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Cold (few eV) ions of ionospheric origin are widely observed in the lobe region of Earth’s
magnetotail and can enter the ion jet region after magnetic reconnection is triggered in the
magnetotail. Here, we investigate a magnetotail crossing with cold ions in one tailward and
two earthward ion jets observed by the Magnetospheric Multiscale (MMS) constellation of
spacecraft. Cold ions co-existing with hot plasma-sheet ions form types of ion velocity
distribution functions (VDFs) in the three jets. In one earthward jet, MMS observe cold-ion
beams with large velocities parallel to the magnetic fields, and we perform quantitative
analysis on the ion VDFs in this jet. The cold ions, together with the hot ions, are
reconnection outflow ions and are a minor population in terms of number density
inside this jet. The average bulk speed of the cold-ion beams is approximately 38%
larger than that of the hot plasma-sheet ions. The cold-ion beams inside the explored jet
are about one order of magnitude colder than the hot plasma-sheet ions. These cold-ion
beams could be accelerated by the Hall electric field in the cold ion diffusion region and the
shrinking magnetic field lines through the Fermi effect.

Keywords: cold ions, plasma moments, acceleration, magnetic reconnection, Earth’s magnetotail

1 INTRODUCTION

Cold (few eV) ions of ionospheric origin are widely present in the Earth’s magnetosphere (Chappell
etal., 1980; Moore et al., 1997; Cully et al., 2003). In the lobes of the magnetosphere, spacecraft can be
positively charged to several tens of volts due to photoelectron emissions. The positive potential
prevents cold ions from reaching onboard ion instrument. With large-scale convective motion, for
example, magnetopause fluctuation or plasma-sheet flapping, cold ions can be accelerated via the
ExB drift to overcome the positive spacecraft potential (Sauvaud et al., 2004), and be detected by an
ion instrument. Besides direct measurement with particle instruments, cold ions can also be inferred
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by a technique based on the wake signal of a charged spacecraft in
a supersonic ion flow (Engwall et al., 2009; Li et al., 2013; André
et al., 2015). Observational statistics show that cold ions dominate
the plasma density in large regions of the nightside
magnetosphere (e.g., lobe region) and polar regions (André
and Cully, 2012). At times, the cold ions can also dominate in
the dayside magnetosphere. Cold ions can play an important role
in the solar wind-magnetosphere-ionosphere coupling system,
including the terrestrial plasma escape and circulation and the
magnetotail dynamics (Welling et al., 2015; Kistler and Mouikis,
2016; Yamauchi, 2019).

Magnetic reconnection is a fundamental and universal process
to convert energy stored in the magnetic field into kinetic and
thermal energies of charged particles (Priest and Forbes, 2007;
Yamada et al, 2010). Magnetic reconnection is the major
transport mechanism of mass, energy, and magnetic flux in
the solar wind-magnetosphere coupling system, and is the
predominant cause of the geomagnetic activity. In the past
decade, the effects of cold ions on magnetic reconnection at
the dayside magnetopause and in the magnetotail have been
extensively analyzed via using in-situ measurements from
multiple spacecraft missions (Wang et al, 2014; Toledo-
Redondo et al, 2015; André et al, 2016; Li et al., 2017;
Toledo-Redondo et al, 2021) and types of numerical
simulation models (Aunai et al, 2011; Divin et al, 2016;
Tenfjord et al, 2019; Dargent et al, 2019, 2020). At the
dayside magnetopause, magnetic reconnection is typically
asymmetric due to the large differences in plasma and
magnetic field conditions between the magnetosheath and the
magnetosphere. The gyroradii and the inertial lengths of the
magnetosheath plasmas usually determine the two kinetic scales
of the diffusion region, namely, ion and electron diffusion regions
(Yamada et al,, 2010). With the presence of cold-ion inflow from
the magnetospheric side, cold ions bring a new diffusion region
between the usual ion and electron diffusion regions (Toledo-
Redondo et al., 2016a; Divin et al, 2016), and can push the
reconnection jet towards the magnetosheath side (Cassak and
Shay, 2007; Walsh et al., 2014). Li et al. (2017) present the first
observation of the cold-ion outflows throughout the entire
reconnection region via investigating the three-dimensional
(3D) ion velocity distribution functions (VDFs). Cold-ion jets
with high parallel velocities are formed on the magnetosheath
side of the reconnection exhaust, and those cold ions remain
relatively cold compared with the magnetosheath ions. Li et al.
(2017) suggest that those fast cold-ion jets originate from the
cold-ion inflow close to the X line, while the acceleration
mechanism lacks detailed analysis.

