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Various microbial systems have been explored for their applicability to in-situ resource
utilisation (ISRU) on Mars and suitability to leverage Martian resources and convert them
into useful chemical products. Considering only fully bio-based solutions, two approaches
can be distinguished, which comes down to the form of carbon that is being utilized: (a) the
deployment of specialised species that can directly convert inorganic carbon (atmospheric
COy,) into a target compound or (b) a two-step process that relies on independent fixation
of carbon and the subsequent conversion of biomass and/or complex substrates into a
target compound. Due to the great variety of microbial metabolism, especially in
conjunction with chemical support-processes, a definite classification is often difficult.
This can be expanded to the forms of nitrogen and energy that are available as input for a
biomanufacturing platform. To provide a perspective on microbial cell factories that may be
suitable for Space Systems Bioengineering, a high-level comparison of different
approaches is conducted, specifically regarding advantages that may help to extend
an early human foothold on the red planet.

Keywords: Mars, carbon-fixation, bioproduction, synthetic biology, microbial bioprocess, bio-regenerate life-
support system, in-situ resource utilization

INTRODUCTION

A multitude of different bioregenerative life-support systems, have been proposed for in-situ
resource utilization in Space and at destinations across the Solar System, such as Luna and
Mars. Approaches draw from all domains of life, employing microbes as well as higher
organisms, with applications ranging from production and recovery of resources, (e.g.
generation of oxygen, food and materials, biomining, wastewater recycling), to providing shelter
and protection, as far as generation of energy and even terraforming (Kalkus et al., 2018; Llorente
et al., 2018; Hastings and Nangle, 2019; Lopez et al., 2019; Shunk et al., 2020; Volger et al., 2020).
Here, the focus is on the deployment of microorganisms in bioreactors for bioproduction of
feedstocks for consumables and durable goods to sustain and extend an initial presence on Mars.
Special attention is given to the disruptive impact of Synthetic Biology on advancing these
capabilities (Menezes et al., 2015a; Menezes et al., 2015b). Molecular pharming by use of plants
has recently been discussed elsewhere (Mcnulty et al., 2020).

Any biological system for application in white biotechnology (the implementation of
biotechnology in the industrial sphere) must rely on initial source(s) of carbon and nitrogen, as

Abbreviations: BES, bio-electrochemical system; BLSS, bio-regenerative life-support system; ISRU, in-situ resource utilization;
ISS, International Space Station; MES, microbial electrosynthesis; PPB, purple phototrophic bacteria.
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major constituents of biomass (besides oxygen). While critical for
the economic viability of a process on Earth (Clomburg et al.,
2017; Averesch and Kromer, 2018), this becomes even more
imperative in a scenario where resources are strictly limited:
organics are present in the Martian regolith (parts-per-billion)
(Eigenbrode et al., 2018), most accessible, however, is inorganic
carbon in the form of CO, and molecular nitrogen (N,) in the
atmosphere (Nangle et al., 2020a; Berliner et al, 2020). In
addition, Space Technology has the requirements of being
light, low maintenance/robust, and safe. Especially when
implementing biomanufacturing for contingency mitigation,
(i.e., on-demand production as means to reduce up-mass
rather than merely a backup and subsidiary function),
response time becomes critical. Further requirements strongly
depend on the target product. For example, in case of
pharmaceuticals needed to treat unexpected medical
conditions but which cannot be stocked due to low shelf-life, a
rapid response (production rate) can be vital. For other products,
like materials, efficiency (production yield) may be the most
important characteristic in order to deliver the required
quantities within the spatial and resource constraints of the
outpost. When using microbial fermentation as means to
supplement a healthy diet and enhance palatability, quality
(production titer/purity) is of foremost importance. This has
implications for the process and choice of microbial cell factory,
often on a case-by-case basis.

