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Exploring Alternatives to the
Hamiltonian Calculation of the
Ashtekar-Olmedo-Singh Black Hole
Solution

Alejandro Garcia-Quismondo * and Guillermo A. Mena Marugan

Instituto de Estructura de la Materia, IEM-CSIC, Madrid, Spain

In this article, we reexamine the derivation of the dynamical equations of the
Ashtekar-Olmedo-Singh black hole model in order to determine whether it is
possible to construct a Hamiltonian formalism where the parameters that
regulate the introduction of quantum geometry effects are treated as true
constants of motion. After arguing that these parameters should capture
contributions from two distinct sectors of the phase space that had been
considered independent in previous analyses in the literature, we proceed to
obtain the corresponding equations of motion and analyze the consequences
of this more general choice. We restrict our discussion exclusively to these
dynamical issues. We also investigate whether the proposed procedure can be
reconciled with the results of Ashtekar, Olmedo, and Singh, at least in some
appropriate limit.

Keywords: loop quantum cosmology, loop quantum gravity, black holes, polymer quantization, quantum
geometry

1 INTRODUCTION

Over two years ago, a new model to describe black hole spacetimes in effective loop quantum
cosmology was put forward in (Ashtekar et al., 2018a; Ashtekar et al., 2018b; Ashtekar and
Olmedo, 2020) by Ashtekar, Olmedo, and Singh (AOS). The work of these authors is set apart
from previous related investigations in the literature [see (Ashtekar and Bojowald, 2005a;
Ashtekar and Bojowald, 2005b; Cartin and Khanna, 2006; Modesto, 2006; Bojowald et al.,
2007; Boehmer and Vandersloot, 2007; Campiglia et al., 2008; Sabharwal and Khanna, 2008;
Chiou, 2008a; Chiou, 2008b; Brannlund et al., 2009; Gambini et al., 2014; Gambini and Pullin,
2014; Dadhich et al., 2015; Haggard and Rovelli, 2015; Joe and Singh, 2015; Corichi and Singh,
2016; Campiglia et al., 2016; Saini and Singh, 2016; Cortez et al., 2017; Olmedo et al., 2017;
Yonika et al., 2018; Bianchi et al.,, 2018; Bodendorfer et al., 2019a; Alesci et al., 2019;
Bouhmadi-Loépez et al., 2020a; Bojowald, 2020a; Ben Achour et al., 2020; Gambini et al.,
2020; Kelly et al., 2020; Gan et al., 2020; Kelly et al., 2021; Bodendorfer et al., 2021a;
Bodendorfer et al., 2021b; Daghigh et al., 2021; Miinch, 2021), among others] owing to a
combination of features. On the one hand, the main focus is placed on black hole related
aspects rather than issues central to anisotropic cosmologies. On the other hand, the resulting
model is claimed to display neither a dependence on fiducial structures nor large quantum
effects on low curvature regions. By virtue of the introduction of quantum geometry (QG)
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effects, which is implemented by means of two
polymerization parameters’, the classical singularity at the
center of the black hole is replaced with a transition surface
that joins a trapped region to its past and an anti-trapped one
to its future, extending the Schwarzschild interior to
encompass what is interpreted as a white hole horizon.
The resulting metric, that we will call effective in the sense
that it can be treated classically but incorporates QG
modifications, is smooth and its curvature invariants admit
upper bounds that do not depend on the mass of the black
hole (Ashtekar et al., 2018a; Ashtekar et al., 2018b; Ashtekar
and Olmedo, 2020). The model is completed with a
description of the exterior region that can be joined
smoothly to the interior region, both to its past and its
future, resulting in an extension of the whole Kruskal
spacetime.

The authors of (Ashtekar et al., 2018a; Ashtekar et al., 2018b;
Ashtekar and Olmedo, 2020) emphasize that they adopt a mixed
prescription for the implementation of the improved dynamics.
Indeed, instead of choosing the relevant polymerization
parameters as constants or as arbitrary phase space functions,
they claim to fix them to be Dirac observables. However, they do
not treat them as such in their Hamiltonian calculation: in
practice, the polymerization parameters are regarded as
constants in that calculation and, once the dynamical
equations have been derived and solved, the parameters are set
equal to the value of certain functions of the ADM mass of the
black hole, which is a Dirac observable itself. This fact was already
noted by Bodendorfer, Mele, and Minch in (Bodendorfer et al.,
2019b), where they showed that a genuine treatment of the
polymerization parameters as constants of motion, which are
constant only along dynamical trajectories (i.e., on shell) but not
on the whole phase space, would produce an extra phase-space
dependent factor in the Hamiltonian equations. The analysis
carried out in (Bodendorfer et al., 2019b) exploits the structure of
the Hamiltonian constraint of the system, which is composed by
the difference of two Dirac observables (the on-shell value of each
of which turns out to be the black hole mass), to divide the phase
space into two independent subsectors, associated with the
degrees of freedom along the radial and angular spatial
directions. In each subsector, the dynamics is generated by
one of these constants of motion, which can then be regarded
as partial Hamiltonians. Additionally, in (Bodendorfer et al,
2019b), these Dirac observables play the role of polymerization
parameters, in the sense that each of the parameters is taken to be
a function only of its associated partial Hamiltonian. On shell,
this is equivalent to deal with parameters that are functions of the
black hole mass, and at least in this sense one would recover the

'The term polymerization refers to the name “polymer quantization”, which is
often employed for the quantization of symmetry reduced models with loop
techniques. The motivation for this terminology comes from the 1-dimensional
nature of the basic excitations of the gravitational field in the loop quantization,
excitations that are localized on the edges of 1-dimensional graphs on which the
holonomies are not trivial in the (so-called cylindrical) quantum states, leading to
this polymer-like picture of spacetime geometry.

Hamiltonian Calculation of the AOS-Solution

original proposal of (Ashtekar et al., 2018a; Ashtekar et al., 2018b;
Ashtekar and Olmedo, 2020).

Nonetheless, since the two partial Hamiltonians become equal
by virtue of the vanishing of the constraint, there is no telling
apart which of the two contributes to the on-shell expression of
each of the polymerization parameters. Therefore, one may argue
that each parameter should be taken as a function of both partial
Hamiltonians, something that breaks the decoupling of
subsectors at the Hamiltonian and dynamical levels. In the
following, we focus our discussion exclusively on examining
whether there exists an alternative procedure to carry out the
Hamiltonian calculation starting from this observation, leaving
apart other issues related with the asymptotic behavior of the
metric, its physical interpretation, or quantum covariance, that
are beyond the scope of this work (for recent criticisms on the
AOS viewpoint on these issues, see (Bojowald, 2019; Arruga et al.,
2020; Bojowald, 2020b; Bouhmadi-Lépez et al., 2020b). The main
purpose of our investigation is to explore the possibility that one
can develop an alternative dynamical analysis based on the cross-
dependence of the polymerization parameters on the two partial
Hamiltonians of the system, and study whether this possibility
can reconcile in some sense the derivation of the solution
presented in (Ashtekar et al, 2018a; Ashtekar et al,, 2018b;
Ashtekar and Olmedo, 2020) with a genuine consideration of
the parameters as constants of motion.