In the magnetotail, the magnetic fields are oppositely directed
on each side of the plasma sheet, and the plasma-sheet plasmas
are hot with ion temperature of several to tens of keV. Magnetic
reconnection is symmetric with homogeneous hot ion inflows
from both sides. The plasma sheet boundary layer (PSBL) and
lobe region always contain a certain amount of cold ions of
ionospheric origin, which can affect the reconnection process in
the magnetotail. One prominent feature is that cold ions create
highly structured ion VDFs far from the Maxwellian shape.
Among these distributions, counter-streaming cold-ion beams
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along the direction normal to the current sheet are frequently
observed in the ion diffusion region both in observations and
simulations (Fujimoto et al., 1996; Hoshino et al., 1998; Nagai
et al,, 1998; Shay et al., 1998; Wygant et al., 2005; Divin et al,,
2016; Dai et al., 2021). The counter-streaming cold-ion beams are
suggested to be accelerated by the Hall electric field along the
normal direction at the separatrix, which is mostly along Z
direction of Geocentric Solar Ecliptic (GSE) coordinates. The
electric potential well across the separatrix is B%/2q,Nqo, where
Bx and N, are the reconnection magnetic field and plasma
number density in the inflow, q. is the unit of charge and yq
is the magnetic permeability of free space (Wygant et al., 2005;
Divin et al., 2016; Zaitsev et al., 2021). This electric potential can
accelerate cold ions to the inflow Alfvén speed V4 = By/
\HomiNg, when the width of the separatrix is comparable to
the cold-ion gyroradius. Using a hybrid simulation model, Aunai
et al. (2011) show that the angular aperture of the potential well
and the bouncing motion between the separatries make the cold
ions transfer the kinetic energy gained from the V, component
to Vx.

Besides the acceleration by the Hall electric field in the ion
diffusion region, the Fermi mechanism (slingshot effect) and the
reconnection electric field can also be important for cold-ion
acceleration in the reconnection exhaust. Several studies report
counter-streaming cold-ion beams observed in bursty bulk flows
(BBFs) and analyze acceleration mechanisms and ion anisotropic
instabilities associated with these beams (Eastwood et al., 2015;
Hietala et al., 2015; Birn et al., 2017; Runov et al., 2017; Xu et al,,
2019). BBFs are widely interpreted as magnetic reconnection jets
(Angelopoulos et al., 1992; Nagai et al., 1998; Birn et al., 2011) and
can transport significant amount of magnetic fluxes and plasmas
towards Earth (Baumjohann et al., 1990; Angelopoulos et al., 1992,
1994). Eastwood et al. (2015) find that counter-streaming beams
are sourced from the thermal population in the preexisting plasma
sheet and are accelerated by the reconnection electric field. Birn
etal. (2017) show that the beam ions are from the low-energy lobe
regions. These beams are firstly accelerated by the ExB drift
motion and then by the slingshot effect of the earthward
convecting BBF. A similar process is also described by Xu et al.
(2019). In the previous studies, the counter-streaming cold-ion
beams are mostly observed near the front edge of the reconnection
jet, and quantitative studies analyzing the acceleration are
primarily via numerical simulations. The existence and
dynamics of the cold ions in an entire reconnection jet still lack
quantitative analysis using in-situ observations. In this study, we
perform a more comprehensive survey of ion VDFs in a
magnetotail crossing by the Magnetospheric Multiscale (MMS)
spacecraft. Various types of ion VDFs with cold-ion beams are
observed inside a magnetic reconnection jet, and plasma partial
moments of the cold ions are computed to investigate their
dynamics through the reconnection process.

2 OBSERVATIONS

In-situ observations from NASA’s MMS mission (Burch et al,,
2016) are utilized for this study. MMS was launched on March 13,
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FIGURE 1 | MMS observation of the Earth’s magnetotail on July 06, 2017. MMS1 data of (A) magnetic field B, (B) number densities of hydrogen (H*, black) from
HPCA, all ions (blue) and electrons (red) from FPI and electron number density derived from the Langmuir waves observed by EDP, (C) ion bulk velocity V; from FPI, (D)
FPIion omnidirectional differential energy flux, (E) number densities of He** (black) and O* (red) ions from HPCA. All vectors are presented in GSE coordinates, which are
close to Geocentric Solar Magnetospheric (GSM) coordinates in this event. The horizontal green bars in the top of (A) denote the burst-mode time intervals, and
detailed analysis of the ion VDFs in the two yellow-shaded intervals are presented in the following figures.