From Autotrophy to Heterotrophy—Impact

on Process Parameters and Complexity

While chemical carbon capture and utilization technologies are
rapidly advancing (Ho et al., 2019), biology still offers the highest
flexibility to fix inorganic carbon in order to make it available as a
means of life-support and for further conversion into chemical
products (Lee et al., 2019; Chen et al., 2020b; Léwe and Kremling,
2021). For a differentiation on process-level, it is most meaningful
to distinguish autotrophic systems into phototrophs and
chemotrophs. The former can be microalgae, cyanobacteria, or
purple phototrophic bacteria. On Mars, the reduced intensity of
natural sunlight (=60% of Earth’s maximum solar irradiance) has
wide ranging implications for application of these organisms to
bio-ISRU. To achieve high productivity, it would be imperative to
concentrate photons by focusing natural lighting, or to rely on
artificial lighting to achieve sufficient photon flux density at the
desired wavelength (blue and red range) (Pattison et al., 2018).
Both approaches have trade-offs in terms of equivalent system
mass (Bugbee et al., 2020), and either further complicates the
already complex design of photobioreactors (Johnson et al.,
2018). If footprint and productivity constraints are relaxed
(considering semi-open cultivation-systems like domed and
pressurized ponds instead of photobioreactors), however, it is
a straight forward way to generate initial biomass, which can
serve as foundation for further biology (Billi et al., 2021; Verseux
et al., 2021). Light-independent, lithoautotrophy can fix carbon
by relying on chemically provided reducing power. On Mars, this
could either directly be electricity through microbial
electrosynthesis in bio-electrochemical systems (Moscoviz
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et al,, 2016; Abel et al,, 2020; Chen et al., 2020a), or indirectly
by means of hydrogen or (organoautotrophically) formate, both
of which can also be generated electrochemically (Kracke et al.,
2020; Abel and Clark, 2021). Use of other electron donors like,
e.g., sulphide, sulphur and iron (II) is theoretically possible, but
technically less feasible (crustal materials from Mars are in
principle able to support lithotrophic growth (Milojevic et al.,
2021), but mining and purifying these in quantities that could
support biotechnological processes is likely not viable). A special
case is methylotrophy, where the C1-carbon also serves as source
of reducing power (chemoorganotrophy). Several ways to obtain
hydrogen and methane from CO, and H,O are being considered
for ISRU on Mars (the primary purpose being propellant for the
return journey),' as methane does exist on Mars (Webster et al.,
2018) but concentrations are much too low (parts-per-billion) to
be readily utilisable (unless minable reservoirs are found).
Processes relying on gas or electricity as input generally
require more sophisticated process setup. Further, these
processes are often limited by mass transfer of the poorly
soluble gases (Geinitz et al., 2020). Some also present an
explosion hazard. Integrated setups can, however, avoid
explosive gas mixtures and achieve significant production rates
(Kracke et al., 2020; Sahoo et al., 2021). To completely avoid these
problems, methane could be further converted to methanol
(Zakaria and Kamarudin, 2016; Latimer et al., 2018)—albeit
poor conversion efficiency is a century old unsolved problem.
Not as troubled by the fundamental predicament of high
activation energy combined with high activity of the CH-
bonds in methane, biological methods could remedy this
(Averesch and Kracke, 2018; Bjorck et al., 2018). Alternatively,
methanol could be directly synthesized catalytically (Basile and
Dalena, 2017)>.  Another option and a form of
chemoorganoautotrophy is utilization of formate not only as
electron donor but also carbon-source (Abel and Clark, 2021). All
these approaches, however, represents an additional process-step
and therefore require auxiliary infrastructure. A biological
equivalent to a liquid intermediate-substrate that can serve as
unified feedstock for various heterotrophic microbial cell
factories is acetate. As alternative to methanol carbonylation’,
numerous bioprocesses have emerged that sequestrate CO, into
acetate and it is considered a next-generation biotech-feedstock
(Kiefer et al., 2021). Processes with chemoorganoheterotrophic
organisms using soluble substrates can achieve high
productivities and allow for streamlined process design. The
utilization of a defined feedstock also has the advantage of
more consistent and predictable process performance, which

'Chemical synthesis of methane (I) via coupling of water-electrolysis or
sulphur-iodine cycle and Sabatier reaction: “2 H,O+ CO, — 2 O, + CHy”
(Clark, 1997; Ying et al.,, 2017) (II) as a by-product of solid oxide electrolysis
followed by methanation: “CO, + H,O — CO + H, + O,,” “CO + 3 H, — CH, +
H,0” (Biswas et al., 2020; Hecht et al., 2021) or (III) via methanogenesis in an
integrated BES: “2 H,0+ CO, — 2 O, + CH,” (Kracke et al., 2020).

