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We derive weak turbulence and quasilinear models for relativistic charged particle
dynamics in pitch-angle and energy space, due to interactions with electromagnetic
waves propagating (anti-)parallel to a uniform background magnetic field. We use a
Markovian approach that starts from the consideration of single particle motion in a
prescribed electromagnetic field. This Markovian approach has a number of benefits,
including: 1) the evident self-consistent relationship between a more general weak
turbulence theory and the standard resonant diffusion quasilinear theory (as is
commonly used in e.g. radiation belt and solar wind modeling); 2) the general nature of
the Fokker-Planck equation that can be derived without any prior assumptions regarding
its form; 3) the clear dependence of the form of the Fokker-Planck equation and the
transport coefficients on given specific timescales. The quasilinear diffusion coefficients
that we derive are not new in and of themselves, but this concise derivation and discussion
of the weak turbulence and quasilinear theories using the Markovian framework is
physically very instructive. The results presented herein form fundamental groundwork
for future studies that consider phenomena for which some of the assumptions made in
this manuscript may be relaxed.
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1 INTRODUCTION

Quasilinear diffusion theory forms the basis of much of the modeling and interpretation of particle
transport and energization due to interactions with electromagnetic waves; at terrestrial (Horne et al.,
2005; Summers, 2005; Thorne, 2010) and planetary (Woodfield et al., 2014; Kollmann et al., 2018)
radiation belts; in the solar atmosphere and solar wind (Steinacker and Miller, 1992; Vocks et al.,
2005; Vocks, 2012; Verscharen and Chandran, 2013; Jeong et al., 2020); and for the dynamics of
cosmic rays (Schlickeiser, 1989; Mertsch, 2020).

The classic derivations of quasilinear theory (Drummond and Pines, 1962; Vedenov et al., 1962;
Kennel and Engelmann, 1966; Lerche, 1968; Lyons, 1974; Summers, 2005) not only provide the form
of the Fokker-Planck equation to describe the particle dynamics, but also the diffusion coefficients
that encode the effect of the resonant wave-particle interactions as a function of the background
magnetic field strength, plasma refractive index, and electromagnetic wave spectral properties. It is
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also possible to derive the diffusion coefficients due to resonant
wave-particle interactions via a different technique, i.e., a
Hamiltonian analysis of single particle interactions with given
wave modes (e.g., see Albert (2001); Albert (2010)). Furthermore,
Lemons (2012) has demonstrated a quite general method to
derive both the form of the Fokker-Planck equation itself, as
well as the transport coefficients that apply in a particular
circumstance.

The method presented by Lemons (2012) (building on work
presented in Lemons et al. (2009)) is in principle quite general
and could be applied to a wide range of phenomena, but was
applied to a particular restricted case in that paper, namely
particle pitch-angle dynamics due to interactions with a
stationary transverse magnetic field only. Using a Markovian
analysis [e.g., see Wang and Uhlenbeck (1945); Reif (2009);
Zheng et al. (2019); Allanson et al. (2020)] Lemons (2012)
derives a theory to describe both the weak turbulence and
quasilinear regimes. Despite the fact that the electromagnetic
perturbation considered is a stationary magnetic field only, the
equations derived by Lemons (2012) do in fact reproduce the
standard form for pitch-angle diffusion by field-aligned
propagating electromagnetic waves using the quasilinear
theory - for the particular case of pitch-angle diffusion only.
This corresponds to the subset of plasma environments in which
the plasma frequency is significantly larger than the
gyrofrequency (fpe ≫ fce, e.g., see Eq. 8 in Summers and
Thorne (2003)).

In this paper, we study relativistic particle dynamics due to
interactions with travelling electromagnetic waves, and therefore
build upon the work by Lemons (2012) who considered time-
invariant magnetic fields. This addition allows us to study both
energy and pitch-angle dynamics, and is therefore applicable in
regions with any value of fpe/fce. Some of the most important
expressions in this paper may not be new in and of themselves
(e.g. the quasilinear theory for field-aligned waves). However, this
concise self-consistent derivation and discussion of both the weak
turbulence and quasilinear theories by using the Markovian
framework is physically very instructive. We emphasize that
the methods presented herein do allow in principle for the
derivation of not only the transport (drift and diffusion)
coefficients, but also the very form of the transport (Fokker-
Planck) equation itself, based upon prescribed electromagnetic
waves and some sensible physical assumptions.