The rest of this paper is structured as follows. In Section 2 we
explore the consequences of polymerization parameters that are
functions of both partial Hamiltonians as regards the derivation
of the equations of motion associated with the Hamiltonian
constraint of (Ashtekar et al., 2018a; Ashtekar et al., 2018b;
Ashtekar and Olmedo, 2020). In Section 3 we define two time
variables that allow us to simplify the form of the dynamical
equations and examine whether they can be made equal to each
other in general. In Section 4 we analyze the consistency of
imposing this equality on the newly defined time variables at least
in the asymptotic limit of large black hole masses, and study their
relation for finite values of the mass. Finally, we conclude in
Section 5 with a discussion of our results. Throughout this article,
we set the speed of light and the reduced Planck constant equal
to one.

2 DYNAMICAL EQUATIONS

In this section, we investigate an alternative avenue in the
computation of the equations that govern the modified
dynamics of the interior region of a black hole, based on a
more general choice of polymerization parameters off shell.
With a suitable choice of lapse function of the form (Ashtekar
et al., 2018a; Ashtekar et al., 2018b; Ashtekar and Olmedo, 2020)

_ Vsb ch'

sind,b

) (1)

where yp is the Immirzi parameter. The so-called effective
Hamiltonian of the system can be written as (Ashtekar et al.,
2018a; Ashtekar et al., 2018b; Ashtekar and Olmedo, 2020)

Frontiers in Astronomy and Space Sciences | www.frontiersin.org

July 2021 | Volume 8 | Article 701723


https://www.frontiersin.org/journals/astronomy-and-space-sciences
www.frontiersin.org
https://www.frontiersin.org/journals/astronomy-and-space-sciences#articles

Garcia-Quismondo and Mena Marugan

L,
NHeff = 5 (Ob - OL')) (2)
_ 1 sinéhb y255 )43
O = 2)/( ) * sind,b ) L, ®)
0, = l sind.c &) @
y 6 L,

where L, is the length of the edge parallel to the x-direction of the
fiducial cell and G is the Newtonian gravitational constant. The
canonical variables b, ¢, pp, and p. have the following
nonvanishing Poisson brackets:

{b,pp} = Gy, {cp} =2Gy. (5)

Furthermore, 8, and . are the parameters that capture and
introduce the QG effects in the system. The classical Hamiltonian
of the model within General Relativity is recovered in the limit
0y, 8, — 0. It is interesting to note that, should 8, and §. be
regarded as constants, NH is given by the difference of two
objects that generate the dynamics in two distinct subsectors of
the phase space that are dynamically decoupled. For this reason,
we often refer to Oy, and O, as the partial Hamiltonians® of the b
and ¢ subsectors, respectively. Both O, and O, turn out to be Dirac
observables, i.e., constant along each dynamical trajectory. The
vanishing of the Hamiltonian constraint implies that, on shell,
they are equal to the same constant of motion, m, which happens
to be proportional to the ADM mass of the black hole.

In the AOS black hole model (Ashtekar et al., 2018a; Ashtekar
etal.,, 2018b; Ashtekar and Olmedo, 2020), the parameters §;, and
d. are treated as constants on the whole phase space and then
fixed to have the same value as certain functions of the Dirac
observable m. The authors of (Bodendorfer et al., 2019b) propose
an alternative way to treat these parameters as constants of
motion from the very beginning: they take §, and &, as
functions of their respective partial Hamiltonian, &, = &5 (O;)
and &, = 8, (O,), so that the parameters remain functions of 7 on
shell. Nonetheless, since both O, and O, have the same on-shell
value, it can be argued that each of the considered parameters
should be assumed to be a function of both partial Hamiltonians:
on shell, the contribution of one cannot be told apart from that of
the other. In this work, we will follow this line of reasoning and
investigate its consequences within the ensuing Hamiltonian
calculation.

Thus, let 8, and J. be functions of both partial Hamiltonians

81' =ﬁ (Ob) OC)’ (6)

with i=b,c. This cross-dependence introduces a coupling
between the b and ¢ subsectors that was absent in previous
works and that will obviously influence the form of the
dynamical equations. Let us begin by computing the equations
of motion associated with the connection variables b and c, that

*Strictly speaking, the objects that generate the dynamics in each subsector are
L,04/G and L,0./G. However, in practice, we will ignore the constant factor L,/G
(which could be reabsorbed through an appropriate redefinition of the lapse
function), focus on the more interesting phase space dependent parts, O, and O,
and use this terminology to refer to them succinctly.

Hamiltonian Calculation of the AOS-Solution

we will collectively denote with the symbol i (no confusion with
the imaginary number will arise in our calculations). We have

w—&(%O}{ o), (7)

where ¢ is the time variable associated with the choice of lapse N,
i,j=b,c, j#i, and s; is a sign defined by
s, =+1, s.=-1. (8)

The Poisson bracket of i with its respective partial Hamiltonian O;

is given by
00; 00; ( of; of;
{i,o} = [i,p ’}ap,.+aai (ao{ O} +55 { oj}). ©9)
Similarly,

o} =35 <aa£{ O + af{ O}> (10)

The Poisson brackets of the connection variables with each partial
Hamiltonian can be solved for in the system of linear equations
formed by Eqgs. 9, 10. When rewritten appropriately, this system
can be recast in matrix form:

1-A;  -A {i, 0} hp}o
Con TR (b ) o [ P g, 11
< —Aji 1‘Aﬁ><{”of}> o
0
where we have defined

30, of

Ay =t 2L
7735, 90, (12)
The system Eq. 11 can be solved if and only if
(1= A)(1 = Ap) = AA; #0. (13)

Assuming that this invertibility condition holds,

{i,0;} {ipi} 5 1- Ajj>
<h@0 (1-a(1- )AA( e )oY

2 § i ]

Therefore, by virtue of Eq. 7,

» o (15)

04 =

(1 - Au)(

with i,j=0b,c and j#i. Following the same reasoning, the
equations of motion associated with the triad variables p;, and
p. turn out to be

1-A

i — A
(1-A)(1

| eeny

Ay) - Ay

atpi = > (16)

00, ]
with i,j = b,c and j#i.