*Chemical synthesis of methanol from synthesis gas or carbon dioxide and
hydrogen, overall reaction: “CO, + 3 H, — CH;0H + H,0.”

*Chemical synthesis of acetate from methanol and carbon monoxide: “CH;0H +
CO — CH,COOH.”
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can be problematic when using crude biomass like e.g,
cyanobacterial lysate. A basic overview of the different options
for carbon-flow is presented in Figure 1 and Table 1 gives an
indication of the advantages and drawbacks on process-level,
depending on the type of metabolism of the deployed microbe.

From Substrates to Products—Impact of
Synthetic Biology

Genetic tractability is highly desirable for an organism to serve as
a versatile chassis for a microbial cell factory that can be tailored
toward production of a variety of useful compounds. Hitherto
genetic engineering has been adopted more widely with
heterotrophic microbes, judging by their dominance in
industrial-scale processes and employment as model organisms
for genetic studies (Papagianni, 2012). This is likely owed to their
more straight forward maintenance, facilitating domestication:
their high metabolic rates accelerate cultivation and hence genetic
interventions. The requirement for high productivity is likely also
an economic “selection-pressure.” In reverse, this may explain the
scarcity of genetic tools for autotrophs. Further, especially
phototrophs are often more complex organisms with genetic
traits like polyploidy and cellular differentiation, (e.g.
filamentous, heterocysts, etc.) and/or exotic defense systems
(they cannot just “outgrow”), complicating the modification of
their genotype (Riley and Guss, 2021). This applies in particular
to cyanobacteria and algae (Hitchcock et al., 2020). Nevertheless,
recent developments in Synthetic Biology, like CRISPR-
technology, have narrowed that gap (Behler et al, 2018).
Genetic engineering of chemolithotrophs can be more
straightforward as many of them are mixotrophic and can also
be cultivated on complex carbon-sources. A wide substrate-range
also makes organisms attractive for bioproduction in an ISRU
scenario, in particular when a mixed feedstock, derived from
waste-biomass or cyanobacterial lysate, is intended to support
growth and production (Verseux et al., 2016; Billi et al., 2021).
The borders are blurry, as some autotrophs, like, e.g., Cupriavidus
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necator, can also function heterotrophically or may not even
satisfy the strict definition of autotrophy (utilization of inorganic
carbon-sources), like methanotrophs. Recently there has also
been rapid development in engineering heterotrophic hosts
toward artificial autotrophy and methylotrophy, based on
natural as well as synthetic pathways for fixation of carbon
(Gleizer et al, 2019; Liang et al, 2020; Liu et al, 2020;
Satanowski et al., 2020; Wang et al, 2020; Scheffen et al,
2021). This may accelerate the adoption of Cl-carbons as
feedstocks in white biotechnology, which consequently could
also warrant more profound applicability of microbial systems
to ISRU and vice versa.

Source of Nitrogen in Light of
Carbon-Metabolism

Diazotrophy is ubiquitous among microbes and fixation of
nitrogen exists in combination with all modes of carbon and
energy metabolism considered in Figure 1. Biological nitrogen-
fixation has, however, an excessive energy demand (16 ATP per
N,), which translates to low growth-rates and/or high demand for
reduced carbon-sources, the latter inevitably accompanied by
significant evolution of carbon dioxide. Heterotrophic fixation of
nitrogen would thus be at the cost of net carbon-fixation,
translating into the demand to significantly increase the
dimensions of associated infrastructure and inputs. In
addition, it creates a dependency on a supply chain. Therefore,
fixation of nitrogen may be best served with a separate, dedicated
chemical process, (e.g. Haber-Bosch) or conducted in
combination with low-intensity bio-ISRU, like carbon-fixation
by photoautotrophs, (e.g., cyanobacteria, Figure 1 route (V)), if
availability of power or space permits. The latter would yield a
combined (C-N) feedstock, rich in amino sugars like
glucosamine, a building block of the peptidoglycan in bacterial
biomass (Averesch and Rothschild, 2019).

