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The early 1970s saw a new and surprising feature in the composition of solar energetic
particles (SEPs), resonant enhancements up to 10,000-fold in the ratio 3He/4He that could
even make 3He dominant over H in rare events. It was soon learned that these events also
had enhancements in the abundances of heavier elements, such as a factor of ∼10
enhancements in Fe/O, which was later seen to be part of a smooth increase in
enhancements vs. mass-to-charge ratio A/Q from H to Pb, rising by a factor of ∼1000.
These events were also associated with streaming 10–100 keV electrons that produce
type III radio bursts. In recent years we have found these “impulsive” SEP events to be
accelerated in islands of magnetic reconnection from plasma temperatures of 2–3 MK on
open field lines in solar jets. Similar reconnection on closed loops traps the energy of the
particles to produce hot (>10 MK), bright flares. Sometimes impulsive SEP intensities are
boosted by shock waves when the jets launch fast coronal mass ejections. No single
theory yet explains both the sharp resonance in 3He and the smooth increase up to heavier
elements; two processes seem to occur. Sometimes the efficient acceleration even
exhausts the rare 3He in the source region, limiting its fluence.
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INTRODUCTION

The solar energetic particle (SEP) events observed first (Forbush 1946) were the largest and most
energetic examples we know, where GeV protons produce a shower of particles cascading through
the atmosphere to ground level in excess of that from the galactic cosmic rays (GCRs). However,
these ground-level events (GLEs) provided little information on the composition of the
incoming beam.

Measurement of multiple element abundances in SEPs began when Fichtel and Guss (1961) used
nuclear emulsion detectors on a 4-min sounding-rocket flight from Ft. Churchill, Manitoba to
observe a sampling of elements with 6 ≤ Z ≤ 16. The principle elements up to the Fe abundance peak
were observed in the next solar cycle by Bertsch et al. (1969) using the same technique. Resolution of
He isotopes and the continuous time coverage needed to observe smaller events would only begin
when detector telescopes were flown on satellites.

3HE

The first clearly-enhanced abundance ratio of 3He/4He � (2.1 ± 0.4) × 10−2 was reported by Hsieh
and Simpson (1970), perhaps 50 times the value seen in the corona or solar wind, although
differences in the spectra of the He isotopes were noted here.

Nearly every scientist involved in the early study of SEPs had previous experience with GCRs.
After acceleration by shock waves at supernovae, GCRs spend ∼107 years colliding with interstellar H
to produce secondary 2H, 3He, and isotopes of Li, Be, and B. Thus the observation of 3He/4He of 2%
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by Hsieh and Simpson (1970) was immediately misinterpreted as
evidence that the SEPs had traversed enoughmaterial to fragment
some 4He into 3He, just like the GCRs. However, it was soon
found that there were many events like that seen by Serlemitsos
and Balasubrahmanyan (1975) with 3He/4He � 1.52 ± 0.10 but
3He/2H > 300. How could there be more 3He than 4He and yet no
2H? Such abundances were definitely not compatible with
fragmentation. Subsequently, there were limits established on
Be/O and B/O in SEP events that were found to be <2 × 10−4 (e.g.,
McGuire et al., 1979; Cook et al., 1984). Thus these 3He-rich
events were not just an accident of fragmentation; they must
involve a completely new resonance phenomenon.

Figure 1 shows a sample of 3He-rich events as we see them
above 2 MeV amu−1. As event intensities increase it becomes
possible to see rarer ion species. Event 1 has only pre-event
background levels of H, O, and Fe and 4He barely appears. 3He/
4He varies greatly in events and vs energy, often peaking in the
region 1–10 MeV amu−1 (Mason, 2007), while Fe/O is much
more stable once events are large enough to provide a measurable
sample, so Fe/O is often used to define “impulsive” events (e.g.,
Reames et al., 2014a). As discussed below, very high-Z elements
begin to appear in the larger impulsive events and 3He fluence
may be limited by depletion of 3He ions in the source volume.

