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Model kinetic equations are proposed for the description of ionized monoatomic gas
mixture flows. The mixtures are assumed enough rarefied to be treated as ideal gases after
multiple ionization steps. The model equations contain the equilibrium distribution
functions for the components of the gas mixtures under consideration like it was done
in BGK equations and their well-known generalizations. However, in this paper the new
forms of the equilibrium distribution functions are used which correspond to the entropy
maximum under the constraints of momentum, total energy, nuclei and electrons (both
bound and free) conservation. It is shown that the derived model equations allow us to
study the local equilibrium flows of the ionized gases and the transport processes of
energy, nuclei and electrons in the non-equilibrium conditions.
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1 INTRODUCTION

When studying gas flows near bodies moving in the upper atmosphere, it is necessary to take into
account the dissociation and ionization processes. Therefore, many theoretical studies are devoted
to consideration of the transport processes in gas flows with electronic degrees of freedom,
ionization and recombination [see, for example, (Zhdanov, 2009; Capitelli et al., 2012; Bruno et al.,
2007; Bruno et al., 2008; Istomin and Kustova, 2014; Zhdanov and Stepanenko, 2016a; Zhdanov
and Stepanenko, 2016b; Istomin and Kustova, 2017; Istomin and Kustova, 2017)]. At present, a
special attention is concentrated on the kinetic description problems of the ionized gas flows with
multiple ion species [see, for example, the generalization (Simakov and Molvig, 2016) of the
Braginskij ion fluid description of unmagnetized plasma (Braginskii, 1958) and Ref. (Arslanbekov
and Kolobov, 2018)].

The present study is devoted to the kinetic description of monoatomic gas mixtures with multiple
ion species. The mixtures are assumed enough rarefied to be treated as ideal gases and to be described
in terms of single-particle distribution functions even after multiple ionization steps. Under these
conditions one can use the generalized Boltzmann equations like it was done for the description of
gas mixtures with excitation of molecular internal degrees of freedom and chemical reactions [see, for
example, (Loureiro and Amorim, 2016; Ferziger and Kaper, 1972; Vallander et al., 1977; Giovangigli,
1999; Rydalevskaya, 2003; Nagnibeda and Kustova, 2009; Loureiro and Amorim, 2016)].

In derivation of any kinetic equations, the principal difficulties are connected with the complex
structure of their integral collisions operators. Therefore, full collision operators were replaced with
model collision operators, first in the kinetic equations derived by Bhatnagar, Gross and Krook
(BGK) for simple monoatomic gases (Bhatnagar et al., 1954). Further, the BGK model was
generalized for the gas mixtures with the internal degrees of freedom of molecules and with
chemical reactions [see, for example, (Morse, 1964; Hanson and Morse, 1967; Groppi and Spiga,
2004)].
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In the present paper, the generalization of the BGK model is
proposed for the kinetic description of the multiply ionized
monoatomic gases mixtures. In the model kinetic equations
the new form of the local equilibrium distribution functions
for the atoms, ions and free electrons is used. These model
equations allow us to derive the reduced systems of the
macroscopic conservation equations.

2 GENERALIZATION OF BGK MODEL

Consider the flow of an ionized gas mixture which consists of the
neutral atoms Ak0 of various chemical species k � 1, 2, . . . , k*,
ions Akc with a charge c � +1,+2, . . . ,+N(k) (N(k) is the serial
number of element Ak in the periodic system) and free electrons
e−. Every particle Akc contains the nucleus A*

k and (N(k) − c)
electrons. All particles Akc and free electrons e− have translational
energy mkcu2/2 and me−u2/2 (mkc and me− are their masses, u are
the velocity vectors). Particles Akc (c � 0,N(k) − 1) also have
internal electronic energy εkci (i � 0, i*kc), subscript i characterizes
a set of quantum numbers that specifies internal energy of
particle Akc.

If the translational energy of particles is described classically or
quasi-classically and their internal energy is assumed quantum,
then for the determination of the ionized gas mixtures states one
can use the distribution functions fkci(r, u, t) and fe−(r, u, t). The
model kinetic equations which are analogous to the BGK
equations can be presented in the form:

Dkcifkci � f (0)kci − fkci
τ

, i � 0, ipkc, c � 0,N(k), k � 1, kp, (1)

De− fe− � f (0)e− − fe−

τ
, (2)

where Dkci and De− are the traditional differential Boltzmann
operators; f (0)kci (r, u, t) and f (0)e− (r, u, t) are the local equilibrium
distribution functions of corresponding particles, t is the
relaxation time for the transition to the state of complete
thermodynamic equilibrium (including chemical equilibrium
of ionized and neutral species).