2015 and consists of four identical spacecraft designed to study
the kinetic-scale physics of magnetic reconnection in the Earth’s
magnetosphere. In this study, we use magnetic field data from the
FluxGate Magnetometer (FGM) (Russell et al., 2016) and electric
field data from the Electric Double Probe (EDP) (Ergun et al.,
2016; Lindqvist et al., 2016). The ion data are from the Fast
Plasma Investigation (FPI) (Pollock et al., 2016) sampled at 4.5 s
for the fast mode and 0.15 s for the burst mode, and also, from the
mass-resolved instrument Hot Plasma Composition Analyzer
(HPCA) (Young et al., 2016) at 10 s resolution.

We investigate an MMS magnetotail crossing from 21:30:00 to
24:00:00 UT on July 06, 2017. The four spacecraft moved from
[-24.6, —0.8, 5.2] R (Earth radii) to [-24.5, —1.4, 5.4] Rg (GSE)
during this time interval. Owing to a small spacecraft separation (
~15km), observations from the four spacecraft are nearly
identical, and thus, we show results primarily from MMS1. An
overview of the MMS1 observations is presented in Figure 1, and
the data are in fast mode. The panels from top to bottom show 1)
magnetic fleld B, 2) number densities of ions and electrons, 3) ion
bulk velocities from FPI, 4) FPI ion omnidirectional differential
energy flux, and 5) number densities of He™" and O" ions from
HPCA. In Figure 1B, the number densities of H" from HPCA, all
ions from FPI and electrons from FPI are shown in black, blue
and red, respectively. The three curves almost overlap with each
other, indicating reliable number density results. The MMS fleet

is initially located in the plasma sheet, characterized by weak
magnetic field (Figure 1A) and high-density ( ~0.5 cm™>) and hot
(~4,500 eV) ions. From 21:49:00 to 22:02:00 UT, MMSI1 observes
a strong tailward ion flow, with a peak V x reaching -1,000 km s ™.
Such a strong ion flow indicates ongoing reconnection and that
the spacecraft are located tailward of the reconnection X line. In
this tailward ion jet, the Bx component is mostly positive,
indicating that MMS cross the northern part of the ion jet.

At 22:02:00 UT, we identify a separatrix of the reconnection
exhaust, where B increases, plasma number density decreases, ion
bulk velocity decreases, and energetic particles vanish (see
Supplementary Figure S1 in Supplementary Material for
more details). Then, MMS1 enters the lobe region until 22:34:
00 UT. As shown by the ion energy flux in Figure 1D, cold ions of
ionospheric origin, with ~10 eV thermal energy, are present in the
lobe region, while their total energy can reach 100 eV due to the
ExB drift motion. In the lobe, the penetrating radiation leads to a
nearly constant background from the lowest to the highest energy
channels in the FPI ion measurement unit (Gershman et al,,
2019), as seen by the green fluxes in Figure 1D. Thus, the FPI ion
number density from the integral over the whole energy range is
overestimated. Besides, the FPI electron measurement unit
cannot provide reliable electron moment data in the lobe
because of the low thermal energy and the photoelectron
contamination (Gershman et al, 2019). So, we take the
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FIGURE 2 | Cold ions inside the tailward ion jet. (A) B. (B) N;. (C) V.. (D) FPI ion omnidirectional differential energy flux with ion temperature (white curve). (E)
Reduced ion VDF integrated over the directions perpendicular to the magnetic field. The black solid curve shows the parallel ion bulk speed V‘fg/’ of all ions, and the white
dashed line denotes Vg = 0. (F) Electric field E. (G)—(I) Two-dimensional (2D) reduced ion VDFs in the Vg,5-Vs plane at times indicated by the three vertical lines in (A)—(F).
In (G)—(I), the green dots represent the ion bulk velocities, and the vertical green dashed lines show the electric-field drift speeds (|E xB/B?)). The GSE-X (black), Y

(blue) and Z (red) directions normalized by 1,500 km s~ are projected in (G)—(l).

