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This investigation is concerned with uniturbulence associated with surface Alfvén waves
that exist in a Cartesian equilibrium model with a constant magnetic field and a piece-wise
constant density. The surface where the equilibrium density changes in a discontinuous
manner are the source of surface Alfvén waves. These surface Alfvén waves create
uniturbulence because of the variation of the density across the background magnetic
field. The damping of the surface Alfvén waves due to uniturbulence is determined using
the Elsässer formulation. Analytical expressions for the wave energy density, the energy
cascade, and the damping time are derived. The study of uniturbulence due to surface
Alfvén waves is inspired by the observation that (the fundamental radial mode of) kink
waves behave similarly to surface Alfvén waves. The results for this relatively simple case of
surface Alfvén waves can help us understand the more complicated case of kink waves in
cylinders. We perform a series of 3D ideal MHD simulations for a numerical demonstration
of the non-linearly self-cascading model of unidirectional surface Alfvén waves using the
code MPI-AMRVAC. We show that surface Alfvén waves damping time in the numerical
simulations follows well our analytical prediction for that quantity. Analytical theory and the
simulations show that the damping time is inversely proportional to the amplitude of the
surface Alfvén waves and the density contrast. This unidirectional cascade may play a role
in heating the coronal plasma.
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1 INTRODUCTION

Magnetohydrodynamic (MHD) turbulence is one of the most important physical processes at
large scales in plasma, as many astrophysical and laboratory plasmas are in a turbulent state
(Goldstein et al., 1995; Biskamp, 2003; Bruno and Carbone, 2005; Cranmer et al., 2007). It is
generally understood that the role of the magnetic field is significant under certain situations.
Turbulence efficiently helps in the mixing and transport of energy and matter across scales as it
cascades from large scales to small scales, whereas the dissipation only becomes essential in the
smallest scales, i.e., Kolmogorov scales. Therefore, turbulence is believed to be at least partly
responsible for heating the solar corona and accelerating the solar wind (Tu and Marsch, 1995;
Verdini et al., 2009). Furthermore, Kolmogorov (1941) revealed that in fluid turbulence, the
energy cascade to smaller scales is independent from the scale, resulting in a power-law behavior
in the so-called inertial range. After this range, turbulent eddies transfer to the dissipative range,
in a sense that heating occurs as the fluctuations are damped. The study of MHD turbulence
began with Iroshnikov (1964), and Kraichnan (1965), who generalized Kolmogorov’s theory to
the presence of magnetic field and its stabilizing influence.
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It is widely believed that convective motions in the
photosphere generate waves propagating away from the sun
(Heinemann and Olbert, 1980; Heyvaerts and Priest, 1983;
Matthaeus et al., 2003; Perez and Chandran, 2013). Waves
that are propagating upwards continuously reflect towards the
Sun due to the gravitational stratification of the plasma, which
causes the Alfvén speed to vary along the magnetic field lines. The
reflected waves interact with waves propagating upwards. This
process creates the turbulent cascade and leads to energy
dissipation (Matthaeus et al., 1999; Van Doorsselaere et al.,
2020b). This process has also been modeled extensively in
numerical experiments (Suzuki and Inutsuka, 2005; Rappazzo
et al., 2008; van Ballegooijen et al., 2011; Shoda and Yokoyama,
2018). The large majority of those considered either a completely
homogeneous background or only inhomogeneity along the
magnetic field in a setting of incompressible MHD. In
incompressible MHD, these counterpropagating waves are
conveniently described by Elsässer variables, �Z

± � �v ± �B/
��
μρ

√
,

where �v is the velocity of the plasma, �B is the magnetic field,
μ and ρ are the magnetic permeability and density. Many authors
use these variables to distinguish inward ( + ) and outward ( − )
propagating Alfvén waves. They are thought to interact non-
linearly to generate an energy cascade, and their nature helps us
understand more about the MHD turbulence cascade
mechanism.

Observations showed that transverse waves are critical for
transferring energy from the photosphere to the solar corona,
where research efforts have mainly focused on standing and
propagating kink waves (De Pontieu et al., 2007; Tomczyk
et al., 2007; Anfinogentov et al., 2015; Kohutova et al., 2020).
Furthermore, transverse standing waves have been extensively
studied numerically, where it was revealed that standing
transverse oscillations are the decisive point of developing
Kelvin-Helmholtz instability (KHI) non-linearly (Terradas
et al., 2008; Antolin et al., 2016). Lately, Van Doorsselaere
et al. (2021) developed a nonlinear damping model for
standing kink waves and showed that the damping time is
inversely proportional to the oscillation amplitude, where they
also found a notable match with the observation (Nechaeva et al.,
2019). Compared to standing transverse oscillations, propagating
kink waves have received little attention (Thurgood et al., 2014;
Morton et al., 2021).