For production of bulk-compounds that do not contain
nitrogen, (e.g. polyesters) N-input may not even be needed, if

Carbon dioxide

M
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FIGURE 1 | High-level differentiation of approaches for conversion of carbon dioxide from Martian atmosphere into carbon-based products via microbial ISRU.
Solid lines are bio-based processes, dashed arrows indicate involvement of catalytic (chemical) steps. The fading dashed line indicates a combined chemical-biological
approach, rather than alternatives (l) single-step process from inorganic carbon directly to target compound (Il) — (IV) processes that rely on significant auxiliary input, (e.g.
chemical conversion of CO, to CH,4 or bioconversion of CO, to CHzCOOH) (V) two-step processes via intermediate with broad bio-availability.
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TABLE 1 | Qualitative comparison of processes based on the type of metabolism of microbial cell factories to support an initial foothold on Mars in an ISRU scenario. Limited
to production of basic compounds (small-, as well as macromolecules but excluding biomanufacturing i.e., physical structures) with pure cultures. Green shading
represents an advantage, red shading a disadvantage, yellow a draw. Gray shading indicates non-decision due to great diversity of process factors preventing
categorization. It should be noted that the different decision factors do not necessarily have the same weight.

Process
characteristics ~ Substrate Product Response
Metabolism of versatility  flexibility time
employed organism
Autotrophic
S A 3 case- ]
light-independent mediocre derdlat medium
Heterotrophic $ extensive extensive low

Astrictly limited to phototrophy

Scalability / Footprint Required Complexity
Syptem ial fi i d d saf
robaiZinessa i poten.tla or (space ln_put an and sa ety
intensification demand) maintenance  requirements
case- scenario- modest — modest — minimal -
dependent dependent  |[Isubstantiall | substantial | | substantial
case- intricz?te / it T medlum.—
dependent constricted . substantial
- significant / e - minimal -
e considerable ] medium

blithotrophy, including carboxidotrophy, cathodic electro-fermentation (Chen et al., 2020b), and, exceeding the strict definition of autotrophy, methanotrophy
Cincluding mixotrophs that can also operate in other chemotrophic and organotrophic modes.

an efficient circular recycling system is realized. The same is true
for food—as long as nitrogen is effectively recovered from the
organic waste (Beckinghausen et al., 2020), little supplemental
input should be required.

Considerations Beyond Metabolism
In addition to genetic tractability and high metabolic rate, it is
desirable that the designated microbial cell factories are robust.
Considering the increasing metabolic flexibility on product as
well as substrate side, owed to advances in metabolic engineering,
the general resilience of the organism may become the more
decisive factor for selection of a microbial cell factory for
application in Space Technology. Particularly relevant in order
to compromise intermittency and unexpected down-time is for
example the resistance of spore-forming species to vacuum and
desiccation (Horneck, 1993), as well as tolerance of certain
cyanobacteria toward high perchlorate concentrations (Billi
et al, 2021), or the radiation resistance of certain bacteria
(Krisko and Radman, 2013) and fungi (Shunk et al., 2020).
Nevertheless, despite all advances in Synthetic Biology, there
may in some cases not be a choice: for complex products, like
therapeutic proteins or products derived from plant-pathways,
(e.g. natural products, where enzymes require post-translational
modifications for activity) (Kayser and Averesch, 2015), almost
exclusively only heterotrophs can be used, as these capabilities are
limited to eukaryotic organisms, like yeasts (Nielsen, 2013).
Lastly, process intensification is critical in order to conserve
precious resources, like water, shifting importance of substrate
availability to auxiliary resources and sizing of infrastructure and
secondary support processes. Because the same principles and
constraints apply on Mars as on Earth, the synergistic
integration of metabolic and process engineering can advance
this (Woodley, 2017) to successfully integrate biomanufacturing
into mission design. The extent to which this is possible of course
strongly depends on the microbes and their unique metabolism,
but also other factors, like preference to grow in biofilms, to
produce by-products that reduce surface tension thus resulting
in foaming, or resilience in the face of stressors like shear-force and
sudden changes of environmental parameters.