number density (0.03-0.05 cm ) estimated from the waves at the
electron plasma frequencies, as illustrated by the color-coded
spectrum in Figure 1B. In the lobe, oxygen ions measured by
HPCA have number densities about 0.0005-0.002 cm >
(Figure 1E), and hydrogen is thus the primary ion species in
terms of number density. From 22:13:04 to 22:13:15 UT, MMS
cross a separatrix of the reconnection exhaust back and forth
quickly (see Supplementary Figure S2 in Supplementary
Material for details). Based on the observations during this
time interval, Alm et al. (2018) analyzed the role of cold ions
in the separatrix layer. They find that the cold ions account for ~
30% of the total ion number density and can significantly influence
the Hall physics of reconnection. After 22:34:00 UT, MMSI crosses
back to the plasma sheet and sees two strong earthward ion jets, with
aVx peak reaching 860 km s™'. O" ions, as tracers of cold ionospheric
ions, are continuously observed inside the plasma sheet shown in
Figure 1, and have similar number densities with those in the lobe.
Meanwhile, He"" ions can be used as tracers of solar wind ions, and
are also continuously observed in the plasma sheet. Thus, both the
ionospheric and solar-wind ions are the ion sources of the plasma
sheet in our event, even through the two sources are indistinguishable

from the FPI ion energy flux panel (Figure 1D). We explore the 3D
ion VDFs in the tailward and earthward reconnection jets and
characterize different types of ion VDFs with cold-ion beams. In
the following, we present results from the two time intervals
indicated by the yellow-shaded bars in Figure 1.

Figures 2A-F present an overview of the tailward ion jet in the
time interval indicated by the left yellow-shaded bar in Figure 1.
Here, burst-mode data are used. In this jet, Vy varies between
~1,240 km s and —430 km s™!, and ions with distinct energy
fluxes are all above 500 eV in the spacecraft frame (Figure 2D).
Figure 2E shows the phase space density of the reduced ion
VDF projected on to the magnetic field directions, and the black
curve represents the parallel bulk velocity V&' of all ions. One
can clearly see complicated structures in this reduced ion VDF
panel. To categorize the ions in this tailward jet, we perform a
systematic survey of all the ion VDFs in the time interval of
Figure 2 and find three types of ion VDFs inside. Figures 2G-1I
show 2D reduced ion VDF examples in the Vg, 5-Vg plane, as
they clearly show the overall structures in the distribution
functions. At times like 21:57:08 UT, V¢ is close to the ion
VDF peaks, denoting that there exists only a single energetic ion
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FIGURE 3| Four types of ion velocity distribution functions (VDFs) in the earthward ion jet. (A) B. The green horizontal bar denotes the ion jet interval. (B) N;. (C) V..

(D) FPIion omnidirectional differential energy flux with ion temperature (white curve). (E) Reduced ion VDF integrated over the directions perpendicular to the magnetic
field. The black solid curve shows the parallel ion bulk speed V;;, and the white dashed line denotes V;; = 0. (F) Electric field E. (G) lon VDF types inside the ion jet. (H)—(K)
Examples of the four-type ion VDFs at times indicated by the four vertical lines in (A)-(G). (H)-(K) are in the same format with Figures 2G-I.

population of plasma-sheet origin (see Figure 2G). The hot
population in Figure 2G has a temperature of 4.6 keV and
follows ExB drift motion (green vertical dashed line), with
negligible V. In GSE coordinates, it moves predominantly
along -X direction. From 21:59:12 to 21:59:19 UT, MMSI
observes two distinct ion populations in the FPI ion energy
flux plot (Figure 2D). One energetic population has energy
above 8 keV and originates from the plasma sheet. The other
population has energies below 5keV. An example of the ion
VDFs within this interval is presented in Figure 2I. At this time,
the magnetic field is mostly along the +X direction (Figure 2A),
and its magnitude is close to that in the lobe (see Figure 1). The
electric field is dominated by the -Z component, indicating Hall
electric field in the northern separatrix layer of the magnetotail
reconnection in the magnetotail (Wygant et al., 2005; Eastwood
et al., 2007). The two ion populations have the same ExB drift
velocity. The hot population has a large negative V3, and its bulk
velocity is predominantly along the -X direction in GSE
coordinates. The cold population has negligible Vy and
moves along the -Y direction. Those cold ions can modify
the balance of the Hall electric field at the separatrix, which
has been extensively analyzed by previous studies using in-situ
data (Toledo-Redondo et al., 2015; André et al., 2016; Alm et al.,,

2018) and numerical simulation models (Dargent et al., 2017;
Toledo-Redondo et al., 2018).