It should be noted that the normalization conditions for the
functions f (0)kci and f (0)e− coincide with the normalization conditions
for the functions fkci and fe− .

In Ref. (Rydalevskaya, 2017), the equilibrium distribution
functions f (0)kci and f (0)e− were obtained, which correspond to the
entropy maximum of the motionless spatially uniform ionized
gas systems under the constraints of conservation of the total
energy, the numbers of the nuclei A*

k (k � 1, k*) and electrons
(both bound and free) in these systems.

In the present study, to find local equilibrium functions
f (0)kci (r, u, t) and f (0)e− (r, u, t), we can use the famous Boltzmann
formula (Boltzman, 1964) for the entropy density:

~s � k lnW � k ln
ΔΓ
Γ , (3)

where k is the Boltzmann constant; W, Γ and ΔΓ are respectively
thermodynamic probability, the total number of the unit volume

and the number of its microscopic states for the macroscopic state
under consideration.

One can consider that Γ is constant value in the gas flow under
consideration. Therefore, for a mixture of ideal gases the entropy
density can be written in the form

~s � k lnΔΓ � k ln⎛⎝∏
j

ΔΓj⎞⎠, (4)

where ΔΓj is the number of microscopic states of Nj identical
particles. There particles are in the definite phase volume, and
they are of identical chemical species and have an identical set of
quantum numbers which correspond to their internal energy.

If one neglects the exchange effects and assumes

1≪Nj ≪ sj, j � 1, jp,

then the expression Eq. 4 can be rewritten in the form [see
(Rydalevskaya, 2003; Rydalevskaya, 2017)]

~s � k ln⎛⎝∏
j

s
Nj

j /Nj!⎞⎠. (5)

Using the Stirling formula, we obtain

~s � k∑
j

(Nj ln sj − Nj lnNj + Nj). (6)

To determine the local equilibrium values Nj (j � 1, j*) it is
necessary to find the maximum of the entropy density Eq. 6
under the existing local constraints can be presented in the form

∑
j

Njψ
(λ)
j � Ψλ(r, t), λ � 0,Λ. (7)

Here ψ(λ)
j (λ � 0,Λ) are collision invariants of any collisions

between the particles; Ψλ(r, t) are sums of the collision invariants
ψ(λ)
j in the unit volume under consideration. The notations ψ(0)

j
and Ψ0(r, t) are used for the energy of an individual particle and
for the whole unit volume energy.

The constraints which correspond to the momentum
conservation can be presented in the form:

∑
j

Njmju � 9(r, t)v(r, t). (8)

In ionized monoatomic gas flow, in addition to the energy and
momentum there are k* + 1 invariants on the type (Rydalevskaya, 2017):

ψ(λ)
kci � δλk, k � 1,kp, c � 0,N(k), ψ(λ)

e− � 0, λ � 1,kp;
ψ(λ)
kci � N(k) − c, k � 1,kp, c � 0,N(k), ψ(λ)

e− � 1, λ � kp + 1.
(9)

Using the method of Lagrange multipliers, for the
determination of entropy density Eq. 6 maximum under
constraints Eq. 7, we obtain equilibrium values

Ne
j � sj exp∑Λ

λ�0
cλ(r, t)ψ(λ)

j , j � 1, jp, (10)

where kcλ(r, t) are the Lagrange multipliers corresponding to the
intensive parameters conjugate to the densities Ψλ(r, t) (λ � 0,Λ)
of the extensive parameters.
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If the translational energy of particles is described quasi-
classically and their internal energy is assumed quantum, then it
is possible to turn from the numbers N(e)

j to the local equilibrium
distribution functions of the atoms, ions, and free electrons:

f (0)kci (r, u, t) � skci
m3

kc

h3
exp(c0(mkcu2

2
+ εkci) + c

→·mkcu + ck + ce− (N(k) − c)),
i � 0, i*kc, c � 0,N(k) − 1, k � 1, k*,

(11)

f (0)kci �
m3

kc

h3
exp(c0mkcu2

2
+ c→·mkcu+ck), c�N(k), k� 1,k*, (12)

f (0)e− � m3
e−

h3
exp(c0me−u2

2
+ ce−), (13)

where h is Planck’s constant, skci are statistical weights.
To determine unknown parameters c→, c0, ck (k � 1, kp) and

ce− in the expressions Eqs 11–13, it is necessary to use the
normalization constraints under the existing conservation
conditions.

The conservation of momentum can be written in the form

∑
k,c,i

∫mkcuf
(0)
kci du + ∫me−uf (0)e− du � 9(r, t)v(r, t), (14)

where 9(r, t) and v(r, t) are the mass density and the velocity of
the gas mixture.