It is worth noting that the objects in square brackets in Egs. 15,
16 are the dynamical equations that result when &, and J, are
treated as constants on the whole phase space, i.e., those used in
(Ashtekar et al., 2018a; Ashtekar et al., 2018b; Ashtekar and
Olmedo, 2020). Therefore, if we allow the quantum parameters to
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be functions of both partial Hamiltonians, the equations of

motion are modified via a multiplicative phase space
dependent factor,
1-A; - A;
Ci= y 17)

(1-2:) (1 = Ay) = AyAy/
As expected, this factor reduces to the one found in (Bodendorfer
et al., 2019b) when the b and c subsectors are decoupled. Indeed,

in that case A = 0 if i #j, and Cj reduces to

1

_ 18
e (18)

C,-j—>C,-=

which is identical to what the authors of that reference called
Fl.

3 TIME REDEFINITIONS

Let 7H0 be the Hamiltonian vector field associated with the
Hamiltonian Hy that is identical to NH,g except for the fact that
0p and &, are constant on the whole phase space,

N <8H0 0H, 0H, aH0>_<_) N )

(19)

e v e Vi V

7 \op, ob’op. oc Hoaz 7 e
According to the results of the previous section, when the
parameters of the model are instead given by functions of
both O, and O,, the Hamiltonian vector field is given by

Vi = (chc?Ho,h, cﬁHw). (20)

This local rescaling of the Hamiltonian vector field implies that it
is possible to introduce a suitable redefinition of the time variable
in each subsector such that one can recover the simpler dynamics
generated by H,. However, the fact that C; is, in general,
nonsymmetric means that this change of time is different in
the b and ¢ subsectors of the phase space. Indeed, it is immediate
to see that, with the appropriate time redefinitions, the dynamical
equations become

L,

aOi Lo aoi
azx_i =S E {l,pl}

aT?,-’ a;ipi =S E{LP;‘}g; (21)

where the sector-dependent time variable #; is defined in the
following manner:

dz,‘ = C,'jdt, (22)

with i,j = b, c and j#i. Hence, we see that the dynamics that we
obtain in the b and ¢ subsectors coincides with that of the AOS
model (Ashtekar et al., 2018a; Ashtekar et al., 2018b; Ashtekar
and Olmedo, 2020) when the corresponding equations of motion
Egs. 15, 16 are rewritten in terms of two time variables, £, and .,
which are in general different in each subsector. This observation
provides a strategy to solve the dynamical equations obtained in
Section 2: perform the time redefinitions t—t; solve the
resulting simpler equations of motion and rewrite the
solutions in terms of the original time variable through the
integration of Eq. 22.

Hamiltonian Calculation of the AOS-Solution

An appealing possibility that we are going to study is
whether these time variables can be set to be equal by
making use of the freedom that exists off shell. Let us
assume that, on shell, f, = af,, where « is a real constant.
This directly implies that

Cbc|0n = ‘xccblon:l - Acclon - Acb|0n = “(1 - Abblon - Abc|0n)a

(23)

where the symbol |,, denotes on-shell evaluation, i.e. evaluation
on the phase space region where H.g = 0. This requirement
constitutes a restriction in the form of the first derivatives of
the polymerization parameters with respect to the partial
Hamiltonians. In the case o =1 (of direct application to the
AOS model), this condition reduces to

Abb|on + Abclon = Acclon + Acb|on- (24)

We will however consider an arbitrary value of a. Rewriting
Eq. 23 by using the definition of A;; (see Eq. 12), we obtain that
the following condition must be satisfied:

0] (3| | \_[, 20 (%
on aOC on - 68b on aob
(25)

- +
00, on 00y
Since the two parameters are functions only of the partial
Hamiltonians, their evaluation on shell is equivalent to setting
Op = O, = min f;. However, it will prove more useful to rewrite &;
as functions of the linear combinations

o
on 30,

1

_Ob+OC

_Ob_oc
lul 2 -

> ‘uz P > (26)

the on-shell values of which are given by y, |, = m and g, |,, = 0.
Then, Eq. 25 can be rewritten as
) @

on b

ona[/ll
Assuming that the functions f; are C', we can evaluate them on
shell first and then compute the derivatives. Thus, for #, and £, to
be proportional, it must be satisfied on shell that

%, (m, 0) 0)>. (28)

on am

90,
2.

%
ona‘l/ll

00,

1-
a4,

af.(m,0) 00,
o om “(1 "0,

In the rest of our discussion, we will omit the on-shell evaluations
in formulas of this kind to simplify our notation. The on-shell
restriction will be clear from the context.

The derivatives of the partial Hamiltonians with respect to &
and 6, are

@ Ry YZ(S?] 0pbcosdyb — sind,b Py (29)
98,  2y\  sin’§yb 5 L,

00, 1 §.ccosd.c—sind.c p,

. 7 5 L (30)

as can be immediately derived from Egs. 3, 4. The fact that
these derivatives depend on the canonical variables seems in
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tension with the requirement that Eq. 28 must be satisfied on
the whole phase space. Since the derivatives 9,,f; (m,0) only
depend on m (and, therefore, remain constant along each
dynamical trajectory), the functions f; need to be selected so
that any phase space dependent contribution is canceled
identically.

In order to evaluate these derivatives on shell, it is necessary to
identify the independent functional dependences. It is immediate
to see that the dependence on the connection variables b and ¢ can
be removed in terms of their momenta and the black hole mass.
Indeed, the functions of each connection variable can be rewritten
in terms of its corresponding partial Hamiltonian and triad
variable. Using Eqs. 3, 4, and requiring an acceptable limit for
large masses, we obtain

sind,b yL, 0, i
=— 1 1- s 1
8;7 Py * LgOi (3 )
sind.c  yL,O.