State of the art in turbulence generation in MHD is the
phenomenology of the counterpropagating Alfvén waves. In
other words, for turbulence to be generated by waves, one
needs waves that collide. According to the currently accepted
phenomenology, turbulence generated by MHD waves relies on
the counterpropagating waves’ collision. In case when the wave-
packet propagates parallel to the magnetic field with the
inhomogeneity across the field, it causes the initial Alfvénic
wave-package to self-deform nonlinearly as it propagates,
cascading to smaller scales. This can act as an additional
channel towards a turbulent cascade, thereby enhancing the
dissipation rate and increasing heating (Van Doorsselaere
et al., 2020b). In recent years, it was realized that
unidirectionally (in the same direction) propagating waves also
generate turbulence when there is inhomogeneity across the field

(Magyar et al., 2017; 2019a). These unidirectional waves carry
both Elsässer variables. It indicates that �Z

±
cannot be longer

separated and associated with waves propagating in one direction
and the other. It also means that one unidirectional wave has to be
described by both these Elsässer variables propagating in one
direction. Consequently, the nonlinear advective term �Z

∓ · ∇ �Z
±

is nonzero, leading to the cascade. In an inhomogeneous plasma,
it can be nonzero also for waves propagating only in one
direction. Thus, there is no need for reflections to generate
counterpropagating waves. This phenomenon was first
introduced by Magyar et al. (2017) and has been named
uniturbulence. Such turbulence can exist in open magnetic
field regions and may play a role in heating the coronal
plasma because the additional energy cascade term is included
(Van Doorsselaere et al., 2020a).

In this paper, we mainly study the surface Alfvén waves.
Surface Alfvén waves are MHD waves that appear at the
discontinuity and have zero vorticity everywhere except at the
interface (Goossens et al., 2012). Moreover, Wentzel (1979a)
mentioned that the phase speed of these waves ranges between
the internal and external Alfvén phase velocities. Surface Alfvén
waves propagate unidirectionally with no backward reflections.
Surface Alfvén waves are waves propagating in one direction,
suggesting that both Elsässer variables represent surface Alfvén
waves and are connected and co-propagating. These waves are
indeed no longer pure Alfvén waves. The inward or outward
Elsässer variables can separate only pure Alfvén waves in an
incompressible medium. As a result, they must be characterized
by both Elsässer variables. Unidirectional surface Alfvén waves
have also been extensively discussed in the paper by Magyar et al.
(2019b).

Ionson (1978) was the first to consider resonant absorption for
heating solar coronal loops when it comes to dissipation. Ionson
studied surface Alfvén waves in a Cartesian system. He applied
the method of Sedláček (1971) to solve the dispersion relation and
obtained the damping rate. That was pointed out by Wentzel
(1979b). Wentzel dealt with both the Alfvén and the slow
resonance in Cartesian geometry. Also, it gives an enlightening
discussion of the Sedlacek procedure.

Hollweg and Yang (1988) studied the damping of
compressible MHD waves at thin surfaces in Cartesian
geometry. They used the approximation that the perturbation
of pressure is constant in the non-uniform layer. Their numerical
example applied their analytical result to cylindrical loops using
the simple ad hoc transformation from Cartesian to cylindrical
geometry kz � π/L, ky � 1/R, m � 1. They concluded that kink
waves would undergo fast damping due to resonant absorption.
The damping due to resonant absorption is much faster than the
damping due to viscosity and resistivity. This is the first
theoretical result on the fast damping of kink waves on
coronal loops.

Expressions for the damping rate due to resonant absorption
are given by Goossens et al. (1992) for non-axisymmetric MHD
waves. Form � 1, the waves are kink waves. Goossens et al. (1992)
confirm the results of Hollweg and Yang (1988). Also, the simple
Hollweg and Yang (1988) transformation from a Cartesian to a
cylindrical system for a straight field gives correct results.

Frontiers in Astronomy and Space Sciences | www.frontiersin.org January 2022 | Volume 8 | Article 7691732

Ismayilli et al. Non-Linear Damping by Uniturbulence

https://www.frontiersin.org/journals/astronomy-and-space-sciences
www.frontiersin.org
https://www.frontiersin.org/journals/astronomy-and-space-sciences#articles


Ruderman and Roberts (2002) showed that two-time scales are
involved in resonant absorption and recovered Goossens et al.
(1992). Recently, Antolin and Van Doorsselaere (2019) studied
the effect of resonant absorption for the generation of the KHI,
where they pointed out that it plays a crucial role in exciting and
developing the transverse wave-induced KHI rolls in the loop.

This paper investigates uniturbulence associated with surface
Alfvén waves that exist in a Cartesian equilibrium model with a
constant magnetic field and a piece-wise constant density. The
surface where the equilibrium density changes in a discontinuous
manner is the source of surface Alfvén waves. These surface
Alfvén waves create uniturbulence because of the variation of the
density across the background magnetic field. The damping of
surface Alfvén waves due to uniturbulence is determined using
the Elsasser formulation. We are inspired by the work of Van
Doorsselaere et al. (2020a). Van Doorsselaere et al. (2020a)
studied the energy dissipation for propagating kink waves in
cylindrical plasma configurations and derived analytical
expressions for the timescale of the energy cascade. The main
goal of the present paper is to support the results by Van
Doorsselaere et al. (2020a) by using their scheme to obtain
analytical and numerical results for surface Alfvén waves on a
simple Cartesian equilibrium configuration. Section 2 presents
the analytical model for uniturbulence driven by surface Alfvén
waves and the resulting damping of the surface Alfvén waves. The
numerical scheme is presented in Section 3. Results are presented
and analyzed in Section 4. Finally, conclusions are given in
Section 5.