In Section 2 we present the derivation of the general Fokker-
Planck equation in energy and pitch-angle space, using the
Chapman-Kolmogorov equation as a starting point, and we
indicate its relationship to the most basic form (i.e., the non-
bounce-averaged and two-dimensional form in e.g., Glauert and
Horne (2005); Summers (2005)) of the energy and pitch-angle
diffusion equation as is employed in radiation belt studies
(although typically after a bounce-averaging procedure
(Glauert et al., 2014)). In Section 3 we calculate the exact
relativistic equations of motion for particle position,
gyrophase, pitch-angle and kinetic energy, due to interactions
with field-aligned electromagnetic waves. In Section 4 we present
the main calculations and results of this paper, namely the
derivation of the weak turbulence and quasilinear diffusion

coefficients. We conclude and discuss future possible
directions in Section 5, which may include the relaxing of
some assumptions as presented in this manuscript.

2 FOKKER-PLANCK EQUATION DERIVED
USING MARKOV THEORY

Consider a spatially uniform (or equivalently, a spatially
averaged) collisionless particle distribution function, gs � gs(p,
t), for particle species s, normalized according to

∫gs p, t( )d3p � ns,

where ∫d3p is taken to be the integral over all relativistic
momentum space ( − ∞ < px, py, pz < ∞), and ns is the
number density (such that Vns � Ns, with Ns the total number
of particles in a spatial volume V). The relativistic momentum is
defined as p � cm0sv, with v the velocity, c � (1 − v2/c2)−1/2, m0s

the rest mass, and c the speed of light in a vacuum. Under the
assumption of a gyrotropic distribution function (gs(p, t) � gs(p‖,
p⊥, t)), we can reduce the triple integration to a double integration
according to,

2π∫p‖�∞

p‖�−∞
∫p⊥�∞

p⊥�0
gs p‖, p⊥, t( )p⊥dp⊥dp‖ � ns,

where p‖ � p ·B0/|B0| and p⊥ � |p ×B0|/|B0|, for B0 the local
background magnetic field, and we assume that B0 � |B0| > 0
without loss of generality. The relativistic momentum and kinetic
energy, E, are related by p2c2 � E(E + 2ERs) (Glauert and Horne,
2005), for ERs � m0sc

2 the rest-mass energy. To clarify, E is the
relativistic kinetic energy only, and not the total relativistic
energy. Furthermore, the particle pitch angle, 0 < α < π, is
defined by p‖ � |p| cos α and p⊥ � |p| sin α. Using these
definitions and the Jacobian relation, dp⊥dp‖ � c−2(E + ERs)
dEdα, we can rewrite the integrals so that

2π
c3

∫α�π

α�0
∫E�∞

E�0
fs E, α, t( ) E + ERs( ) ����������

E E + 2ERs( )√
sin αdEdα � ns,

where we have made the association gs(p‖, p⊥, t) � fs(E, α, t). From
hereon in we will dispense with the s subscript for brevity. We will
now derive the general form of the equation that evolves f in time,
as is consistent with Markovian stochastic particle dynamics in
energy and pitch-angle space.

2.1 Fokker-Planck Equation in a General
Form
Markovian dynamics are a special example of a stochastic/
random process, and are essentially characterized by the
requirement that the conditional probability of a given future
state (at an immediately successive time t � t0 + Δt) only depends
on the current state (at t � t0) (Wang and Uhlenbeck, 1945; Zheng
et al., 2019). The Markovian stochastic formalism is appropriate
to use in this paper since we are seeking a solution of particle
motion in a statistical sense (i.e., the evolution of a particle
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distribution function), and not a deterministic sense (i.e., the
exact dynamics of a very large number of particles).

The Chapman-Kolmogorov equation is the basic equation for
Markov theory, and is also sometimes known as the Einstein-
Smoluchowski equation, (e.g., see Wang and Uhlenbeck (1945);
Einstein (1956); Reif (2009); Zheng et al. (2019)). The Chapman-
Kolmogorov equation for f, adapted to be written in energy and
pitch-angle space, is

f E, α, t + Δt( ) E + ER( ) ����������
E E + 2ER( )√

sin α

� ∫∞

E′�0
∫π

α′�0
Ψ E, α;E′, α′,Δt( )

f E′, α′, t( ) E′ + ER( ) �����������
E′ E′ + 2ER( )√

sin α′dE′dα′.