Electrons
Some of the earliest information on SEPs in space was provided
by the radio emission produced by ∼10–100 keV electrons
streaming out from the Sun. The radio emission frequency
varies as the square root of the local electron density which
decreases sharply with distance from the Sun. In an early review
article on solar radio bursts, Wild et al. (1963) distinguished type
III radio bursts as produced by electrons streaming out rapidly

along the magnetic field from a source at the Sun, and type II
bursts which moved out at the slower ∼1,000 km s−1 speed of an
interplanetary shock wave. Thus they saw two types of events:
“electron events,” which produced the type III bursts, and
“proton events,” accelerated at shock waves where associated
electrons produce the type II burst as they are accelerated then
overtaken, often at the flanks of the shock.

Early instruments flown on satellites measured 40 keV
electrons associated with X-ray bursts at the Sun and type III
radio bursts in space (Lin, 1970, 1974). These events were clearly
different from the large proton events and some seemed to be
“pure” electron events, i.e., lacking measurable ion intensities.
The electrons events conformed to the picture presented by Wild
et al. (1963).

It was not until 1985 that “pure” electron events turned out to
be 3He-rich events (Reames et al., 1985). 3He-rich events were
strongly associated with type III bursts, both the metric radio
events, near the Sun (Reames et al., 1985), and the kilometric
events below 2 MHz produced as the electrons continued out
beyond ∼6 solar radii (Reames and Stone, 1986).

Abundances of Elements
Measurements of element abundances soon began to show
periods when Fe/O ≥ 1 (Mogro-Compero and Simpson, 1972;
Gloeckler et al., 1975), an enhancement by a factor of ∼10, relative
to “coronal” abundances determined by the average of gradual
SEP events (e.g., Reames, 1995a, 2014; Reames, 2021a), and such
enhancements were shown to correspond with 3He-rich events
(e.g., Mason et al., 1986), as seen in Figure 1. Reames (1988)
looked at daily averages of SEPs to measure the overall
distribution of abundances. He found a bimodal pattern with
two branches of Fe/O. The branch near Fe/O ≈ 1 was 3He rich,

FIGURE 1 | Ion intensities at the indicated MeV amu−1 are shown in a sample of 3He-rich or “impulsive” SEP events of increasing intensity. 3He exceeds 4He in
Events 1 and 3. Fe and O are below background in Event 1, but Fe/O ≈ 1 in the remaining events. H is below background in Events 1–3. 3He/4He < 0.1 in Event 4 and is
omitted because of possible resolution errors; it is ≈0.1 in Event 5 and high-Z heavy elements are beginning to appear (Reames and Ng, 2004). Other properties of the
last four of these events are listed in Reames et al. (2014a).
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electron rich, and proton (H/4He) poor relative to the branch
near Fe/O ≈ 0.1. These bimodal abundances were helpful in
distinguishing the physics of impulsive and gradual SEP
events.

Reames et al. (1994) found that on average in 3He-rich events,
the elements He, C, N, and Owere unenhanced relative to coronal
abundances, Ne, Mg, and Si were enhanced a factor of ∼2.5 and Fe
was enhanced a factor of ∼7. This pattern would occur if He–O
were fully ionized and Ne, Mg, and Si were in a stable state with
two orbital electrons, which occurs in the temperature range
3–5 MK. This suggested that patterns of element abundance
enhancements could be used to determine source plasma
temperatures, since the pattern of Q values and A/Q, thus
element enhancements, was dependent upon temperature
(Reames et al., 2014b; Reames, 2018). The temperature
variations among impulsive events turned out to be small, so
the technique was more useful for gradual SEP events (Reames,
2016) with larger variations in temperature.

The extensive enhancement of very heavy elements was
suggested early when Shirk and Price (1974) studied etch pits
in a glass window of the Apollo 16 lunar command module and
found (Z > 44)/Fe � 120+120–60 at 0.6 ≤ E ≤ 2.0 MeV amu−1 from a
small SEP event in April 1972. Routine measurement that

resolved elements above Fe with δZ/Z ∼ 2% began with the
launch of theWind spacecraft in November 1994. Reames (2000)
found significant enhancements up to (70 ≤ Z ≤ 82), at 3.3 ≤ E ≤
10 MeV amu−1, but only in impulsive SEP events. These
measurements improved statistically with time (e.g., Reames
and Ng, 2004) until Reames et al. (2014a) found the
dependence of enhancements rising at the 3.64 ± 0.15 power
of A/Q (at ≈3 MK) from He to Pb, with the (76 ≤ Z ≤ 82)/O
interval enhanced by a factor of ≈900. Below 1MeV amu−1,
Mason et al. (2004) found enhancements varying as a power of A/
Q of 3.26 and the interval 180 ≤ A ≤ 200 was enhanced a factor of
≈200. With the exception of 3He, enhancements are not strongly
energy dependent.