2 ANALYTICAL MODEL FOR
UNITURBULENT DAMPING OF SURFACE
ALFVÉN WAVES
Two preliminary analyses were undertaken. First, we repeat the
calculation of Van Doorsselaere et al. (2020a) in Cartesian
coordinates, in contrast to their analytical model of the
nonlinear evolution of kink waves in cylindrical geometry.
Van Doorsselaere et al. (2020a) described transverse kink
waves by Bessel functions, but we derive classic results for the
surface Alfvén waves (Section 2.1). Nevertheless, we use similar
approach for calculating the wave energy density (Section 2.3)
and the energy cascade rate (Section 2.4) by using the Elsässer
variables (Section 2.2). Secondly, we derive the damping time
scale in a long-wavelength limit (Section 2.5).

2.1 Governing Equations and Surface Alfvén
Waves
We use the ideal incompressible MHD equations,

∇ · �v � 0, (1)

ρ
z �v

zt
+ ρ �v · ∇ �v � −∇p + 1

μ
(∇ × �B) × �B, (2)

z �B

zt
� ∇ × ( �v × �B), (3)

where �v denotes the velocity field of the plasma, �B is the magnetic
field, ρ is the density, μ is the magnetic permeability, and p is the
gas pressure.

We consider an equilibrium configuration in a Cartesian
coordinate system with a uniform background magnetic field
which is directed along with the z axis (B0

�→ � B0 �ez) and no
background flow ( �v0 � 0). Here and hereafter, we chose a
piece-wise constant density (Goossens et al., 2012):

ρ(x) � ρl if x≤ 0,
ρr if x> 0,{ (4)

where ρl and ρr are constant and ρl ≠ ρr. We use l and r indices to
distinguish the density values on the left and right sides of the
interface. As a next step, the incompressible MHD equations have
been linearised ( �B � �B0 + �B′, �v � 0 + �v′, ρ � ρ0 + ρ′, p � p0 + p′):

∇ · �v � 0,

ρ0
z �v′
zt

� −∇p′ + 1
μ
( �B0 · ∇) �B′ − 1

μ
∇ �B0 · �B′,

z �B′
zt

− ( �B0 · ∇) �v′ � 0,

We take all perturbed quantities proportional to f′ � f(x) exp(i
(ky y + kz z − ω t)). We Fourier decompose the perturbation
with respect to y, z and t, as the equilibrium quantities are only
depending on x. Here f represents the physical variables, ω is
the wave frequency and ky, kz are the wavenumbers. As a next
step, we rewrite the equation in terms of displacement
( �ξ � d �v′/dt) and total pressure (P′ � p′ + B0 Bz/μ).
Eliminating the variables (ξy, ξz, ρ0, Bx, By), we can combine
the linearized MHD equations into one 2nd order differential
equation (ODE). Using the x-component of the equation of
motion

dP′
dx

� ρ0 (ω2 − ω2
A) ξx, (5)

whereωA � kz VA andVA � B0/
������
μ ρ(x)√

. We get a 2nd order ODE
for total pressure as follows

ρ0 (ω2 − ω2
A)

d

dx

1
ρ0 (ω2 − ω2

A)
dP′
dx

( ) � κ2P′. (6)

We introduce the new variable κ2 � k2y + k2z, which is the
wavenumber in the perpendicular direction (i.e., perpendicular
to the density interface). We consider the unidirectional magnetic
field along the z direction, which allows us to take different Alfvén
speeds on the left and the right side. In other words, surface waves
can exist only when VAl ≠ VAr (indices l and r denotes left and
right side of the density medium, see Eq. 4). Now due to constant
quantities in each half-space Eq. 6 simplifies into

d2 P′
d x2

� κ2 P′, (7)

The solutions for Eq. 7 are finite at x � ±∞ if and only if

P′(x) � Pl′ � C1 e
κ x, if x≤ 0,

Pr′ � C2 e
−κ x, if x> 0,{ (8)
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At this point we implement the continuity conditions for total
pressure [P′ ]x�0 � 0 and displacement [ ξx ]x�0 � 0 at the
interface x � 0. The braces denote the difference across the
interface. This resulted in C1 � C2 � C and the known
dispersion relation for surface waves (Ionson, 1978; Wentzel,
1979b; Roberts, 1981) as follows

ω2 � ρl ω
2
Al + ρr ω

2
Ar

ρl + ρr
, (9)

where ωAl � kz VAl and ωAr � kz VAr.

2.2 Elsässer Variables
Now we compute the Elsässer variables for surface Alfvén waves
in our setup. We show that surface Alfvén waves carry both
Elsässer variables even if they propagate only in one direction
(inward or outward). This is in clear contrast to Alfvén waves in
uniform plasmas. Therefore, we describe the Elsässer variables for
perturbed quantities.