Introducing the particles peculiar velocities c � u − v(r, t) as
well as the functions ~f kci(r, c, t) and ~f e−(r, c, t), one can rewrite the
model kinetic Eqs 1, 2 for an unmagnetized ideal plasma in the
form:

~D~f kci �
d~f kci
dt

+ c · ∇→~f kci + (Fkc − dv
dt
) · ∇→c

~f kci − (∇→c
~f kci)c : ∇→v �

~f
(0)
kci − ~f kci

τ
,

k � 1, kp, c � 0,N(k), i � 0, ipkc, (15)

~D~f e− �
d~f e−
dt

+ c · ∇→~f e− +(Fe− − dv
dt
) · ∇→c

~f e− −(∇→c
~f e−)c : ∇→v �

~f
(0)
e− −~f e−

τ
, (16)

where d~f
dt � z~f

zt + v · ∇→~f and dv
dt � zv

zt + (v · ∇→)v; the operator ∇
→

c

supposes differentiation with respect to the peculiar velocity c;
mkcFkc andme−Fe− are the external forces which do not depend on
the particles velocities;

~f
(0)
kci (r, c, t) � skci

m3
kc

h3
exp(c0(mkcc2

2
+ εkci) + ck + ce−(N(k) − c)),

c � 0,N(k), k � 1, k*, i � 0, i*kc,

(17)

~f
(0)
e− (r, c, t) �

m3
e−

h3
exp(c0me−c2

2
+ ce−). (18)

For the determination of coefficients c0, ck and ce− one can use
the normalization conditions:

∑
k,c,i

∫(1
2
mkcc

2 + εkci)~f (0)kci dc + ∫ 1
2
me−c

2~f
(0)
e− dc � e(r, t), (19)

∑
c,i

∫~f
(0)
kci dc � ~nk(r, t), k � 1, k*, (20)

∑
k,c,i

(N(k) − c)∫~f
(0)
kci dc + ∫~f

(0)
e− dc � ~ne−(r, t). (21)

Here e(r, t), ~nk(r, t) (k � 1, k*) and ~ne−(r, t) are the values
of the total energy of all particles (translational and
internal), the total numbers of the nuclei A*

k (k � 1, k*) and
the electrons e− (both bound and free) in the unit volume. If the
translational energy of the unit volume is defined as
(3/2)n(0)kBT , where

n(0) � ∑
k,c,i

n(0)kci + n(0)
e− � ∑

k,c,i

∫~f
(0)
kci dc + ∫~f

(0)
e− dc, (22)

kB is the Boltzmann constant, T is the temperature of gas mixture,
then relation (19) allows us to obtain the equality c0 � −1/(kBT).

3 SYSTEM OF THE MACROSCOPIC
CONSERVATION EQUATIONS

The equations for the macroscopic parameters v(r, t), e(r, t),
~nk(r, t) (k � 1, k*) and ~ne−(r, t) are derived from Eqs 15, 16.

The equation of momentum conservation is obtained as a sum
of two relations. One of them follows from the kinetic Eq. 15,
after multiplying them by mkcc, integrating over velocity c and
summing over i, c, k. Other relation follows from Eq. 16 after
multiplying it by me−c and integrating over c. Thus, in that way,
we obtain the equation:

9
dv
dt

� 9F − ∇
→

P, (23)

where

9F � ∑
k,c,i

mkcFkcn
(0)
kci +me−Fe−n(0)

e− , (24)

P
↔ � ∑

k,c,i

∫~f kcimkcccdc + ∫~f e−me−ccdc (25)

is the stress tensor.
The equation of total energy conservation is derived similarly,

combining two parts. One of them follows from Eq. 15, after
multiplying them by mkc(c2/2) + εkci, integrating over c and
summing over i, c, k. Other relation follows from Eq. 16, after
multiplying it by me−c2/2 and integrating over c. Thus, in that
way, we obtain equation:

de
dt

+ e∇
→ · v + ∇

→ · q + P
↔

: ∇
→
v � 0, (26)

where

q � ∑
k,c,i

∫~f kci(mkcc2

2
+ εkci)cdc + ∫~f e−

me−c2

2
cdc (27)

is the transport energy flux.
The equations for the conservation of the nuclei A*

k numbers
~nk (k � 1, k*) follow from the kinetic Eq. 15 after integrating them
over the velocity c and summing over the subscripts i and c. Thus,
in that way, we obtain equations:
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d~nk
dt

+ ~nk∇
→ · v + ∇

→ · qk � 0, k � 1, k*, (28)

where

qk � ∑
c,i

~f kcicdc, k � 1, k*, (29)

are the transport fluxes of the nuclei A*
k.