Hence, the only independent functional dependences that
remain on shell are those associated with the triad variables.
By means of the above relations, we can recast every function of
b and c that appears in Eqs. 29, 30 as a function of py, p,, and the
partial Hamiltonians, which reduce to m after the on-shell
evaluation. After a straightforward computation, we obtain
on shell that

20, * arcsin[%] \/% - y2m2f2(m,0) — ymf, (m,0)

98, yf2(m,0) ’
(33)

where the sign + corresponds with the sign of cosd.c.
A similar, although more complicated expression can be
found for the on-shell value of 00,/08,. To shorten this
expression, we use (exclusively here) the compact
notation p, = py/ (Lym):

BOb m

N . -2
87&,=2yfb2(m,0)[1_pz(1+\/1_7pf’) ]
X { —yfb(m,O)(1+\/l—7[)z)i arcsin[M(l+\/@)]
by
irsomn(infig) | o

On the light of these relations, we realize that the condition Eq. 28
has the following structure:

afb (m, 0)

l—FC(pC)%:a[l—Fh(ph)T], (35)

where the functional forms of F, and F. are irrelevant for the
present argument, except that they are not constant
functions. For this condition to hold on the whole phase
space, the derivatives of the polymerization parameters must
vanish

Hamiltonian Calculation of the AOS-Solution

of:(m,0) _

3m 0, (36)

and o must be equal to one. As a result, we conclude that, if we
demand that 7, and £, be proportional for all values of the mass,
the only possibility is that they are equal and the polymerization
parameters are constants. In other words, we cannot reconcile the
choice of these parameters as Dirac observables and the dynamics
being governed by Eq. 21 in a single time variable, at least for all
values of the mass. The lesson to be drawn from this result is that
the appearance of two distinct time variables that simplify the
dynamics in the radial and angular subsectors of phase space is a
defining feature of the model if we treat the parameters §; as proper
Dirac observables. The difference between these two times, as well
as between them and the coordinate time ¢, can have consequences
on the spacetime geometry, as we will very briefly comment on
Section 5. In the next section, we will examine whether condition
Eq. 28 can be imposed consistently for black hole masses much
larger than the Planck mass.

4 CONSISTENCY IN THE LIMIT OF LARGE
BLACK HOLE MASSES

In this section, we investigate whether the dynamics of the AOS
model, that results from considering the parameters §; as constant
numbers in the Hamiltonian calculations, can be recovered at least
in the limit of large black hole masses when these parameters are
taken instead as constants of motion and one introduces a
convenient time redefinition. Let us begin by assuming that it is
possible. Then, in the considered limit, the dynamical equations
adopt the same form as in (Ashtekar et al., 2018a; Ashtekar et al.,
2018b; Ashtekar and Olmedo, 2020), up to subdominant terms that
reflect the fact that £, and £, cannot be made equal for all values of
the mass. Furthermore, according to the argument presented in
(Ashtekar et al, 2018a; Ashtekar et al, 2018b; Ashtekar and
Olmedo, 2020), the parameters §; are found to be given by

\/Z 1/3 )
81, = <\/2_7'[7V2n1 + o(m 1/3),

1 [ yA?\"”
é, = N (4Y2 > + O(m—1/3),
o \4m’m

where the symbol o(-) collectively denotes all the terms that are
subdominant with respect to the function inside the parentheses.
In these expressions, A is the area gap in loop quantum gravity.

Therefore, asymptotically,
o<5">, (8)
m

ofi 19
with i=b,c. Then, the condition Eq. 28 can be imposed
consistently as long as’

(37)

om 3m

*Should any of the exponents #; be equal to 4/3, it is straightforward to realize that a
further condition on the coefficients of the dominant terms must be met for Eq. 28
to hold asymptotically.
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00; .
lim Lem™, omi<

m— 0o 85,

4
3 (39)
with i = b, c.

Given the fact that we are working under the assumption
that 7, = £, = f when m — 0o, we obtain from the solutions of
(Ashtekar et al., 2018a; Ashtekar et al., 2018b; Ashtekar and
Olmedo, 2020) that, in this limit and up to subdominant
corrections,

cosdpb (f) = b,tanh B <bof + Ztanh_lbl> ] , (40)
tan dec (1) = —yLoéCe’zz, (41)
2 8m

. sind.c(f) sindpb(t)  p.(%)
=-2 , (42
pu (%) 0. 5, 2y sin8,b (1) (42)

3

~ 2 2 2 -~

pe(t) = 4m2<e“ + %}:ﬁ‘e’” ) (43)

where b, = /1 + y23;. Let us now proceed to the computation of
the dominant terms of 00,/94;.
From Eq. 43, it follows immediately that

pe = 4e*'m? + o(m?). (44)

The case of the connection variable ¢ and its trigonometric
functions is less immediate. Since the solution written above
involves the tangent of §.¢/2, it is useful to employ the
identity

1 - tan?(8.¢/2)

cosé}c = chc/z) (45)

Then, by virtue of Eq. 41,

272 82 2
cosd.c=1- i, S + 0( S ) (46)

32¢4 m? m?

Given that the sum of the squares of the sine and cosine functions
is equal to one, we can obtain sind.c and d.c from the expression
above. In order to do this, it suffices to bear in mind that,
according to the conventions of (Ashtekar et al, 2018a;
Ashtekar et al., 2018b; Ashtekar and Olmedo, 2020), >0,
c>0, pp<0, and p.>0. This, together with the fact that
lim,, , 8; =0, implies that every relevant trigonometric
function is nonnegative.
After a straightforward calculation, we conclude that

2712
0. I 6C+0<&>.

m

(47)

3.  48efi m

The dominant term goes with m™%> (see Eq. 37), which implies
that the left hand side of Eq. 28 tends to one in the limit of large
black hole masses. Let us now perform the analogous analysis on
the right hand side of Eq. 28.

On the light of the form of the solution Eq. 40 for
the connection variable b, it proves useful to employ the
identity

Hamiltonian Calculation of the AOS-Solution

tanha + tanh b
1 + tanhatanh ¥’

such that, up to subdominant corrections to the leading time-
dependent contribution,

tanh (a + b) = (48)

1+ b, tanh(b,T)

1+ b;! tanh (b, T) (49)

cosOpb =

where we have defined T = #/2. Rewriting the previous expression
as a power series, we get

cosdyb = 1+ C,8; +0(3}), (50)
with a constant C; given by

C , tanh T
1

S 1
y1+tanhT 1)

Recasting every function of b that appears in Eq. 29 as a power
series, we find that

G
-2C,

2
=3 (@G +y)

22 o
<1 Y28y )6;,bcos§bb sind,b 8y + 0(6)).

B sin?8,b (Si
(52)

Lastly, the asymptotic value of p;, can be obtained from Eq. 42 by
introducing the appropriate expansions:

1 \/-2C
——&:%m+o(m). (53)
2yL, y*-2C

In conclusion, the partial derivative of O, with respect to &,
displays the asymptotic behavior
2

g—% - —gclzzf—igi Sym +0(8,m). (54)
This, in conjunction with Eq. 38, leads to the asymptotic
vanishing of Ay, + Ap.. Therefore, the condition Eq. 28
reduces to a =1 in the asymptotic limit m — co. For this
value of a, the times 7, and f, indeed coincide for black holes
of asymptotically large masses.

