the Fourier law (75), we have

q � −κ zxΘ, (204)

and the condition ∇]J] � 0 becomes

ztΘ −Dz2xΘ � 0, (205)

which is the 1 + 1 version of the diffusion Eq. 65. Along the
solutions of this equation the entropy production is

∇]s
] � q2

κΘ2 � κ(zxΘΘ )2

, (206)

which is strictly non-negative. Under the boost (202), the
constitutive relations (203) become

J]′ � c( cvΘ − wq
q − wcvΘ) s]′ � c( cv lnΘ − wq/Θ

q/Θ − wcv lnΘ). (207)

To study the behavior of the entropy along the spurious mode of
Section 4.5 we only need to impose the condition of homogeneity in
Bob’s reference frame. This allows us to convert the energy conservation
and the second law into the ordinary differential equations

zt′ J
t′ � 0 zt′ s

t′ ≥ 0. (208)

The first equation implies that we can define the constant of motion

E :� J t′ � c(cvΘ − wq) , (209)

which can be used to write q as a function of Θ along the mode:

q(Θ) � cv
w
(Θ − E

ccv
) . (210)

This allows us to rewrite the entropy density as

st′(Θ) � ccv(lnΘ + E
ccvΘ

− 1). (211)

This function has its absolute minimum in the equilibrium state,
identified by the condition

q � 00 0Θ � E/(ccv). (212)

Therefore, the entropy density grows together with the amplitude
of the mode. Hence, imposing that the second law is valid along
the mode is the very origin of the growth of the mode itself with
time. This originates the instability.

APPENDIX B: THERMODYNAMIC
CALCULATIONS

In this Appendix we prove some useful thermodynamic relations
in the context of the model for radiation-mediated bulk viscosity
presented in Section 9. All the calculations are performed
assuming local thermodynamic equilibrium, i.e. Θc � Θn � Θ.
This condition is also used as a constraint while performing
partial derivatives, reducing the number of free thermodynamic
variables from 3 to 2.

2.1 A Useful Identity
We start from the observation that (use the chain rule with Θ)

zΨ
zU

∣∣∣∣∣∣∣n � zΘ
zU

∣∣∣∣∣∣∣n(zPn

zΘ

∣∣∣∣∣∣∣n + 4
3
aRΘ3). (213)

On the other hand,

zU
zΘ

∣∣∣∣∣∣∣n � cv � cnv + ccv . (214)

Hence,

zΨ
zU

∣∣∣∣∣∣∣n � 1
cnv + ccv

(zPn

zΘ

∣∣∣∣∣∣∣n + ccv
3
). (215)

Subtracting 1/3 to both sides, we finally obtain

zΨ
zU

∣∣∣∣∣∣∣n − 1
3
� cnv
cnv + ccv

(1
cnv

zPn

zΘ

∣∣∣∣∣∣∣∣
n

− 1
3
). (216)

2.2 Chemical-like Formula for Weinberg’s
Bulk Viscosity
Equation 142 of Gavassino et al. (2020b) can be easily rewritten in
the more convenient form

ζ � Θ
χccv

(zxsc
zv

∣∣∣∣∣∣∣xs)
2

. (217)

Our task is to prove that this expression is equivalent to (201). Let
us, first of all, focus on the derivative in the round brackets.
Recalling the definition (192), we immediately obtain

zxsc
zv

∣∣∣∣∣∣∣xs � ccv(13 + v
Θ

zΘ
zv

∣∣∣∣∣∣∣xs), (218)

which, plugged, into (B.5), gives

ζ � ccvΘ
χ

(1
3
+ v
Θ

zΘ
zv

∣∣∣∣∣∣∣xs)
2

. (219)

The second step consists of deriving a useful thermodynamic
identity for the second term in the round parenthesis. Imposing
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AA � 0 in Eqs 143, 155, the thermodynamic differential d~U implies
the usual Maxwell relation of equilibrium thermodynamics

d~U � −Ψdv + Θdxs 0
zΘ
zv

∣∣∣∣∣∣∣xs � − zΨ
zxs

∣∣∣∣∣∣∣
v
. (220)

Now, applying the chain rule on the right-hand side to obtain a
differentiation in U , and recalling that v � 1/n, we obtain the
useful identity we were looking for:

zΨ
zU

∣∣∣∣∣∣∣n � − vΘ
zΘ
zv

∣∣∣∣∣∣∣xs . (221)

The bulk viscosity coefficient ζ in (219) can be finally expressed as

ζ � 4aRΘ4

χ
(1
3
− zΨ
zU

∣∣∣∣∣∣∣n)
2

, (222)

which is what we wanted to prove.
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