When the power-law fits to abundance enhancements vs
A/Q for elements Z ≥ 6 in an event were extrapolated down to
H at A/Q � 1 (Reames, 2019b), there were small impulsive
SEP events that seemed to fit the protons extremely well
(called SEP1 events; Reames 2020) and some larger events
with a large proton excess (called SEP2 events) as shown by
the examples in Figure 2.

We will see below that the event in the central panels of
Figure 2 was one of the first impulsive events to be associated
with a narrow CME produced by a solar jet (Kahler et al., 2001).

FIGURE 2 | Lower panels show time histories of H, 4He, O and Fe, at the indicated MeV amu−1, for four impulsive SEP events, two small SEP1 events on the left
and a larger SEP2 event in the center, and a 4He-poor SEP1 event on the right. Event numbers shown above source coordinates refer to the event list of Reames et al.
(2014a). Power-law fits to the abundance enhancements, noted by Z, in each event, are shown in the upper panels and CME speeds are listed when CMEs are seen.
The center Event 37 is an SEP2 class event because of its large proton excess noted. For the SEP1 events on the left and right, the protons abundances lie on the
extrapolated power-law fits (Reames, 2019b, 2020).

Frontiers in Astronomy and Space Sciences | www.frontiersin.org September 2021 | Volume 8 | Article 7602613

Reames Fifty Years of 3He-Rich Events

https://www.frontiersin.org/journals/astronomy-and-space-sciences
www.frontiersin.org
https://www.frontiersin.org/journals/astronomy-and-space-sciences#articles


These SEP2 events are generally more intense and were often
associated with CMEs fast enough (1,360 km s−1 in this case) to
drive shock waves that could reaccelerate the SEP1 impulsive
suprathermal ions from the earlier magnetic reconnection as well
as ions, at least H ions and occasionally He, from the ambient
plasma. The correlation of SEP proton intensity with proton
excess is shown in Figure 3 along with the suggested explanation
of the excess.

At a temperature of 2.5–3 MK the elements 4He and C are both
fully ionized with A/Z � 2, so 4He/C should represent the
underlying coronal abundance, yet ∼6% of impulsive SEP
events are extremely 4He poor (Reames 2019a) with 4He/C ≈
15 vs an average 137 ± 8. One such event is shown as Event 79 in
the right panel of Figure 2 where H, near background level, lies
near the power-law fit of high-Z elements, but He lies well below
it; another is shown as Event 3 in the central panel of Figure 1,
where 4He is obviously much closer to O and Fe than it is in other
events. It has been suggested that the high first ionization
potential (FIP) of He, of 24.6 eV can delay its ionization and
elevation into the corona, but Ne with FIP � 21.6 eV is unaffected.
Any possible Z2/A effects from matter traversal would seem to
suppress C more than 4He. What causes this occasional 4He
poverty?

Note that we have studied variations of H/O and 4He/O
separately in the above and not H/4He. Thus in Figure 2 we
identify separate processes where H variation from the
extrapolated power-law fit of Z > 2 depends upon the
presence and activity of fast shock waves, while 4He
(presumably) depends upon the especially high FIP of He.
Studying the ratio H/4He would have blurred together the
effects of these extremely different physical processes. This
important feature was not initially obvious.

Isotope resolution has been extended as high as Fe (e.g., Leske
et al., 1999, 2007). These measurements show variations in A/Q
that supplement similar measurements that have been shown
with power-law fits using multiple elements.