�Z
± � �v′ ± �B′���

μρ0
√ , (10)

where the Elsässer variables are the well-known combination of
flow and Alfvén speed perturbation. In an attempt to calculate
the Elsässer variables, we determine the linear variables as
follows

�v′ � d �ξ

d t
� 1

ρ0 (ω2 − ω2
A)

d

d t
(∇P′),

�B′ � B0
d �ξ

d z
� B0

ρ0 (ω2 − ω2
A)

d

d z
(∇P′). (11)

Here frequency omega is ω � ωk given in Eq. 9. For a propagating
wave, we take total pressure as P′ � P′(x) cos ky y cos(kz z − ω t),
where we take P′(x) as in Eq. 8. P′ is harmonic in time, in y and z
directions, as the κ contains both ky and kz. We substitute Eq. 11
into Eq. 10 in computing the Elsässer variables as follows

Z±
x � dP′(x)

d x

ω ∓ ωA

ρ0 (ω2 − ω2
A)

cos ky y sin(kz z − ω t), (12)

Z±
y � −P′(x) ky ω ∓ ωA

ρ0 (ω2 − ω2
A)

sin ky y sin(kz z − ω t), (13)

Z±
z � P′(x) kz ω ∓ ωA

ρ0 (ω2 − ω2
A)

cos ky y cos(kz z − ω t), (14)

2.3 Wave Energy Densities
In this section, we derive the evolution of the wave energy
densities. With the use of the definition of Elsässer variables,
we obtain an expression for wave energy densities.

w± � ρ0 ( �Z
±)2

4
� (ω ∓ ωA)2
4 ρ0 (ω2 − ω2

A)2
zP′
zx

( )2

cos2ky y + P′2 k2y sin
2ky y[ ]

sin2(kz z − ω t)+
+k

2
z P

′2 (ω ∓ ωA)2
4 ρ0 (ω2 − ω2

A)2
cos2(ky y)cos2(kz z − ω t). (15)

This can be simplified for the solutions (Eq. 8) in the two regions

w±
r � C2 e−2 κ x

4 ρr (ω ± ωAr)2 k2y sin
2(kz z − ω t) + k2z cos

2(ky y)( ),
w±

l � C2 e2 κ x

4 ρl (ω ± ωAl)2 k2y sin
2(kz z − ω t) + k2z cos

2(ky y)( ),
(16)

We calculate the energy density averaged over the cross-section
and over the period

〈w〉 � ∫
x

dx
ky
2π

∫
2π/ky

0

dy
ω

2π
∫2π/ω
0

wdt,

When we average over the x direction, we use the variable as a
predetermined length L in the transverse direction. The
integration in the x direction is from − L to + L

〈wr〉 � 〈w+
r + w−

r 〉 � C2 κ

8
(ω2 + ω2

Ar)
ρr (ω2 − ω2

Ar)2
(1 − e−2 κ L),

〈wl〉 � 〈w+
l + w−

l 〉 � C2 κ

8
(ω2 + ω2

Al)
ρl (ω2 − ω2

Al)2
(1 − e−2 κ L),

After taking the average wave energy density for two different
regions, we take the sum of 〈w〉 � 〈wl〉 + 〈wr〉. We obtain the
energy density averaged over the cross-section as follow

〈w〉 � C2 κ

8

ρr (ω2 − ω2
Ar)2 (ω2 + ω2

Al)
+ρl (ω2 − ω2

Al)2 (ω2 + ω2
Ar)

ρl ρr (ω2 − ω2
Al)2 (ω2 − ω2

Ar)2
(1 − e−2 κ L), (17)

By using the dispersion relation (Eq. 9) it simplifies to

〈w〉 � C2 κ

4
(ρr + ρl)3 ω2

ρ2r ρ
2
l (ω2

Al − ω2
Ar)2

(1 − e−2 κ L). (18)

2.4 Energy Dissipation Rate
The energy cascade rate is computed from the non-linear term in
the incompressible MHD equations. Following Van Doorsselaere
et al. (2020a), the energy dissipation rate for upward and
downward surface Alfvén waves can be expressed by using.

ϵ± � �Z
∓ · ∇w± (19)

We find that

ϵ±r � C3 e−3 κ x cos(ky y) sin(kz z − ω t)
2 ρ2r (ω2 − ω2

Ar) (ω ± ωAr)
k4z cos

2(ky y) + k4y sin
2(kz z − ω t) + 2 k2y k

2
z[ ], x> 0, (20)

ϵ±l � C3 e3 κ x cos(ky y) sin(kz z − ω t)
2 ρ2l (ω2 − ω2

Al) (ω ± ωAl)
k4z cos

2(ky y) + k4y sin
2(kz z − ω t) + 2 k2y k

2
z[ ], x≤ 0. (21)

Since there are the third power of a periodic function in the y
direction and time, taking the average of Eqs 20, 21 leads to an
energy cascade rate of 0. In solar wind Alfvén turbulence model,
this zero average in the time domain is avoided by approximating
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�Z
± · ∇w± to

�����
( �Z

±)2
√

w±/L, where L is the correlation length that
defines the perpendicular scales of the wave energy distributions.
Van Doorsselaere et al. (2020a) generalized this method and used
the root-mean-square approach while averaging over a period
and the φ direction. In order to avoid an energy cascade equal to
zero, we use the root-mean-square approximation while
averaging over the y direction and period.