From 21:57:12 UT to 21:58:10 UT, MMS1 also observes two
distinct populations in the reduced ion VDFs shown in
Figure 2E, even though the two populations are not
distinguishable from the FPI ion energy flux (Figure 2D).
Figure 2H displays an example of the ion VDFs in this time
interval. The properties of the hot population are similar to those
shown in Figure 2I. The cold population follows ExB drift (
~630 km s ') motion and has a small ( ~200 km s™*) positive V.
Its bulk velocity is predominantly along the -Z direction in GSE.
These cold-ion beams may originate from the northern lobe. A
small bulk speed ( ~660 km s™") of this cold population suggests
that those beams may be not from the cold-ion inflow close to the
X line. They may experience an acceleration process as discussed
previously by Birn et al. (2017). The cold ions are probably
accelerated by the ExB drift motion when crossing a distant
separatrix, and are further accelerated by the Fermi mechanism as
the cold ions convect together with the shrinking magnetic field
lines. Another prominent feature between the cold populations
shown in Figures 2H,I is that the cold population in Figure 2H is
clearly thermalized, and we discuss that in the following section.
In the earthward ion jet between 22:36:00 UT and 22:47:00 UT,
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shadow highlights the interval with total counts over 50.

MMS observe similar features of the ion VDFs as those presented
in Figure 2.

MMS see much more complicated features of cold-ion beams
in the earthward ion jet between 23:43:23 UT and 23:47:53 UT
(denoted by the right yellow-shaded bar in Figure 1). Figures
3A-F display a detailed overview of this ion jet using burst-mode
data. MMS are originally located in the stagnant plasma sheet.
When a dipolarization front (Nakamura et al., 2002; Runov et al.,
2009; Fu et al., 2013) arrives at MMS at ~23:43:34 UT, the plasma
density drops from 0.31 cm™ to 0.20 cm ™ and the magnetic field
B, component increases from 5 to 13 nT. The earthward flow
speed subsequently increases to its maximum values, with aVy
peak reaching 1,040kms™'. This kind of fast ion flow is
frequently interpreted as an earthward bursty bulk flow (BBF)
driven by magnetic reconnection with an X line located tailward
of the spacecraft. In Figure 3, we use a yellow-shaded bar to
highlight the BBF or the jet interval. The average N; of the jet is
approximately 0.29 cm ™, which is similar to that of the nearby
plasma sheet. The average T; is 3.8 keV, with a small temperature
anisotropy (T;/T;, ~0.92). After a detailed survey of all the ion
VDFs, we find four types of ion VDFs inside the jet shown in
Figure 3: Type I consists of only a single hot plasma-sheet
population (see an example shown by Figure 3H), Type II
consists of a hot population and a cold population with a
positive Vp (see Figure 3I), Type III consists of a hot
population and a cold population with a negative Vjp (see
Figure 3]), and Type IV consists of a hot population with

Cold lons in Jet

counter-streaming cold populations (see Figure 3K). We
categorize all the ion VDFs of this earthward ion jet, and the
results are presented by colored dots in Figure 3G. In Figures
3H-K, the green dots denote the projected ion bulk velocities in
the Vg,.5-Vg plane, and the green vertical dashed lines represent
the ExB drift speeds. The small discrepancy between the two
speeds is likely from the errors (0.5-1.0 mV m™") in electric field
(Lindqvist et al, 2016) or could be caused by weak
demagnetization of the ions. In GSE coordinates, all ions
propagate earthward (illustrated by the black lines in Figures
3H-K). The large positive and negative V3 components of the
cold ions correspond to the large positive and negative V,
components (Figures 3I-K), respectively.