Derivation of the conservation equation for the total number of
electrons ~ne− (both bound and free) is also a two-step procedure.
First, the kinetic Eq. 15 are integrated over the velocity c, summed
over i, multiplied by (N(k) − c) and summed over subscripts c and
k. Other relation follows from Eq. 16 after integrating it over the
velocity c. Then, two equations are summed. Thus, equation for the
total number ~ne− of the electrons (both bound and free) in the unit
volume can be written in the form

d~ne−

dt
+ ~ne−∇

→ · v + ∇
→ · qe− � 0, (30)

where

qe− � ∑
k,c,i

(N(k) − c)∫~f kcicdc + ∫~f e−cdc (31)

is the transport flux of the electrons.
Onemaynote that the continuity equation for density 9 in the ionized

gas mixtures is the consequence of Eqs 28, 30. Indeed, the equation

d9
dt

+ 9∇
→ · v � 0 (32)

is obtained after the addition of the multiplied by the nuclei
massesm*

k Eq. 20 and multiplied by the electron massme− Eq. 30,
since

9 � ∑k*
k�1

m*
k~nk +me−~ne,

∑k*
k�1

m*
k(∇→ · qk) +me−(∇→ · qe−) � ∇

→ ·⎛⎝∑k*
k�1

mkqk +me−qe−⎞⎠,

and

∑k*
k�1

mkqk +me−qe− � ∑
k,c,i

∫~f kci(mk + (N(k) − c)me− )cdc + ∫~f e−me−cdc � 0.

(33)

The macroscopic Eqs 23, 26, 28 and 30 do not differ from the
corresponding conservation equations which can be obtained
from the kinetic equations of the Boltzmann’s type. To close the
system of Eqs 23, 26, 28 and 30, it is necessary to specify the stress
tensor P

↔
and fluxes q, qk (k � 1, k*) and qe− . The dependencies of

these transport terms on the distribution functions ~f kci(r, c, t) and
~f e−(r, c, t) are given by Eqs 25, 27, 29, 31.

4 EQUILIBRIUM AND NON-EQUILIBRIUM
SOLUTIONS OF THE MODEL KINETIC
EQUATIONS
The distribution functions Eq. 17 and Eq. 18 are the equilibrium
solutions of Eqs 15, 16.

If parameters c0 � −1/(kBT), xk � eck and y � ece− are
determined from Eqs 19–21, then for the equilibrium
concentrations of particles Akc and free electrons e− we obtain
formulae (Rydalevskaya, 2017)

nkc � Zkc(T)xkyN(k)−c, k � 1, kp, c � 0,N(k),
ne− � Ze−(T)y.

For the calculation of the equilibrium composition the gas
mixture under consideration it is necessary to determine the
partition functions Zkc(T) (k � 1, k*, c � 0,N(k)) and Ze−(T).
For this, one can use a finite set of electronic levels 1 or the
partition functions which were calculated earlier [see (Giordano
et al., 1994; D’Angola et al., 2008)].

The temperature dependencies of the equilibrium relative
concentrations of the atoms, ions and free electrons in the
monoatomic ionized nitrogen at atmospheric pressure are
shown in (Rydalevskaya, 2017). In the present paper the such
temperature dependencies one can show for the ionized mixture
monoatomic oxygen (see Figure 1).

In non-equilibrium conditions one can turn in model
equations to the dimensionless form.

In the case when a mean time θ, characterizing the rate of the
macroscopic parameters variation, is known, one can introduce
the dimensionless parameter ε � τ/θ.

If ε≪ 1, the approximate solutions of Eq. 15 and Eq. 16 can be
represented as the series in the small parameter ε:

FIGURE 1 | The temperature dependencies of the equilibrium relative
concentrations of the atoms, ions and free electrons in the monoatomic
ionized oxygen (NL is Loschmidt number).

1WEBBOOK.NIST.GOV/CHEMISTRY
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f̂ kci(r, c, t) � f̂
(0)
kci +∑∞

n�1
εnf̂

(n)
kci , i � 0, i*k, c � 0,N(k), k � 1, k*, (34)

f̂ e−(r, c, t) � f̂
(0)
e− +∑∞

n�1
εnf̂

(n)
e− . (35)

Under these conditions, for the solution of the model Eq. 15
and Eq. 16 one can use the Chapman–Enskog method (CEM),
see, for example, (Chapman and Cowling, 1970; Ferziger and
Kaper, 1972; Vallander et al., 1977; Giovangigli, 1999;
Rydalevskaya, 2003; Nagnibeda and Kustova, 2009).