Organisms With High Potential for Bio-ISRU

on Mars
For production of biomass, the diazotrophic and spore-forming
cyanobacterium species Anabaena, which is tolerant to Mars-like
growth-conditions (Verseux et al., 2021), holds great promise.
Synechocystis sp. PCC 6803, is also able to grow in high-CO,
atmospheres (Murukesan et al., 2016)—albeit not nitrogen-fixing,
it is much more amenable to genetic engineering (Sebesta et al.,
2019), can switch between auto- and heterotrophy and naturally
produces bio-polyesters. It may therefore be attractive as a system
for production of basic resources and/or food supplements.
Hydrogen oxidizing bacteria like Cupriavidus necator and/or
acetogens can directly convert CO, to products. The mixotroph C.
necator also utilizes substrates like sugars and organic acids
(formate, acetate), and is an excellent producer of bio-polyesters
(Raberg et al., 2018). An extensive library of proven genetic tools
allows its engineering into microbial cell factories for a wide range
of products, including high-performance polymers, as well as
expansion of its substrate range (Heinrich et al, 2018; Nangle
et al, 2020b). Anaerobic (homo)acetogens (like, e.g. Sporomusa
ovata) have a lower metabolic rate and are less genetically tractable,
but also have a remarkable substrate range in addition to their
unique reductive acetyl-CoA pathway, the latter making them
attractive to directly convert CO and/or CO, to organic acids
and alcohols (Schuchmann and Miiller, 2016; Su et al., 2020).
Certain PPBs are even more flexible in terms of carbon- and
energy-source  (chemo-, auto-/heterotrophic), capable of
anoxygenic photosynthesis, oxidize carbon monoxide, and are
in addition also diazotrophic. Some species can be genetically
engineered, (e.g. Rhodospirillum rubrum or Rhodopseudomonas
palustris), and have previously been used for production of fuels
and advanced bio-polyesters (Heinrich et al., 2016; Doud et al,
2017). Many of these species have also been studied in BES for
potential to drive metabolism bio-electrochemically and perform
MES (Nevin et al., 2011; Bose et al.,, 2014; Liu et al., 2016), to
intensify process operations and increase efficacy.
Methanotrophs stand apart from most other Cl-utilizing
microbes and rarely accept other substrates (except for
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methanol). Of interest for application in bio-ISRU are mostly
aerobic species, in particular of type I and IT as they exceed rates of
anaerobic methanotrophs by orders of magnitude, albeit at
reduced efficiency, (i.e. carbon-yield) (Averesch and Kracke,
2018). In  particular  alkalophilic ~and  halotolerant
Methylomicrobium species could simplify axenic cultivation by
abolishing the need for strictly sterile conditions, as
contamination is unlikely. These methanotrophs and also
certain methylotrophs, like Methylobacterium extorquens and
Bacillus species can to some extent also be genetically engineered
(Kalyuzhnaya et al., 2015).

Many Bacillus species also grow on various sugars and organic
acids. In particular B. subtilis, a very versatile model-organism,
industrially employed for protein-production, as well as in
metabolic engineering (Averesch and Rothschild, 2019), is
strongly being considered and studied for application in Space
Synthetic Biology, due to the resistance of its spores (Horneck,
1993). It also has a rapid metabolism and growth rate, exceeded by
few other organisms. Vibrio natrigens is an emerging workhorse of
white biotechnology, able to use a wide range of common organic
molecules as its sole source of carbon and energy (Austin et al,
1978); its biggest advantage, however, being a doubling-time just
under 10 min (Thoma and Blombach, 2021). It’s exceptionally fast
metabolism alone may warrant employment for specialty
applications in Space Synthetic Biology, potentially in
combination with adaptive evolution, which strongly depends
on rate of replication (Dragosits and Mattanovich, 2013).
Another organism highly attractive for vital special applications
is the yeast Pichia pastoris, a methylotrophic eukaryote most valued
for production of recombinant proteins (Schwarzhans et al., 2017).

Topics not closely discussed here are biohydrometallurgy and
bioremediation for extraction and recovery of rare Earth elements,
precious metals, as well as perchlorate removal, since their primary
purpose is not directly related to the conversion of carbon.
Nevertheless, they should at least be briefly mentioned as they are
important strategies for bio-ISRU. Several microorganisms have been
utilized in proof-of-concept experiments for biomining on Earth, as
well as the proving-ground of the International Space Station
(Johnson, 2014; Schippers et al., 2014; Jerez, 2017; Loudon et al,
2018; Cockell et al., 2020; Volger et al., 2020; Cockell et al., 2021). In
particular, Acidithiobacillus ferroxidans, Cupriavidus metallidurans,
Shewanella oneidensis and Sphingomonas desiccabilis are promising,
most of these species performing chemolithotrophic leaching.
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