Previous studies like Eastwood et al. (2015) and Xu et al.
(2019) explored the kinetic behavior of counter-streaming cold
ions at the leading edges of the reconnection jets, with particular
focus on the vicinity of dipolarization front. The cold-ion beams
investigated in their works may originate from ions in the
preexisting plasma sheet or the ionosphere and are swept up
directly by a dipolarization front. In our study, we do not find the
existence of isolated cold-ion beams in the region close to the
dipolarization front, which could be due to the phase-space
mixing by cold-ion thermalization. We find four types of ion
VDFs widely distributed over the entire observed part of the jet.
The cold-ion beams have total energies all above ~3 keV and mix
together with the plasma-sheet hot ions in the spectrogram of the
differential energy flux (Figure 3D), and one can only distinguish
cold ions in three-dimensional VDFs. This is different from the
cold ions reported in Eastwood et al. (2015) and Xu et al. (2019),
where the total energies of cold ions are lower than those of hot
ions and one can easily see them in the spectrograms of the
differential energy fluxes.

In the magnetotail, the Bx component can be used as a guide to
determine the normal distance to the plasma-sheet neutral line (By
= 0). Figure 4A shows the count profiles of the four types of ion
VDFs along Bx. MMS spend most of the time in the southern
exhaust, and most of the counts are therefore in the negative By
region, where Type I and Type II VDFs clearly dominate. Figure 4B
presents the occurrence rates of the four-type ion VDFs, and the
gray shadow highlights the results with total counts over 50. Despite
the large variation due to relatively low counts, one can conclude
that the occurrence rate of Type I is nearly constant. The occurrence
rate of Type II decreases gradually along By or from the southern to
the northern sides of the neutral line. Conversely, the occurrence
rate of Type III increases gradually along By. The occurrence rate of
Type IV peaks at the neutral line. Therefore, the antiparallel beams
are predominantly observed in the northern side of the neutral sheet,
and the parallel beams are predominantly observed on the southern
side. The majority of cold-ion beams were found to be approaching
the neutral sheet, with a smaller subset of VDFs also showing cold
ion populations moving away from the neutral sheet. This indicates
that there is some mechanism that either prevents cold ions from
crossing far into the opposite exhaust, that the cold-ion populations
are no longer cold after the neutral sheet crossing (heating), or that
they can not be distinguished from the hotter background.

The distribution of VDFs shown in Figure 4B may be
generated by several processes. First, MMS observe the

Frontiers in Astronomy and Space Sciences | www.frontiersin.org

October 2021 | Volume 8 | Article 745264


https://www.frontiersin.org/journals/astronomy-and-space-sciences
www.frontiersin.org
https://www.frontiersin.org/journals/astronomy-and-space-sciences#articles

Lietal

Cold lons in Jet

and the black lines show the normalized magnetic fields.
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FIGURE 5 | Partial moments of the cold-ion beams and the hot ions inside the earthward ion jet. Those ions are from the three types (Types Il, Il and IV) with cold

ions. Types II, lll and IV are colored in blue, red and green, respectively. The partial-moment results of the hot, parallel cold and anti-parallel cold ions are marked by
circles, upward-pointing triangles and downward-pointing triangles, respectively. (A) B. (B) N; of all ions (black curve) and cold and hot ions from partial moments. (C) lon
bulk speed V. (D)-(F) Three components of the ion bulk velocities V;. The black curves are the average bulk velocities. (G) T;. (H) Adiabatic parameter defined by x° =

Bs (Biichner and Zelenyi, 1989), where Ry is magnetic field curvature radius and peiis the gyroradius of the 320 eV cold ions. (I)-(K) Scatter plots of the measured E from
EDP and the convection electric field (-VixB) of hot and cold ions from selected data points. The black dashed lines denote slope = 1, and the red dashed lines are the
linear fits of the partial-moment results. (L)-(M) Scatter plots of the ion bulk velocity of the selected points. The crosses present the averages and the standard deviations,

northern (see Figure 1) and southern lobes on July 6,2,017 and
see cold ions in both lobes. As an example shown in Figure 1D, the
energy fluxes of the cold ions in the lobe are intermittent, indicating
that the cold ions inflowing into the reconnection region could be
patchy. Secondly, when cold ions enter the separatrices close to the
X line (e.g., the cold-ion diffusion region), numerical simulations
(Aunai et al, 2011; Divin et al, 2016) show that the cold ions
bounce within an electrostatic potential well between the
separatrices. The distribution feature in Figure 4B could be a
statistical result of the bouncing motions of the cold ions
inflowing from both lobes. Finally, as shown in Figure 3A,