Ionization States
Luhn et al. (1984, 1987) provided important early measurements
of ionic charge states, Q, up to Fe for energies 0.34–1.8 MeV
amu−1. For large gradual events they found average values ofQSi �
11.0 ± 0.3 and QFe � 14.1 ± 0.2, appropriate for a temperatures of
≈2 MK. However, for 3He-rich events they found QSi ≈ 14 and
QFe � 20.5 ± 1.2, which meant either a source temperature of
≈10 MK, or stripping of the ions after acceleration. How could the
average abundances of Ne, Mg, and Si get enhanced if they were
all fully ionized with A/Q � 2 during acceleration, just like He, C,
and O? This dilemma was finally resolved when DiFabio et al.
(2008) found that the ionization states in the impulsive SEP
events increased with ion speed, suggesting that the ions had
come to ionization equilibrium during traversal of a small
amount of material after acceleration. DiFabio et al. (2008)
concluded that acceleration must have occurred near 1.5
solar radii.

Acceleration Theory
Most of the early attempts to explain the enhancement of 3He
involved the preferential absorption of some form of wave energy,
in resonance with the gyrofrequency of 3He, to produce selective
preheating that would enhance the tail of thermal distribution of
3He so as to inject more ions into some unspecified acceleration
mechanism. Ibragimov and Kocharov (1977) and Kocharov and
Kocharov (1978, 1984) were first, considering ion-sound wave
heating, but Weatherall (1984) pointed out that this could not
account for all abundances. Fisk (1978) and Varvoglis and
Papadopoulis (1983) suggested selective heating by absorption
of electrostatic ion cyclotron waves. Winglee (1989) considered
the ion-ion streaming instability to enhance heavy ions, and
Riyopoulos (1991) considered electrostatic two-ion (H–4He)
hybrid waves.

Temerin and Roth (1992) considered the ubiquitous
associated streaming electrons that produced electromagnetic
ion cyclotron (EMIC) waves that were adequate to actually

FIGURE 3 | Panel (A) shows the peak proton intensity at 2–2.5 MeV vs the proton excess relative to the Z > 2 power-law fit for impulsive SEP events with the symbol
size and color determined by CME speed as shown. Events with fast CMEs have proton excesses. Panel (B) suggests two possible contributions to the plot of
enhancement vs A/Q for the shock-enhanced SEP2 impulsive events: reaccelerated impulsive SEP1 seed particles (blue) and accelerated ambient coronal seed
particles (red). Note that a shock wave can accelerate outside the volume that contains the SEP1 seed particles. If the shock is very strong, the ambient corona
could dominate and the event could become a shock-dominated gradual event.
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resonantly accelerate the 3He that absorbed the waves while
mirroring in the magnetic field, in analogy with “ion conics”
seen in the Earth’s aurorae. Roth and Temerin (1997) suggested
that heavier ions were enhanced through their second harmonic,
but there was no smooth power law in A/Q. Miller et al. (1993a, b)
considered the effects of other electron-beam-generated wave
modes and Steinacker et al. (1997) considered warm-plasma
broadening of spectral lines to produce a “He valley” of wave
absorption.

Litvinenko (1996) considered effects of EMIC waves and
Coulomb energy losses on the 3He spectrum and Liu et al.
(2004, 2006) were able to fit the complex spectra of 3He and
4He with a model of stochastic acceleration by a power-law
spectrum of plasma-wave turbulence. Roughly speaking, as the
ions are accelerated to higher energy, the 3He begins to form a
distinct energy peak as the 3He in the source volume becomes
depleted, while the 4He does not.

Separately, explanation of the power-law dependence of
enhancements on A/Q was first found by Drake et al. (2009)
in particle-in-cell simulations of collapsing islands of magnetic
reconnection. Ions are Fermi accelerated as they scatter back and
forth from the ends of the collapsing islands. A similar process is
found to accelerate electrons (Arnold et al., 2021) and its
efficiency depends upon the strength of the out-of-plane guide
field. However, 3He has not been discussed at all in this process,
although there would seem to be abundant opportunities for
mirroring ions to absorb waves.