From this result, we conclude that, among all possible choices
of £, and 7, such that they are proportional to each other, only the
choice where the proportionality constant is equal to one is
admissible in the limit of large black hole masses. Therefore,
the AOS solutions can at least be reconciled with the present
calculation in this limit. It is important to remark that, although
the equations of motion do coincide with those derived in
(Ashtekar et al., 2018a; Ashtekar et al., 2018b; Ashtekar and
Olmedo, 2020) in the limit of large black hole masses, they are
written in a different time variable . Thus, the spacetime
geometry is modified with respect to the one studied in those
works. This opens a door to a different asymptotic behavior of the
spacetime metric of the exterior region, which in particular may
have a different asymptotic (flat) behavior (Bouhmadi-Lopez
et al., 2020b). Additionally, the lapse function associated with
t will present a different phase space dependence, that may call for
a different re-densitization of the Hamiltonian constraint NH.g
with respect to the difference O, — O, of what we have called the
partial Hamiltonians of the model. We leave these issues for
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future studies and, as we declared in the Introduction, restrict our
discussion here to the viability of a Hamiltonian derivation of the
AOS solution (possibly in an asymptotic sense) treating the
polymerization parameters as true constants of motion.

Let us close this section by studying the relation between the
time variables 7, and 7, for finite values of the mass. In view of
their definitions (see Eq. 22) and the fact that the denominator of
Cjj is symmetric, we obtain that the ratio of the two differential
times is

dzb _ 1- Acc - Acb

= - - . 55
dt,  1- Ay — Ay (55)
On shell, this is equivalent to
~ 20, .
dt, _ 1 -3 om (56)
7 30, o'
. 1-5g b

Notice that the numerator (denominator) of the right hand side is
a function of f. (¢,). Therefore, by integrating, we obtain an
equality between a function of f, and a function of £, which
provides an implicit relation between the two time variables,

0 30, 0\ [° (. 00,9
Lhdtb(l—a—&}% —Lcdtc .7

06, Om

where the choice of integration limits reflects the fact that,
according to the conventions of (Ashtekar et al, 2018a;
Ashtekar et al., 2018b; Ashtekar and Olmedo, 2020), the time
variables are negatlve in the interior region of the black hole, and
their origins coincide. We have already determined that, in the
asymptotic limit of large masses, this relation reduces to the
identity. However, for finite values of the black hole mass, the
difference between both time variables is given by

i t
o J 90, oy . J 30, (58)

t,—t. =
b om) , 08, ° 9m) , 9.

Inserting the results obtained in this section,
> =
B B 2 B Y+ 2C1 (tb)
T, -1, = ﬁj'mg—{w%y—————mm+u@m
m 0 3

'}/2 - 2C1 (Zé)
o [ =
— JO dtc[

272
)
m

48ett’ m

Here, we have used that, at the order of approximation needed in
the integrals of our expression in the asymptotic limit of large
masses, we can identify ¢, = £, = t. Since the dominant term of
the second integral, which goes as §./m, is already subdominant
with respect to that of the first integral, only the b sector
contributes to the studied difference at the lowest nontrivial
order. We have

(59)

B —f =-—

4,0 |:J’?h/2tanh T, (1 + 3tanh Tb)dT Som + 0(62)
b |9 v)

3 3 5m om 1 —tanh® T}
(60)
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so that
- - 1 -~ - -~
t.=1t, - §y2 (- 3%, + 3sinh 7, + cosh#, — 1)8; +0(3;).  (61)

This equation provides the first-order corrected relation
between both time variables, their difference vanishing
when m — 00, as expected. Additionally, this relation reveals
another property that was already pointed out in (Bodendorfer
et al., 2019b): the difference ?. — £, also vanishes in the region
where quantum effects are negligible, i.e., close to the event
horizon. When solving the equations of motion associated
with the b sector, the constants of integration were fixed in
such a way that the horizon (defined by b = 0 and p;, = 0) lies at
t, = 0 (Ashtekar et al., 2018a; Ashtekar et al., 2018b; Ashtekar
and Olmedo, 2020). It is immediate to verify that both time
variables are indeed close to each other when #, approaches
zero, since the dominant term of their difference vanishes at
least as fi in this limit, when asymptotically large masses are
considered.

The dominant-order correction to the difference of times in
Eq. 61 also makes it apparent that the relation between #, and
f, may become nonmonotonic in general, which allows us to
draw yet another parallel with (Bodendorfer et al., 2019b).
Indeed,

Z—: =1- —y ?(sinh#, + 3cosh, —3)38; +0(8;)  (62)
b

is positive in the limit #, — 0 but may reach a value of t, where
it vanishes and, eventually, changes sign. For the standard
value of the Immirzi parameter y = 0.2375, A = 41/37Gy, and
m = 10000mp; (where mp; denotes the Planck mass), we obtain
that this derivative vanishes at f, = — 9.36¢p; (where tp; is the
Planck time). Therefore, while 7, decreases as f;, decreases near
the horizon, this trend is found to be reversed beyond a critical
value of f, at the considered truncation order in the
asymptotic expansion. This indicates that there would exist
a point along the evolution where the ratio C,/C would
cease to be finite. Nonetheless, note that this does not
necessarily imply that the invertibility condition in Eq. 13
would be violated at that point, not even at our truncation
order. Actually, the symmetry properties of Cj ensure that
only the numerators of Cy. and C,;, contribute to their ratio. As
a result, the nonfiniteness of this ratio at a certain point along
the evolution should not be attributed in principle to an ill
behavior of the denominator of Cj; and, consequently, to a
violation of condition Eq. 13.

5 CONCLUSION

In this paper, we have examined whether it is possible to
construct a Hamiltonian formalism where the polymerization
parameters that encode the quantum corrections in black hole
spacetimes can be treated as constants of motion. The final
identification of these parameters with dynamical constants is
one of the ideas of the AOS model, proposed in (Ashtekar et al.,
2018a; Ashtekar et al., 2018b; Ashtekar and Olmedo, 2020).
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However, instead of incorporating this identification into the
Hamiltonian calculation from the beginning, the analysis in
those references is carried out ignoring the Poisson brackets
of the parameters, treating them as constants on the whole
phase space. It is only later on that their value is set equal to
certain functions of the black hole mass, which is a Dirac
observable of the system under consideration. The authors of
(Bodendorfer et al., 2019b) pointed out that the computation
of the Hamiltonian equations would change if one takes into
consideration those Poisson brackets, regarding the
parameters as true constants of motion. To show this, it
was noticed in (Bodendorfer et al., 2019b) that, given the
form of the Hamiltonian, there are two dynamically
decoupled subsectors in phase space, provided that the
polymerization parameters do not introduce any cross-
dependence. With this caveat, each subsector can be
studied separately and its dynamics is generated by one of
the two terms that appear in the Hamiltonian constraint
(with a suitable choice of lapse). We have referred to these
two terms as partial Hamiltonians, which turn out to be Dirac
observables that reduce to the black hole mass on shell.
Imposing that the polymerization parameter associated
with each subsector is a function of its corresponding
partial Hamiltonian, the equations of motion that one
obtains differ from those of the AOS model by a phase
space dependent factor that complicates the solutions.
However, this factor can be reabsorbed by appropriate
time redefinitions, leading to simpler dynamical equations
written in two separate time variables, one in each subsector.
In (Bodendorfer et al., 2019b), both variables were found to
be approximately equal from the event horizon up to a
neighborhood of the transition surface where QG effects
become important, concluding that the results of the AOS
model were approximately valid when restricted to this
region of the interior of the black hole.