MMS see large-amplitude fluctuations in magnetic field, which
may be convected from the upstream exhaust region or be driven
by the ion temperature anisotropy associated with cold-ion beams
(Hietala et al., 2015). Besides, the minimum curvature radii of the
magnetic field lines in this event are comparable to the gyroradii of
the cold ions (as shown by Figure 5H). Plasma waves and the
curved magnetic field lines with small curvature radii can scatter
and thermalize the cold ions when moving from one side of the
neutral line to the other side, and thus, can mix them with the
plasma-sheet hot ions. The distributions in Figure 4B could be
combinational results of those three effects.
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TABLE 1 | Average partial moments of the hot and cold ions of the selected data
points shown in Figure 5

Hot ion Parallel cold ion Anti-parallel cold ion

N; lem™2] 0.30 + 0.04 0.05 + 0.02 0.03 + 0.01
T [eV] 3,430 + 290 250 + 80 390 + 180
V; [km s 757 + 71 1,034 + 124 1,069 + 175
Ve [km s7'] 664 + 118 688 + 118 645 + 135
Vy [km s7] 704 + 79 548 + 157 796 + 170
Vy [km s77] 182 + 173 420 + 254 63 + 253

Vz [km s7] 98+ 72 713 + 100 -657 + 108

3 QUANTIFICATION OF COLD-ION BEAMS
IN THE EARTHWARD JET

In order to study the dynamics of the cold-ion beams inside the jet,
we utilize the same technique as used in Li et al. (2017) (see
supporting information of that paper and Supplementary Figure
$3 in Supplementary Material for more details) to compute partial
moments of the hot and cold populations. First, we select data
points of the three types of ion VDFs with cold ions with most
coverage of the variant magnetic field conditions. Then, we separate
the cold and hot populations for each ion VDF in three-dimensional
velocity space and compute their partial moments, including
number density, bulk velocity and ion temperature. The results
are presented in Figure 5, and the average results with standard
deviations are listed in Table 1. In Figures 5B-G, L,M, the partial-
moment results of the three-type VDFs (Types II, III and IV) with
cold ions are labeled in blue, red and green, respectively. The hot
ions from all three types are marked by circles. The parallel cold-ion
beams from Types II and IV VDFs are marked by the upward-
pointing triangles, while the anti-parallel beams from Types III and
IV are marked by the downward-pointing triangles. The black lines
in Figures 5L,M denote the magnetic fields of the selected data
points for the partial-moment calculations. Figures 5I-K show the
comparison between the measured electric field from EDP and the
convection electric field (-V;xB) of the hot and cold ions from our
partial-moment calculations. A good consistency of the three
components means that the ions in the investigated jet are
mainly frozen-in with the magnetic field lines. Also, it
demonstrates a relatively good reliability of our partial-moment
calculation via separating multiple populations from one VDF.
As presented in Table 1, the average number density (
~0.04 cm™) of the cold-ion beams is comparable to that of the
cold ions in the lobe and approximately 13% of that of the hot ions
inside the jet. Even though the cold ions have large peak VDFs in
velocity space, they are still minor populations in this investigated
event. As shown by the circles in Figure 5C, the bulk velocities of
the hot ions from the partial-moment calculations are close to the
average bulk velocities (black curve) of all ions. This is consistent
with the partial-moment number density results. All of the hot ions
convect earthward, and their speed VF ( ~760 kms™") is close to
the ExB drift speed. As shown in Figures 5C-F; Table 1, all the
cold-ion beams move earthward, meaning that all those ions are
outflow ions of reconnection. The parallel cold ions have large
positive V, component ( ~710 kms™'), and the anti-parallel ones
have large negative V; component ( ~-660 km s1). The bulk speed

Cold lons in Jet

(~1,050 km s ") of the cold-ion beams is approximately 38% larger
than that of the hot ions, which is predominantly contributed by
the V or parallel component.

It is difficult to know the acceleration process from the
observational aspect. Here, we find a similarity between the
velocity patterns in Figures 5L,M and previous numerical
results (Aunai et al., 2011; Divin et al., 2016) and suggest that
the cold ions inside this investigated jet may come from the region
close to the X line. Cold ions are demagnetized while crossing the
separatrices close to the X line (Toledo-Redondo et al., 2016a;
Divin et al., 2016), and are accelerated primarily by the Hall
electric field, while the beams can remain relatively cold. The
cold-ion beams may bounce for several times within the Hall
electrostatic potential well, and get significant V; and Vx
components. Then, the accelerated cold-ion beams could be
further accelerated by the shrinking magnetic field lines due to
the Fermi effect. One can find a characteristic example of such
acceleration process from Figure 5 of Divin et al. (2016). This
process could be responsible for the 38% extra speed at the MMS
observation location.