Substituting the expansions Eq. 26 and Eq. 27 in
dimensionless model equations Eq. 7 and Eq. 8, equating the
terms under the ε identical degrees and reverting to
dimensionless variables, we can write

f (n)kci (r, c, t) � −τ~D(n)
kci ( f (0)kci , . . . , f

(n−1)
kci ), n≥ 1, (36)

f (n)e− (r, c, t) � −τ~D(n)
e− ( f (0)e− , . . . , f (n−1)e− ), n≥ 1. (37)

The operators D(n)
kci and D(n)

e− are derived using traditional
procedures of CEM (Groppi and Spiga, 2004; Ferziger and Kaper,
1972; Vallander et al., 1977; Giovangigli, 1999; Groppi and Spiga,
2004; Loureiro and Amorim, 2016).

The solutions of Eqs 15, 16 in the zero-order approximation of
CEM coincide with the equilibrium distribution functions
f (0)kci (r, c, t) (17) and f (0)e− (r, c, t) (18). These functions must
satisfy the normalization conditions Eqs. 19–21. Gas-dynamic
parameters v(r, t), e(r, t), ~nk(r, t) (k � 1, k*) and ~ne−(r, t) are
determined from Eqs 23, 26, 28, 30. Under the equilibrium
conditions, the transport terms Eqs. 25, 27, 29 31 have the form:

P
↔ � p

�����������
1 0 0
0 1 0
0 0 1

�����������, q � 0, qk � 0(k � 1, k*), qe− � 0, (38)

where p � −n(0)/c0 � n(0)kBT is a pressure (the total number of
the particles n(0) is given in Eq. 22).

As a result, for the description of the local equilibrium flows of
ionized gas mixtures we have the set of conservation equations:

dv
dt

� F − 1
9
∇
→
p, (39)

de
dt

� −(e + p)∇→ · v, (40)

d~nk
dt

� −~nk∇
→ · v, k � 1, k*, (41)

d~ne−

dt
� −~ne−∇

→ · v. (42)

In the present situation, one can consider that Eqs 39–42 provide
the closed description of the local equilibriumflows ofmultiply ionized
monoatomic gases mixtures. One can note that the systems of these
equations allow us to deduce the series of integral relations and to
obtain the analytical formulae for the study of the ionization processes
influence on adiabatic coefficient and a sound velocity (Romanova and
Rydalevskaya, 2017; Romanova and Rydalevskaya, 2018).

After the transition to the following approximation of CEM,
we can obtain the solution of the model kinetic Eq. 15 and Eq. 16

in first-order approximation. Under these conditions relations
Eq. 36 and Eq. 37 have the form:

~f
(1)
kci � −τ~D(1)(~f (0)kci ), i � 0, i*kc, c � 0,N(k), k � 1, k*, (43)

~f
(1)
e− � −τ~D(1)(~f (0)e− ). (44)

Relations Eq. 17 and Eq. 43 allow us to find the distribution
functions for the atoms Ak0 and ions Akc (k � 1, k*, c � 0,N(k)).
Relations Eq. 18 and Eq. 44 allow us to find the distribution
functions for free electrons e−. After the substitution of these
functions in Eqs 25, 27, 29, 31 we obtain the approximate
expressions for the stress tensor P

↔
and the fluxes q, qk

(k � 1, k*) and qe− . One can see that the transport coefficients
of the energy, nuclei and electrons are proportional to the
relaxation time τ in this approximation and depend on the
parameters e(r, t), ~nk(r, t) (k � 1, k*) and ~ne−(r, t) which are
determined from the solution of the Eqs 39–42.

5 CONCLUSIONS

In the paper themodel kinetic equations for the study of the weakly
non-equilibrium flows of multi-component plasma are proposed.

These equations are the generalization of BGK model where the
equilibrium distribution functions of the atoms and ions depend on
the number N of corresponding chemical element in the periodic
system and electric charge of the particle [see (Rydalevskaya, 2017)].

It is shown that such model equations allow one to derive the
systems of the conservation equations for the energy, momentum,
the numbers of the nuclei of different species and the electrons
(both bound and free).

It is shown that these systems provide the closed description for
local equilibrium flows of the plasma with multiple ions species.

For the solution of the model kinetic equations under
consideration the Chapman–Enskog method is proposed.

It should be noted that an application of the model kinetic Eq.
15, Eq. 16 with local equilibrium functions Eq. 17 and Eq. 18 can
be very important when the ionization degree of gas medium and
the probabilities of the electronic energy excitation, ionization
and neutralization of microscopic particles are unknown.
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