There is evidence that the contribution of 3He is often
saturated, i.e., all the 3He in the accelerating volume is actually
accelerated. Reames (1999) estimated the total number of
energetic 3He ions integrated over energy, space, and time and
found it could be comparable with the number that exist in a
typical flare volume. Subsequently, (Ho et al., 2005; Ho et al.,
2019; Petrosian et al., 2009) found that this effect limited the
maximum possible fluence of 3He. It has been suggested (Kahler,
private communication) that comparing the calculated number of
SEP 3He with the calculated number of 3He in the observed
volume of a jet or reconnection region, on an event-by-event
basis, might help determine where and what fraction of the 3He is
accelerated. Is there enough 3He in the reconnection volume or is
it accelerated throughout the jet as the Temerin and Roth (1992)
model may suggest? Can anything be said about possible second-
harmonic acceleration of some heavy ions like Fe, or the rare, low-
energy resonant peaks of Si or S (Mason et al., 2016), for which
the low-energy spectra roll over like that of 3He? Is SEP output
bounded by the reconnection volume? Accelerating volumes are
limited in impulsive SEPs while, in contrast, in gradual SEP
events, source shock waves of huge area sweep out extensive
volumes.

FLARES, CMES, SHOCKS, AND JETS

Reconnection of the solar magnetic field drives nearly all solar
activity, and flares provide a ubiquitous visible marker of
magnetically trapped heating from that reconnection. Perhaps
it is not surprising that the earliest evidence of GLEs was

associated with obvious, bright flares, but this association was
taken much too literally.

Radio data were the first to distinguish two acceleration
mechanisms for SEPs in space (Wild et al., 1963), type III
bursts that associate with electrons streaming from open
magnetic reconnection in impulsive SEP events, and type II
bursts that associate with shock acceleration and large gradual
SEP events, but, unfortunately, the radio evidence was largely
ignored in early SEP history.

After CMEs were identified and their observation became
common, Kahler et al. (1984) found a 96% correlation between
large SEP events and fast, wide CMEs. Shock waves driven by the
CMEs could explain the extremely broad longitude span of the
events. Mason et al. (1984) found that the minimal rigidity
dependences of abundance variations across longitude were
inconsistent with a point source origin and they discussed
large-scale shock acceleration that they labelled LSSA. The
importance of CMEs and shocks was not taken seriously by
some flare enthusiasts until Gosling (1993, 1994) review article
entitled “The solar flare myth” was published. This article was
then found to “wage an assault on the last 30 years of solar-flare
research” (Zirin, 1994) even though most published “solar-flare
research” ignored SEPs entirely. However, the importance of
CMEs and the existence of two mechanisms of SEP
acceleration began to be recognized (Reames, 1988, 1995b,
1999, 2013, 2015, 2020, 2021a, 2021b; Zank et al., 2000, 2007;
Kahler, 2001; Cliver et al., 2004; Lee, 2005; Gopalswamy et al.,

FIGURE 4 | Images of the impulsive SEP event of May 1, 2000 (see also
Figure 2) are: upper left a full disk SOHO/EIT image at 195�A before the flare,
upper right subtracted EIT image at 195 �A with arrow showing new small
white source in the NW quadrant, lower left subtracted image of NW
quadrant of SOHO/LASCO/C2 coronagraph 2–6 RS with arrow showing
narrow CME, lower right subtracted NW quadrant of C3 image 4–30 RS with
arrow showing narrow CME (Kahler et al., 2001). Tracking and magnetic
configuration for this event are shown by Nitta et al. (2006) and by Wang et al.
(2006).
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2012; Lee et al., 2012; Mewaldt et al., 2012; Desai and Giacalone,
2016; Kouloumvakos et al., 2019).

For a brief interval, distinguishing impulsive and gradual SEP
events seemed simple. Impulsive events were 3He-rich and gradual
events were not. ThenMason et al. (1999) found a small but significant
enhancement of 3He in a large SEP event that would be called gradual
in all other respects. It became clear that shock waves in gradual SEP
events could reaccelerate residual suprathermal ions left over from
previous impulsive SEP events. In fact these pre-accelerated ionsmight
be preferred in some cases, as in quasi-perpendicular shockswhen ions
needed to overtake the shock from downstream (Tylka et al., 2001,
2005; Tylka andLee, 2006). In fact, it became evident that large pools of
3He-rich, Fe-rich suprathermal ions were extremely common, and
available for shocks to traverse (Richardson et al., 1990; Desai et al.,
2003; Wiedenbeck et al., 2008; Bučík et al., 2014, 2015; Chen et al.,
2015). Whenever there was no large SEP event in progress the default
suprathermal ion abundances below ∼1MeV amu−1 seemed to be
3He-rich and Fe-rich, suggesting a large number of small unresolved
jets (nanojets?) could generate SEPs faster than the solar wind could
sweep them away. Thus, for 24% of gradual events, the Z ≥ 2 elements
are dominated by reaccelerated ions from impulsive events, called
SEP3 events (Reames, 2020), and in 69% of gradual events the shock
predominantly accelerates ions, even Z > 2 ions, from the ambient
coronal plasma (SEP4 events; Reames, 2020a; Reames, 2021a; Reames,
2021b).