〈ϵ〉 � ∫
x

dx
ky
2π

∫
2π/ky

0

dy
ω

2π
∫2π/ω
0

ϵ2 dt⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
1/2

, (22)

Finally,

〈ϵr〉 � 〈ϵ+r + ϵ−r 〉

�
�
2

√
24

ω |C3|
κ

��������������������������������
5k8y + 24k6y k

2
z + 41k4y k

4
z + 24k2y k

6
z + 5k8z

√
(ω2 − ω2

Ar)2 ρ2r
(1 − e−3 κ L), (23)

〈ϵl〉 � 〈ϵ+l + ϵ−l 〉

�
�
2

√
24

ω |C3|
κ

��������������������������������
5k8y + 24k6y k

2
z + 41k4y k

4
z + 24k2y k

6
z + 5k8z

√
(ω2 − ω2

Al)2 ρ2l
(1 − e−3 κ L), (24)

Once more we use the dispersion relation to reduce the
expression as follows

〈ϵ〉 �
�
2

√
12

ω |C3|
κ

��������������������������������
5k8y + 24k6y k

2
z + 41k4y k

4
z + 24k2y k

6
z + 5k8z

√
(ρr + ρl)2

ρ2r ρ
2
l (ω2

Al − ω2
Ar)2

(1 − e−3 κ L), (25)

Taking the ratio τ � 〈w〉/〈ϵ〉 and considering L → ∞ we get

τ � 3
�
2

√
C

ω (ρr + ρl) (k2y + k2z)��������������������������������
5k8y + 24k6y k

2
z + 41k4y k

4
z + 24k2y k

6
z + 5k8z

√ . (26)

2.5 Long-Wavelength Approximation
We know that in solar corona structure, kz ≫ k⊥ (length of the
structure is much longer than the length scale in the
perpendicular direction), which allows us to acknowledge the
long-wavelength limit. In order to simplify the last equation, we
consider quasi-perpendicular propagation, also known as the
long-wavelength limit. We use this assumption to reduce the
complexity of the wavenumber expression. We introduce the new
parameter δ � kz/ky ≪ 1. Taking the perpendicular component vy
from Eq. 11 yields.

vy
VA

∼
−C
VAr

ky ω

ρr (ω2 − ω2
Ar)

, if x> 0

Considering last expression and rewriting in terms of the density
contrast ζ � ρr/ρl leads Eq. 26 to

τ � 3
��
10

√
5Vky

ζ + 1
ζ − 1

, (27)

We can see that in an inhomogeneous incompressible MHD, the
damping time scale is inversely proportional to the oscillation
amplitude V, where for the density contrast, we obtained same
relation as was discussed by Van Doorsselaere et al. (2020a). They
found a similar expression for damping time in the cylindrical
configuration:

τ � 2
���
5 π

√ R

V

ζ + 1
ζ − 1

, (28)

Here V is the velocity amplitude, and R is the radius of the
coronal loop, which in planar geometry R � 1/ky can be used.
Remarkably, the only difference is the factor, which is
approximately 4 times smaller. We show that the
fundamental radial mode of kink waves in a cylinder behaves
very much like a surface Alfvén waves.

We will be able to vary in the simulations the parameters
involved in this formula for the damping by the energy cascade.
These surface Alfvén waves can be easily numerically modeled,
and we can directly compare the energy dissipation rate to this
analytical work we derived.

3 NUMERICAL DEMONSTRATION OF
SELF-CASCADING

In this section, we simulate unidirectional propagating waves as
was previously done by Magyar et al. (2019b). We compare our
non-linear damping model of the surface Alfvén waves with the
series of numerical simulations. Notably, we investigate the
dependence on the velocity amplitude of the waves and
density contrast to observe if our damping formula is also
adequate for the simulation. Moreover, we extend the study of
Van Doorsselaere et al. (2020a) and verify their results with the
direct numerical simulations of uniturbulence formation in a
simple configuration.

TABLE 1 | The table shows different simulations, changing the ζ values for V �
0.06, similarly, different V values for ζ � 5. The chosen domain lengths (Z0) and
analyzed width (X0) for different simulations illustrate in the last two columns.