Using Cluster data, Toledo-Redondo et al. (2016b) showed
that cold ions can be heated by the large electric field gradient
when crossing a separatrix boundary. Graham et al. (2017)
analyzed a magnetopause reconnection event with cold ions
and found lower-hybrid waves at the separatrix driven by the
ion-ion streaming instability between the cold ions and the
magnetosheath ions. The lower-hybrid waves can contribute to
the cold-ion heating. Norgren et al. (2021) showed that the cold
ions can be heated through a combination of thermalization at
the separatrices and pitch angle scattering in the curved magnetic
field around the neutral plane. Here, we calculate the temperature
( ~320€V) of the cold-ion beams inside the reconnection jet,
which corresponds to about 6% of the total energy in the
spacecraft frame. The cold-ion beams are approximately one
order of magnitude colder than the hot ions, while the cold-
ion beams are thermalized compared to the cold ions ( ~10 eV) in
the lobe. The large electric-field gradient at the separatrix and the
scattering effect by the kinetic waves (see Supplementary Figure
S$4 in Supplementary Material for more details) and small
magnetic-field curvature radii (Figure 5H) may all contribute
to the heating of the observed cold ions from the lobe into the ion
jet. However, one should note that the temperature results have a
large uncertainty from our partial-moment calculation. As shown
in Figures 3; Supplementary Figures S3, the thermal parts of the
hot and cold populations usually overlap with each other. We cut
major parts of the cold-ion VDFs empirically by eye. The results
of the number density and bulk velocity are relatively reliable, but
the ambient treatment of the VDF boundaries brings large errors
to the temperature. The temperature results can be improved by
fitting the cold-ion VDFs in the three-dimensional velocity space,
which will be tried in our future works.

4 CONCLUSION

We investigated an MMS magnetotail crossing from 21:30:00
UT to 24:00:00 UT on July 06, 2017 with cold ions and ongoing
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magnetic reconnection and present quantitative analysis of the
cold ions inside a reconnection ion jet. In this event, MMS cross
one tailward and two earthward ion jets, and we explored the
three-dimensional ion VDFs and find types of ion VDFs with
cold-ion beams. MMS observe hot ions of plasma-sheet origin
throughout the tailward jet and the first earthward ion jet, and
cold ions with small Vg show up in part of the jet crossing. At
the separatrix, MMS observe ExB drifting cold ions with
negligible Vp. The second earthward ion jet is lead by a
dipolarization front, and we find four types of ion VDFs
inside: Type I consists of only a single hot plasma-sheet
population, Type II consists of a hot population and a cold
population with a positive Vg, Type III consists of a hot
population and a cold population with a negative Vg, and
Type IV consists of a hot population with counter-streaming
cold populations. Our analysis focuses on those VDFs with cold-
ion beams. The occurrence rate of Type II VDFs decreases
gradually from the southern to the northern sides of the neutral
line. Conversely, the occurrence rate of Type III VDFs increase
gradually from south to the north. The occurrence rate of Type
IV peaks at the neutral line. This distribution of VDFs could be
formed by the patchy cold-ion inflow, the bouncing motions
within the divergent Hall electrostatic potential well, and the
scattering effect due to plasma waves and the curved magnetic
field lines with small curvature radii.

We adopted the same technique as used in Li et al. (2017)
to compute the partial moments of the hot and cold
populations of Types II, III and IV VDFs. The average
number density of the cold-ion beams is approximately
13% of that of the hot ions, meaning that the cold ions are
a minor population in this investigated event. All the hot and
cold ions are outflow ions towards Earth. The average bulk
speed of the cold-ion beams is approximately 38% larger than
that of the hot plasma-sheet ions. This extra speed is
predominantly along the magnetic field direction. Those
cold-ion beams could come from the cold-ion diffusion
region and be initially accelerated by the Hall electric field.
Then, the accelerated cold-ion beams could be further
accelerated by the shrinking field lines through the Fermi
effect. The cold-ion beams are still one order of magnitude
colder than the hot ions, while the electric field with large
gradient at the separatrix and the scattering effect by the
waves and highly curved magnetic field lines may thermalize
those cold ions from the lobe into the ion jet.
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