Impulsive SEP events were small and difficult to associate with
coronal features, but Kahler et al. (2001) were able to associate
several of the larger impulsive SEP events with narrow CMEs.
Figure 4 shows a narrow (54⁰), fast (1,360 km s−1) CME from the
impulsive event of May 1, 2000 SEP, seen by the Solar and
Heliospheric Observatory (SOHO; https://sohowww.nascom.
nasa.gov/), for which SEPs were shown in the central panel of
Figure 2. Such CMEs had been associated with type III bursts and
solar jets (Shimojo and Shibata, 2000). Unlike flares, jets involve
magnetic reconnection on open field lines so the SEPs (and the
CMEs) easily escape. Tracking of impulsive SEPs back to the Sun
led to jets, often on the boundary between active regions and
coronal holes (Wang et al., 2006; Nitta et al., 2006, 2015).
However, onset times are poorly defined in small SEP events,
making associations with type III bursts, etc. more difficult.
Reconnection is often triggered by large-scale waves moving
across the corona (Bučík et al., 2016). It is now possible to
consider the nature of the associated jets directly for many
3He-rich events (Bučík et al., 2018a, 2018b, 2021; see review;
Bučík, 2020). It has even been possible to compare the
temperatures derived from the extreme ultraviolet (EUV)
images of coronal source regions of 24 solar jets associated
with 3He-rich events (Bučík et al., 2021) with the abundance-
derived temperatures from SEPs (Reames et al., 2014b).

However, impulsive SEP events are not necessarily derived
purely frommagnetic reconnection; the CMEs from these jets are
often fast enough to drive shock waves which can reaccelerate
SEPs from the reconnection as is certainly the case for the
1,360 km s−1 CME in the May 1, 2000 event shown in
Figure 4. It may be possible to distinguish the pure (SEP1)
events from those reaccelerated by a shock (SEP2) from the
proton excess produced in the latter events as shown in Figure 3.

A sketch showing a jet formed by newly emerging magnetic
field is shown in Figure 5. When the emerging field has opposite
polarity from that of the preexisting field, reconnection takes
place, not at a single point but in a series of “islands.” In realistic
jets, the opposing fields rarely exactly cancel, but rather leave an
out-of-plane, residual “guide field.” Particle acceleration occurs as
particles, mainly electrons (Arnold et al., 2021), are Fermi-
accelerated as they pitch-angle scatter in the evolving fields. As
the SEPs and CME plasma are ejected on open field lines at the
upper right in Figure 5, newly closing loops capture some SEPs in
the lower left region labeled “flare” where they deposit their
energy as heat. While much of the jet, including the SEPs, retain
temperatures of 2–3 MK and emit EUV (Reames et al., 2014b;
Bučík et al., 2021), the “flare” region with its captured SEP energy
heats to 10–20 MK and emits X-rays. These X-rays often provide
the source location. It is important to realize that the presence of
the X-rays does not define the nature of the SEPs in space; both
environments coexist since the reconnection that opens some
field lines closes others. Some day someone will be able to provide
us with an overlay of X-ray and EUV images that will map details
of these source regions. As reconnection events become larger
and more complex, both X-ray and EUV regions increase,
contributing to a “big flare syndrome” (Kahler 1982), i.e., a
misleading correlation between X-rays and the SEPs in space.