Density contrast ζ (V =
0.06)

Domain length Z0 Width of the region
X0

1.1 2 0.015
2 1.5 0.02
5 1 0.02
10 0.5 0.02
20 0.3 0.03
Velocity amplitude V (ζ = 5) Z0 X0

0.01 1 0.01
0.03 1 0.015
0.06 1 0.02
0.12 1 0.03
0.18 1 0.03
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3.1 Numerical Setup
3D ideal MHD simulations were run for numerical
demonstration of the self-cascading model using the code
MPI-AMRVAC (Keppens et al., 2012; Xia et al., 2018). In
the simulation, flux schemes were adopted with a five-wave
variant, HLLD solver, and Woodward slope limiter. The base
grid resolution is chosen as 60 × 60 × 40 in x, y, and z
directions, respectively. After applying three-level
refinement, the grid resolution becomes 240 × 240 × 160.
However, the physical system domain is 0.12 × 0.1 × Z0, where
Z0 has been changed with the density contrast as in Table 1,
and the lower density contrast requires additional length along
the z direction due to weaker damping. All the results are
presented in code units. We establish the following
normalization values of unit velocity � 1.16 × 104 cm/s, unit
length � 1 cm, number density � 1 cm−3, and unit time � 8.6 ×
10−5s in our code. For a series of simulations the chosen values
for amplitudes are V � {0.01, 0.03, 0.06, 0.12, 0.18}, where ζ � 5
considered and similarly we change the density contrast ζ �
{1.1, 2, 5, 10, 20} for V � 0.06.

We chose simple initial conditions of our model. The
following quantities are in code units. Firstly, the straight,

homogeneous magnetic field value is B0 � 1.115 along the z-
axis, but this value does not play a significant role. Secondly, we
employ a step function of density perpendicular to the
magnetic field, which is, in our case, at x � 0, where the
density changes discontinuously for ρl to ρr. In the y and z
direction, it does not vary. Moreover, in the simulations, we
considered a nearly incompressible regime. The minimum
Alfvén speed is VA ∼ 0.7 and sound speed is Vs ∼ 1.78,
resulting in a high plasma β ∼ 4.4. These are significantly
greater than our velocity perturbation. Furthermore, in the
paper by Magyar et al. (2019b), they considered tests with
different plasma beta values (from β ≈ 0.02 to 15), indicating
that the dynamics perpendicular to the magnetic field is not
very sensitive to its value.

Firstly, we check if the numerical dissipation influences the
measured damping time driven by cascade. The higher resolution
affects the generation of smaller scales at the interface but leads to
almost similar results for the damping time. We run the
simulation for V � 0.06 and ζ � 5 case with the 400 × 400 ×
240 grid resolution and the damping time is τ ≈ 0.85. The
calculated damping time is similar with a lower resolution:
τ ≈ 0.85.

FIGURE 1 | Cross-section of density variation at z � 0.5. Plots taken after four driver period for different velocity amplitudes (V � 0.01, 0.03, 0.06, 0.12, 0.18). In all
simulations ζ � 5.

FIGURE 2 | Snapshots of evolution of density at half of the z domain according to the table and t � 4. Plots vary for different density contrast ζ � {1.1, 2, 5, 10, 20},
where V � 0.06.

Frontiers in Astronomy and Space Sciences | www.frontiersin.org January 2022 | Volume 8 | Article 7691736

Ismayilli et al. Non-Linear Damping by Uniturbulence

https://www.frontiersin.org/journals/astronomy-and-space-sciences
www.frontiersin.org
https://www.frontiersin.org/journals/astronomy-and-space-sciences#articles


3.2 Boundary Conditions
We implement the following boundary conditions: First, at the
bottom of the z direction, we take a velocity along the x direction,
which varies sinusoidally in y.

vx(y, t) � V cos(ω t) sin(ky y).
According to Magyar et al. (2019b), such a driver will result in
uniturbulence in our setup. HereV is the initial velocity amplitude,
the frequency of driver is ω � 2 π and the wavenumber chosen for
one wavelength in the y direction, ky � 2 π/0.1.

Second, continuous conditions (Neumann style zero gradient
conditions) are taken in the top boundary in the z direction and

both x directions for all variables. Third, for the y direction, we
used periodic boundary conditions.

4 RESULTS

4.1 Numerical Results
Figures 1, 2 1constitute a set of three-dimensional fluctuations
of density change for various initial velocity amplitudes (V)
and density contrasts (ζ), respectively. We take snapshots of
the cross-section at half of the z domain, with the relevant Z0

values (Table 1). However, all snapshots were taken at four
time period (t � 4.0) except V � 0.18 and ζ � 20. These latter
snapshots were taken at t � 2.5 due to the high velocity
amplitude or high density contrast numerical simulations
becoming unstable for reasons we do not fully understand.
In any case, we analyze the first five wavefronts in the
remaining text, and the t � 2.5 time is admissible to
determine the mean damping time of the first five
wavefronts avoiding the instability. In Figure 1 we can see
that even at low amplitude, the interface changes its sinusoidal
shape and shows effects of non-linearity. Increasing density
contrast shows the turbulence and energy cascade loss from
large-scale motion to small-scale motion leading to numerical
energy dissipation. On the other hand, increasing the
amplitude shows that the nonlinear generation of smaller
scales is increasing drastically on the density surface,
showing evidence of uniturbulence. However, in Figure 2 at
ζ � 1.1, we can see that the interface keeps its shape for a more
extended time period, showing that uniturbulence is delayed.
We can also see that the interface moves with much higher
amplitude in higher density contrast regimes due to the
significant differences of slow and fast Alfvén
speed ( �B/

���
μ ρl

√ ≫ �B/
����
μ ρr

√
).