In the present work, we have extended the aforementioned
analysis to take into account the possibility that the
polymerization parameters, regarded as constants of
motion, depend not only on their corresponding partial
Hamiltonian, but on both of them. This possibility breaks
the decoupling of subsectors that plays a central role in
(Bodendorfer et al., 2019b). Indeed, since both partial
Hamiltonians coincide with the value of the black hole mass
on shell by virtue of the vanishing of the Hamiltonian
constraint, one should in principle not be able to tell their
contributions apart. A dependence on both of these Dirac
observables brings new freedom to the treatment of the
polymerization parameters. We have investigated whether
this new off-shell freedom can help to derive the AOS
model exclusively from a standard Hamiltonian calculation,
viewing the parameters as functions of both Dirac observables
from the beginning. We have derived in Section 2 the
corresponding equations of motion that govern the
dynamics in the interior region. These equations turn out to
be corrected by a phase space dependent factor as well,
although its functional form is complicated by the fact that
the two subsectors no longer decouple dynamically. We have
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observed that this factor does reduce to the one found in
(Bodendorfer et al., 2019b). in the limit where the decoupling
is recovered. In Section 3, we have written down the time
redefinitions that allow us to simplify the dynamics, leading to
equations of motion that are identical to those that result from
considering constant parameters, although now written in two
different time variables. We have then discussed whether these
newly defined time variables can be required to be equal to
each other. Remarkably, the answer turns out to be in the
negative in spite of the commented off-shell freedom, since
this condition would imply that the polymerization
parameters are necessarily constants on the whole phase
space. In Section 4, we have verified whether this equality
of time variables can be imposed at least in the limit of
infinitely large black hole masses, as one would expect to be
the case in order to recover the standard results of General
Relativity in this asymptotic limit. Indeed, we have proven that
one can require this coincidence of times consistently. We have
also studied the first-order correction to the relation between
both time variables, which has allowed us to draw parallels with
previous results obtained in (Bodendorfer et al., 2019b). First,
the two time variables are still approximately similar to each
other near the event horizon, where the QG effects are not
relevant. Second, for finite rather than asymptotically large
black hole masses, the dynamical solutions are such that a
point in the evolution may generically be reached where the
time flow would be reversed, in the sense that the relation
between the two time variables would not be monotonic
around it.

Our conclusions imply that the results of (Ashtekar et al.,
2018a; Ashtekar et al., 2018b; Ashtekar and Olmedo, 2020),
which are based on Hamiltonian calculations where the
polymerization parameters are treated as constant
numbers, can be partially reconciled with a treatment
where these parameters are regarded as proper constants
of motion, at least for black holes with large masses, which
on the other hand are the focus of the analysis of those
references. The wording “partially” is key here. In particular,
one should not forget that the spacetime geometry is modified
with respect to that of the AOS model by means of time
redefinitions. Even if this apparently slight modification does
not alter some of the conclusions of (Ashtekar et al., 2018a;
Ashtekar et al., 2018b; Ashtekar and Olmedo, 2020), it may
affect, e.g., the rate at which the metric decays at spatial
infinity.* This matter will constitute the subject of
future work.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included in
the article/Supplementary Material, further inquiries can be
directed to the corresponding author.

*Although we have not explicitly dealt with the exterior region in this article, the
same procedure is applicable to that case.

Frontiers in Astronomy and Space Sciences | www.frontiersin.org

July 2021 | Volume 8 | Article 701723


https://www.frontiersin.org/journals/astronomy-and-space-sciences
www.frontiersin.org
https://www.frontiersin.org/journals/astronomy-and-space-sciences#articles

Garcia-Quismondo and Mena Marugan

AUTHOR CONTRIBUTIONS

All authors listed have made a substantial, direct, and intellectual
contribution to the work and approved it for publication.

FUNDING

This work has been supported by Project. No. MICINN FIS
2017-86497-C2-2-P from Spain (with extension Project. No.
MICINN PID 2020-118159GB-C41 under evaluation). The

REFERENCES

Alesci, E., Bahrami, S., and Pranzetti, D. (2019). Quantum Gravity Predictions for
Black Hole interior Geometry. Phys. Lett. B 797, 134908. doi:10.1016/
j-physletb.2019.134908

Arruga, D., Ben Achour, J., and Noui, K. (2020). Deformed General Relativity and
Quantum Black Holes interior. Universe 6, 039. doi:10.3390/universe6030039

Ashtekar, A., and Bojowald, M. (2005). Black Hole Evaporation: A Paradigm. Class.
Quan. Grav. 22, 3349-3362. doi:10.1088/0264-9381/22/16/014

Ashtekar, A., and Bojowald, M. (2005). Quantum Geometry and the Schwarzschild
Singularity. Class. Quan. Grav. 23, 391-411. doi:10.1088/0264-9381/23/2/008

Ashtekar, A., and Olmedo, J. (2020). Properties of a Recent Quantum Extension of
the Kruskal Geometry. Int. J. Mod. Phys. D 29, 2050076. doi:10.1142/
50218271820500765

Ashtekar, A., Olmedo, J., and Singh, P. (2018). Quantum Extension of the Kruskal
Spacetime. Phys. Rev. D 98, 126003. doi:10.1103/physrevd.98.126003

Ashtekar, A., Olmedo, J., and Singh, P. (2018). Quantum Transfiguration of
Kruskal Black Holes. Phys. Rev. Lett. 121, 241301. doi:10.1103/
physrevlett.121.241301

Ben Achour, J., Brahma, S., Mukohyama, S., and Uzan, J-P. (2020). Towards
Consistent Black-To-white Hole Bounces from Matter Collapse. JCAP 09, 020.
doi:10.1088/1475-7516/2020/09/020

Bianchi, E., Christodoulou, M., D’Ambrosio, F., Haggard, H. M., and Rovelli, C.
(2018). White Holes as Remnants: A Surprising Scenario for the End of a Black
Hole. Class. Quan. Grav. 35, 225003. doi:10.1088/1361-6382/aae550