What about solar flares? There is evidence frommeasurements
of Doppler-broadened c-ray lines that the ions accelerated in
large solar flares are 3He-rich (Mandzhavidze et al., 1999; Murphy
et al., 2016) and Fe-rich (Murphy et al., 1991), just like the
impulsive SEPs from jets that we see in space. The SEPs
accelerated on closed loops, dominated by electrons, soon
scatter into the loss cone and plunge into the denser corona
below, scattering against ions to produce X-ray bremstrahlung,
and heating the plasma which expands back up into the loops
creating a hot (>10 MK), bright flare. SEPs from jets are not hot
(∼2–3 MK; Reames et al., 2014b; Bučík et al., 2021) because the

FIGURE 5 | A jet is produced when newly emerging magnetic flux (blue)
reconnects with oppositely directed field (black) in the red region. This
reconnection region is not a uniform surface but forms multiple islands of
reconnection. Energetic particles and plasma can escape toward the
upper right and a newly-enclosed flaring region labeled “Flare” forms at the
lower left that is heated by trapping SEPs. Real jets can be much more
complex, involving twisted fields, etc.
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SEPs and the CME plasma escape. Flares exist precisely because
their energy is magnetically trapped and can only escape as heat,
light, or neutral particles. Reconnection of closed fields with other
closed fields cannot produce open fields, except when those fields
are eventually carried outward by a CME.

Shock waves, driven by fast, wide CMEs are the basis of
gradual SEP events. However, the narrow (<60⁰) CMEs
emitted from solar jets are also fast enough to drive significant
shocks, such as the 1,360 km s−1, 54⁰ width CME in the May 1,
2000 events discussed above. Yet, often, these fast, narrow CMEs
from jets lack type II radio bursts that can signify shock
acceleration, and the CME’s contribution to SEP acceleration
may be questioned (e.g., Bronarska et al., 2018; Kahler et al.,
2019). At quasi-parallel shock waves, ions are accelerated by
scattering back and forth across the shock against Alfvén waves
(often self-generated), but non-relativistic electrons cannot
resonate with Alfvén waves, so they can only be accelerated in
the VS x B electric field in more quasi-perpendicular regions of
the shock. A big wide hemispherical shock surely has some
regions where type II electrons get accelerated, while a narrow
CME may produce only quasi-parallel regions—accelerating few
electrons but plenty of ions. The shock from the May 1, 2000
event may not accelerate enough electrons, but it surely
accelerates more ions than any of the shocks we have been
able to observe directly in situ with shock speeds as low as
300 km s−1 (Reames 2012). The one feature that seems to
show the presence or absence of shock acceleration in
impulsive SEP events is the proton excess shown in Figures 2,
3 above (Reames 2019b), but the response of electrons and
protons can be completely different.

Some people continue to defined “flare” to include every
energetic phenomenon on the Sun, including flares, jets,
CMEs, shocks, and even the SEPs at 1 AU. That, of course,
makes flare research the most important discipline of all, studying
the cause of everything solar, by definition. This deliberately blurs
the physics, elevating the importance of flares and diminishing

that of CMEs; this was exactly Gosling (1993) objection to “The
Solar Flare Myth.” Applying “flare” to everything is not only
meaningless but helps no one understand any physics. Beginning
with Carrington (1860), many of us still think of “the flare” as that
localized sudden bright flash of white light, Hα, or X-ray emission
driven because reconnection energy is trapped in closed magnetic
loops on the Sun—an event recorded by the Solar Flare Patrol and
documented by its timing, latitude, longitude, and C-M-X-scale
soft X-ray intensity. These flares are limited in spatial extent. In
contrast, the shock wave that accelerates SEPs in a large gradual
event is a nominally hemispherical structure initially active from
2 to over 3 RS (Reames 2009a, b; Cliver et al., 2004), thus enclosing
an accelerating volume perhaps ∼10 times the volume of the Sun
itself—this is not a flare. Thus the source of SEPs has a major
effect on their spatial distributions, among many other things,
and lumping all possible sources together, to inflate the egos of a
few flare researchers, is no help. please distinguish CMEs from
flares in your publications.

This field began with a frequent assumption that all SEPs
were somehow actually accelerated in flares. First we found
that SEPs in gradual events were accelerated by CME-driven
shocks instead. Then we found that the remaining impulsive
SEPs in space came from jets. Now we find that it may be
more correct to say that flares are caused by SEPs trapped on
loops than the converse.
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