FIGURE 3 | Graph shows one snapshot of the region for the Fourier
analysis of the vx(y, z, t) slices.

FIGURE 4 | Damping length Ld as a dependence of taken width layer X0.
The circle symbol is considered for the symmetric widths, where the square
symbol represents the non-symmetric strips.

FIGURE 5 | The graph shows the power amplitude of the fundamental
wavemode as a function of the z axis. The orange curve is the parabolic fit, and
the green dots are the approximate peak values of the wave at specific times.
Blue dots represent the errors of the numpy polyfit function.
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4.2 Analysis and Results
In order to see how the energy transfers to smaller scales in the
system, we compute the power spectrum of the velocity field by
performing FFT of the vx component along the y direction (Popescu
Braileanu et al., 2021). In particular, we consider the Fourier power at
ky � 2π/0.1 to track the wave’s amplitude in the fundamental mode
that was injected by the driver. As a next step, we take the average of
the Fourier power in the strip between x � X0 and x � − X0 as in
Figure 3. In other words, we integrate over the volume of the strip
region in 2D. We calculate the average at each time moment (ti, i �
0.1‥4.0), and for every cross-section (x − y plane) of zj, j � 0‥160
(grid resolution in z). Furthermore, for different simulations, the
width X0 was taken slightly differently (see Table 1). The width
increased or decreased for high or small ζ andV values. However, we
check the influence of chosen widths for ζ � 5 and V � 0.06
simulation case in the vertical direction. This is illustrated in

Figure 4, showing the damping length of different widths for
symmetric strip region (red squares) and non-symmetric strip
region (blue dots). In a symmetric case X0 � | − X0|, but for a
non-symmetric case, we take X0 and − X0 strips close to the small
structures.We find that the widthX0 does not have a large impact on
the damping length. Thus we consider only the values as in Table 1.

In the following analysis, we take the averaged power
amplitudes of the fundamental mode and follow the peak
values with a kink speed (Vk) in the z direction (zi � Vk ti) at
each time step ti (Figure 5). The power amplitudes in the
fundamental mode values were calculated with the help of
numpy polyfit package by fitting a parabola to the power to
quantify the power in the fundamental mode. The top of the fitted
parabola was used further. We can see that the data points decay
exponentially (Figure 6). We then fit these data points with the
exponential damping profile (exp( − z/Ld)) with damping length
(Ld). These damping lengths were used to estimate the damping
time with the following expression:

τd � Ld/Vk,

where we have assumed a simple propagating wave.
In order to understand the evolution of the wavefront (how it

decays and evolves to higher wavenumbers), we need to follow the
wavefront as it propagates. If we consider the evolution in terms of
time dependence, we can see that there will be a series of waves
passing. However, the next wavefront has a similar evolution stage as
the first one, except for a slight change in the density structure. This
is because it has been smoothed by the mixing of density by the first
wavefront. Because of the modification of the wave, we find that
turbulence is affected only in a minor way, and there will be a third-
order effect on the wave. Therefore, we can conclude that time
variation will be third order, and hence the effect of time will be
insignificant. Thus, following the wave propagation along the z axis
is the crucial point of studying the energy loss.

Figure 7 shows the comparison of our theoretical model with the
damping lengths from the simulation for each density contrast and
velocity amplitude. The green line represents the theoretical model
for the damping time scale Eq. 27. Red squares are the calculated
damping time from the simulation for the first wavefront. In

FIGURE 6 | The graph illustrates the power amplitude of the
fundamental wavemode as a function of the z axis, for the main simulation (V �
0.06, ζ � 5). Red dots represent the followed peak values of the mode at each
time step. The blue line is the fitted exponential function (exp( − z/Ld)).

FIGURE 7 | Damping time for the propagating wave as a function of density contrast (A) and velocity amplitude (B). The green line represents the theoretical model
for the damping time Eq. 27. Red squares are the calculated damping time for the first wave front. Blue dots are the average of the first 5 waves fronts.
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comparison, blue dots show the average damping time for the first
five wavefronts. The error bars were calculated starting from the
Fourier transform by taking the standard deviation σ, where we
computed it using numpy std routine.We apply uncertainties on the
polyfit function, and the estimated damping length was taken from
the fitted exponential function, including the uncertainties from the
covariancematrix. The errors on the blue dots are bigger than the red

squares due to the loss of the parabolic shape for subsequent
wavefronts. Finally, we use the following equation to find the
mean and the error in the damping length when averaging over
multiple wavefronts as in the paper by VanDoorsselaere et al. (2007).

�Ld �
∑N−1

i�0 Ldi/σ2i∑N−1
i�0 1/σ2i , (29)

where mean error calculated with

σ2
�Ld
� 1∑N−1

i�0 1/σ2
i

. (30)

We run the simulation with a different driver

vx(y, t) � V cos(ω t) sin(ky y) exp(κx) if x≤ 0,
exp(− κ x) if x> 0.