Bodendorfer, N., Mele, F. M., and Miinch, J. (2019). A Note on the Hamiltonian as
a Polymerisation Parameter. Class. Quan. Grav. 36, 187001. doi:10.1088/1361-
6382/ab32ba

Bodendorfer, N., Mele, F. M., and Miinch, J. (2021). (b,v)-type Variables for Black
to white Hole Transitions in Effective Loop Quantum Gravity. Phys. Lett. B 819,
136390, 2021. (in press). doi:10.1016/j.physletb.2021.136390

Bodendorfer, N., Mele, F. M., and Miinch, J. (2019). Effective Quantum Extended
Spacetime of Polymer Schwarzschild Black Hole. Class. Quan. Grav. 36,195015.
doi:10.1088/1361-6382/ab3f16

Bodendorfer, N., Mele, F. M., and Miinch, J. (2021). Mass and Horizon Dirac
Observables in Effective Models of Quantum Black-To-white Hole Transition.
Class. Quan. Grav. 38, 095002. doi:10.1088/1361-6382/abe05d

Boehmer, C. G, and Vandersloot, K. (2007). Loop Quantum Dynamics of
Schwarzschild interior. Phys. Rev. D 76, 1004030. doi:10.1103/PhysRevD.76.104030

Bojowald, M., Cartin, D., and Khanna, G. (2007). Lattice Refining Loop Quantum
Cosmology, Anisotropic Models and Stability. Phys. Rev. D 76, 064018.
doi:10.1103/physrevd.76.064018

Bojowald, M. (2019). Comment (2) on “Quantum Transfiguration of Kruskal Black
Holes”. University Park: arXiv:1906, 04650.

Bojowald, M. (2020). No-go Result for Covariance in Models of Loop Quantum
Gravity. Phys. Rev. D 102, 046006. doi:10.1103/physrevd.102.046006

Bojowald, M. (2020). Black-hole Models in Loop Quantum Gravity. Universe 6,
125. doi:10.3390/universe6080125

Bouhmadi-Lépez, M., Brahma, S., Chen, C.-Y., Chen, P, and Yeom, D.-h. (2020).
A Consistent Model of Non-singular Schwarzschild Black Hole in Loop
Quantum Gravity and its Quasinormal Modes. J. Cosmol. Astropart. Phys.
2020, 066. doi:10.1088/1475-7516/2020/07/066

Hamiltonian Calculation of the AOS-Solution

project that gave rise to these results received the support of a
fellowship from “la Caixa” Foundation (ID 100010434). The
fellowship code is LCF/BQ/DR19/11740028. Partial funds for
open access publication have been received from CSIC.

ACKNOWLEDGMENTS

The authors are very grateful to B. Elizaga Navascués for
discussions.

Bouhmadi-Lépez, M., Brahma, S., Chen, C.-Y., Chen, P., and Yeom, D.-h. (2020).
Asymptotic Non-flatness of an Effective Black Hole Model Based on Loop
Quantum  Gravity. Phys. Dark Universe 30, 100701. doi:10.1016/
j.dark.2020.100701

Brannlund, J., Kloster, S., and DeBenedictis, A. (2009). The Evolution of Black
Holes in the Mini-Superspace Approximation of Loop Quantum Gravity. Phys.
Rev. D 79, 084023. doi:10.1103/physrevd.79.084023

Campiglia, M., Gambini, R.,, and Pullin, J. (2008). Loop Quantization of a
Spherically Symmetric Midsuperspaces: The interior Problem. AIP Conf.
Proc. 977, 52. doi:10.1063/1.2902798

Campiglia, M., Gambini, R., Olmedo, J., and Pullin, J. (2016). Quantum Self-
Gravitating Collapsing Matter in a Quantum Geometry. Class. Quan. Grav. 33,
18LTO1. doi:10.1088/0264-9381/33/18/181t01

Cartin, D., and Khanna, G. (2006). Wave Functions for the Schwarzschild
Black Hole interior. Phys. Rev. D 73, 104009. doi:10.1103/
physrevd.73.104009

Chiou, D. W. (2008). Phenomenological Dynamics of Loop Quantum Cosmology
in Kantowski-Sachs Spacetime. Phys. Rev. D 78, 044019. doi:10.1103/
physrevd.78.044019

Chiou, D. W. (2008). Phenomenological Loop Quantum Geometry of the
Schwarzschild Black Hole. Phys. Rev. D 78, 064040. doi:10.1103/
physrevd.78.064040

Corichi, A., and Singh, P. (2016). Loop Quantization of the Schwarzschild
interior Revisited. Class. Quan. Grav. 33, 055006. doi:10.1088/0264-9381/
33/5/055006

Cortez, J., Cuervo, W., Morales-Técotl, H. A., and Ruelas, J. C. (2017). On Effective
Loop Quantum Geometry of Schwarzschild interior. Phys. Rev. D 95, 064041.
doi:10.1103/physrevd.95.064041

Dadhich, N., Joe, A., and Singh, P. (2015). Emergence of the Product of Constant
Curvature Spaces in Loop Quantum Cosmology. Class. Quan. Grav. 32, 185006.
doi:10.1088/0264-9381/32/18/185006

Daghigh, R. G., Green, M. D., and Kunstatter, G. (2021). Scalar Perturbations and
Stability of a Loop Quantum Corrected Kruskal Black Hole. Phys. Rev. D 103,
084031. doi:10.1103/physrevd.103.084031

Gambini, R, Olmedo, J., and Pullin, J. (2014). Quantum Black Holes in Loop
Quantum Gravity. Class. Quan. Grav. 31, 095009. doi:10.1088/0264-9381/31/9/
095009

Gambini, R., Olmedo, J., and Pullin, J. (2020). Spherically Symmetric Loop
Quantum Gravity: Analysis of Improved Dynamics. Class. Quan. Grav. 37,
205012. doi:10.1088/1361-6382/aba842

Gambini, R., and Pullin, J. (2014). Hawking Radiation from a Spherical Loop
Quantum Gravity Black Hole. Class. Quan. Grav. 31, 115003. doi:10.1088/0264-
9381/31/11/115003

Gan, W.-C,, Santos, N. O., Shu, F.-W., and Wang, A. (2020). Properties of the
Spherically Symmetric Polymer Black Holes. Phys. Rev. D 102, 124030.
doi:10.1103/physrevd.102.124030

Haggard, H. M., and Rovelli, C. (2015). Quantum-gravity Effects outside the
Horizon Spark Black to white Hole Tunneling. Phys. Rev. D 92, 104020.
doi:10.1103/physrevd.92.104020