{
where we take κ � ky � 2 π/0.1 and V � 0.12, corresponding to the
surface Alfvén wave’s analytical eigenfunction. One of the main
reasons was to check if the different driver has an effect on the
results. Figure 8 demonstrates the results for the simulation by
the various drivers adopting the appropriate theoretical solution
of the surface Alfvén wave. The z − � 0.3 and t � 3 are applied to
the snapshot. We can see the non-linear deformation of the
interface different than the initial simulation, but the calculated
damping time matches with the theoretical solution.

We have also simulated with a smaller wavelength ky, where we
take the new wavenumber as kpy � 2 ky and compare with Eq. 27.
The predicted damping time for the half-wavelength in Eq. 27
gives τd � 0.38. The numerically estimated value for the simulation
is τd � 0.55 ± 0.16. We believe that the discrepancy is that the

FIGURE 8 | The plot shows the simulation result for the different driver
taking the relevant theoretical eigenfunction of the surface Alfvén wave. The
snapshot is taken at z � 0.3 and t � 3.

FIGURE 9 | Comparison of wave’s amplitude in the fundamental mode for the different regions. It shows that Alfvén waves have shorter wavelength in the upper
half, compared to the surface Alfvén waves. Similarly, the lower half has a longer wavelength.
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nonlinear deformation is much faster and might require higher
resolution. Moreover, in kpy case, the first wavefront deform faster,
loses its parabolic shape faster, and will have it in a shorter period
than the ky.

Lastly, we compare the wavelength of the Alfvén waves in the
non-uniform regions and Surface Alfvén waves at the interface. It is
known that the phase speed of surface Alfvén waves lies between
V2

Ar and V2
Al (e.g., Roberts, 1981; Goossens et al., 2012). The

purpose here is to highlight the distinction between classic Alfvén
waves and surface Alfvén waves. Obviously,

V2
Ar

v2k
< 1< V2

Al

v2k
, λAWr < λSAW < λAWl

.

It can easily be seen from the following expression that the Alfvén
waves have a shorter wavelength in the upper half than surface
Alfvén waves of the non-uniform region. Similarly, they have a
longer wavelength in the lower half, which is also confirmed in
the numerical simulation (Figure 9). This shows that the uniform
driver excites both the surface Alfvén wave and classic Alfvén
waves in the top and bottom of the domain. Moreover, the classic
Alfvén waves show less damping because they do not have the
uniturbulent cascade.

5 DISCUSSION AND CONCLUSION

This study supports the view that plasma inhomogeneity leads to
the formation of uniturbulence for propagating kink waves
(Magyar et al., 2019b). We performed analytical calculations in
incompressible MHD for a 1-D planar equilibrium model with
piece-wise constant density.We obtained analytical expressions for
the wave energy density, the energy dissipation rate, and the energy
cascade damping time. Subsequently, we derived an analytical
model to predict the damping time for uniturbulence evolution
in surface Alfvén waves. Equation 27 reveals that the damping
time is inversely proportional to the perpendicular wave number
and the amplitude of the surface Alfvén waves. Significantly, the
damping time obtained here corroborates the Van Doorsselaere
et al. (2020a) findings for cylindrical configurations. Given that the
only difference with that work is the cylindrical vs planar geometry,
our numerical study lends additional credibility to the analytical
results of Van Doorsselaere et al. (2020a).

We calculated the numerical energy dissipation rate through
numerical simulations by performing Fourier transform. We took
the fundamental mode of a perpendicular wavenumber (ky) and
estimated the damping time. Specifically, the calculated damping
time for A � 0.06 and ζ � 5 case in Eq. 27 gives τd � 0.75.

Accordingly, the estimated value for numerical simulation is equal
to τd � 0.85 ± 0.32. Likewise, we compared our theoretical model
with a series of 3D ideal MHD simulations, where the similarity is
notable (see Figure 7). In particular, numerical results showed that
the damping time confirms the inverse proportionality to the
density contrast and the amplitude of surface Alfvén waves.

These findings extend our understanding of the role of
uniturbulent damping of surface Alfvén waves. We do not
imply that our model accurately represents coronal conditions.
We have chosen parameters in our simulations to verify the
analytically derived energy cascade rate, checking the basic
physical assumptions. We have proven that the simulations
confirm the analytical equations and that there is an
additional energy cascade. Thus, the cascade of surface Alfven
waves might play a role in heating the corona. We do not have
coronal conditions, but we believe what we simulated also
represents how surface Alfven waves would behave in the
corona. It is well known that in the solar corona and the solar
wind plasmas are structured across the magnetic field (Raymond
et al., 2014), where uniturbulence could probably be relevant.
Especially in openmagnetic field regions, the uniturbulence could
provide an additional channel for turbulent cascade and therefore
increased dissipation. Uniturbulence could also be applicable in
closed magnetic environments, as coronal loops, considering the
coherent nature of the interaction. More research is needed in
order to verify the significance of this damping mechanism.
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