Joe, A., and Singh, P. (2015). Kantowski-Sachs Spacetime in Loop Quantum
Cosmology: Bounds on Expansion and Shear Scalars and the Viability of
Quantization Prescriptions. Class. Quan. Grav. 32, 015009. doi:10.1088/
0264-9381/32/1/015009

Frontiers in Astronomy and Space Sciences | www.frontiersin.org

July 2021 | Volume 8 | Article 701723


https://doi.org/10.1016/j.physletb.2019.134908
https://doi.org/10.1016/j.physletb.2019.134908
https://doi.org/10.3390/universe6030039
https://doi.org/10.1088/0264-9381/22/16/014
https://doi.org/10.1088/0264-9381/23/2/008
https://doi.org/10.1142/s0218271820500765
https://doi.org/10.1142/s0218271820500765
https://doi.org/10.1103/physrevd.98.126003
https://doi.org/10.1103/physrevlett.121.241301
https://doi.org/10.1103/physrevlett.121.241301
https://doi.org/10.1088/1475-7516/2020/09/020
https://doi.org/10.1088/1361-6382/aae550
https://doi.org/10.1088/1361-6382/ab32ba
https://doi.org/10.1088/1361-6382/ab32ba
https://doi.org/10.1016/j.physletb.2021.136390
https://doi.org/10.1088/1361-6382/ab3f16
https://doi.org/10.1088/1361-6382/abe05d
https://doi.org/10.1103/PhysRevD.76.104030
https://doi.org/10.1103/physrevd.76.064018
https://doi.org/10.1103/physrevd.102.046006
https://doi.org/10.3390/universe6080125
https://doi.org/10.1088/1475-7516/2020/07/066
https://doi.org/10.1016/j.dark.2020.100701
https://doi.org/10.1016/j.dark.2020.100701
https://doi.org/10.1103/physrevd.79.084023
https://doi.org/10.1063/1.2902798
https://doi.org/10.1088/0264-9381/33/18/18lt01
https://doi.org/10.1103/physrevd.73.104009
https://doi.org/10.1103/physrevd.73.104009
https://doi.org/10.1103/physrevd.78.044019
https://doi.org/10.1103/physrevd.78.044019
https://doi.org/10.1103/physrevd.78.064040
https://doi.org/10.1103/physrevd.78.064040
https://doi.org/10.1088/0264-9381/33/5/055006
https://doi.org/10.1088/0264-9381/33/5/055006
https://doi.org/10.1103/physrevd.95.064041
https://doi.org/10.1088/0264-9381/32/18/185006
https://doi.org/10.1103/physrevd.103.084031
https://doi.org/10.1088/0264-9381/31/9/095009
https://doi.org/10.1088/0264-9381/31/9/095009
https://doi.org/10.1088/1361-6382/aba842
https://doi.org/10.1088/0264-9381/31/11/115003
https://doi.org/10.1088/0264-9381/31/11/115003
https://doi.org/10.1103/physrevd.102.124030
https://doi.org/10.1103/physrevd.92.104020
https://doi.org/10.1088/0264-9381/32/1/015009
https://doi.org/10.1088/0264-9381/32/1/015009
https://www.frontiersin.org/journals/astronomy-and-space-sciences
www.frontiersin.org
https://www.frontiersin.org/journals/astronomy-and-space-sciences#articles

Garcia-Quismondo and Mena Marugan

Kelly, J. G., Santacruz, R., and Wilson-Ewing, E. (2021). Black Hole Collapse and
Bounce in Effective Loop Quantum Gravity. Class. Quan. Grav. 38, 04LTO01.
doi:10.1088/1361-6382/abd3e2

Kelly, J. G., Santacruz, R., and Wilson-Ewing, E. (2020). Effective Loop Quantum
Gravity Framework for Vacuum Spherically Symmetric Spacetimes. Phys. Rev.
D 102, 106024. doi:10.1103/physrevd.102.106024

Miinch, J. Causal Structure of a Recent Loop Quantum Gravity Black Hole Collapse
Model. Marseille: arXiv:2103.17112 (2021).

Modesto, L. (2006). Loop Quantum Black Hole. Class. Quan. Grav. 23, 5587-5601.
doi:10.1088/0264-9381/23/18/006

Olmedo, J., Saini, S., and Singh, P. (2017). From Black Holes to white Holes: a
Quantum Gravitational, Symmetric Bounce. Class. Quan. Grav. 34, 225011.
doi:10.1088/1361-6382/aa8da8

Sabharwal, S., and Khanna, G. (2008). Numerical Solutions to Lattice-Refined
Models in Loop Quantum Cosmology. Class. Quan. Grav. 25, 085009.
doi:10.1088/0264-9381/25/8/085009

Saini, S., and Singh, P. (2016). Geodesic Completeness and the Lack of
strong Singularities in Effective Loop Quantum Kantowski-Sachs

Hamiltonian Calculation of the AOS-Solution

Spacetime. Class. Quan. Grav. 33, 245019. doi:10.1088/0264-9381/33/
24/245019

Yonika, A., Khanna, G., and Singh, P. (2018). Von-Neumann Stability
and Singularity Resolution in Loop Quantized Schwarzschild
Black Hole. Class. Quan. Grav. 35, 045007. do0i:10.1088/1361-6382/
aaal8d

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2021 Garcia-Quismondo and Mena Marugdn. This is an open-access
article distributed under the terms of the Creative Commons Attribution License (CC
BY). The use, distribution or reproduction in other forums is permitted, provided the
original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice.
No use, distribution or reproduction is permitted which does not comply with
these terms.

Frontiers in Astronomy and Space Sciences | www.frontiersin.org

10

July 2021 | Volume 8 | Article 701723


https://doi.org/10.1088/1361-6382/abd3e2
https://doi.org/10.1103/physrevd.102.106024
https://doi.org/10.1088/0264-9381/23/18/006
https://doi.org/10.1088/1361-6382/aa8da8
https://doi.org/10.1088/0264-9381/25/8/085009
https://doi.org/10.1088/0264-9381/33/24/245019
https://doi.org/10.1088/0264-9381/33/24/245019
https://doi.org/10.1088/1361-6382/aaa18d
https://doi.org/10.1088/1361-6382/aaa18d
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/astronomy-and-space-sciences
www.frontiersin.org
https://www.frontiersin.org/journals/astronomy-and-space-sciences#articles

	Exploring Alternatives to the Hamiltonian Calculation of the Ashtekar-Olmedo-Singh Black Hole Solution
	1 Introduction
	2 Dynamical Equations
	3 Time Redefinitions
	4 Consistency in the Limit of Large Black Hole Masses
	5 Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	References