Here, Ψ(E, α; E′, α′, Δt) is the transition probability density
that a particle located at (E′, α′) at time t will reach (E, α) at time
t + Δt. Using a standardized procedure based on so-called
“Kramers-Moyal” theory (essentially using Taylor series, and
as described in e.g. Wang and Uhlenbeck (1945); Einstein
(1956); Walt (1994); Reif (2009); Roederer and Zhang (2013);
Lemons (2012); Zheng et al. (2019)), we derive the following
Fokker-Planck equation

zf

zt
�− 1

G1

z

zE
G1CEf( )− 1

G2

z

zα
G2Cαf( )

+ 1
G1

z2

zE2 G1DEEf( )+ 1
G2

z2

zα2 G2Dααf( )+ 2
G1G2

z2

zαzE
G1G2DEαf( ),

(1)

for G1(E) � (E + ER)
����������
E(E + 2ER)

√
and G2(α) � sin α, and the

drift and diffusion coefficients defined as

Cα, CE{ } � 〈Δα〉
Δt ,

〈ΔE〉
Δt{ },

Dαα,DEα,DEE{ } � 〈 Δα( )2〉
2Δt ,

〈ΔEΔα〉
2Δt ,

〈 ΔE( )2〉
2Δt{ },

where 〈. . .〉 denotes a suitable statistical or ensemble average,
and the set notation {. . .} is used only to write the definitions in
a compact manner. The denominator in the transport
coefficients, Δt � t − t0, is a ‘suitable’ timescale over which
to consider the drift/diffusion, and helps to define the
increments Δα � α(t0 + Δt) − α(t0), ΔE � E(t0 + Δt) − E(t0)
(e.g., see Liu et al. (2010); Liu et al. (2012)); Lemons (2012);
Allanson et al. (2019); Allanson et al. (2020) for discussions
regarding ensemble averages and timescales). Note that here
we are using the same formal definitions of transport
coefficients as in e.g., Lemons (2012); Glauert et al. (2014),
such that Cα, CE, Dαα, DαE, and DEE, have units of s

−1, Js−1, s−1,
Js−1 and J2s−1, respectively.

Equation 1 is the Fokker-Planck equation that describes
particle transport (diffusion and drift) in relativistic kinetic
energy and pitch-angle space, under the assumption of
Markovian stochastic dynamics and a uniform background
magnetic field. It is currently written in a very general form,
and an investigation of the particle dynamics in a given system
(i.e., a given set of background and perturbative forces and

considered timescales) may reveal the exact form of the
diffusion and drift coefficients, their relationship, and thus the
exact form of Eq. 1 itself.

2.2 Fokker-Planck Equation Reduced to a
More Familiar Form
Equation 1 can be re-written as

zf

zt
� − 1

G1

z

zE
f G1CE − z

zE
G1DEE( ) − G1

G2

z

zα
G2DαE( )( )[ ]

− 1
G2

z

zα
f G2Cα − z

zα
G2Dαα( ) − G2

G1

z

zE
G1DαE( )( )[ ]

+ 1
G1

z

zE
G1 DEE

zf

zE
+DαE

zf

zα
( )[ ]

+ 1
G2

z

zα
G2 Dαα

zf

zα
+DαE

zf

zE
( )[ ].

Examination of the particle dynamics in a given system can
reveal the relationship between the drift and diffusion
coefficients, sometimes known as the “drift-diffusion
relation” (e.g. see Lemons (2012)). As one specific example,
consider that the following drift-diffusion relations could be
satisfied,

CE � 1
G1

z

zE
G1DEE( ) + 1

G2

z

zα
G2DαE( ), (2)

Cα � 1
G2

z

zα
G2Dαα( ) + 1

G1

z

zE
G1DαE( ), (3)

then Eq. 1 reduces to the following transport equation for energy
and pitch angle diffusion

zf

zt
� 1
sin α

z

zα
sin α Dαα

zf

zα
+DαE

zf

zE
( )[ ]

+ 1

E + ER( ) ����������
E E + 2ER( )√ z

zE

E + ER( ) ����������
E E + 2ER( )√

DEE
zf

zE
+DαE

zf

zα
( )[ ].

(4)

Equation 4 is exactly consistent with the standard relativistic
quasilinear equation as derived via a different approach (see
discussion of derivations and regions of applicability in
Sections 1 and 5), used to describe energy and pitch-angle
dynamics due to wave-particle interactions in the resonant
diffusion quasilinear theory (Glauert and Horne, 2005;
Summers, 2005) prior to ‘bounce-averaging’.

Equation 4 (or some variant thereof that may also include
dynamics in real/radial space, and/or a so-called ‘bounce-/drift-
averaging’ procedure) is often known as ‘the diffusion equation’
in the terrestrial and planetary magnetospheric communities.
This reflects the fact that one can only see diffusion coefficents
“D” playing a role in the dynamics. The exact form of “the
diffusion equation” (e.g., see Kennel and Engelmann (1966);
Schulz and Lanzerotti (1974)) is a result of the most typical
derivation method employed—essentially a perturbative analysis
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of the Vlasov-Maxwell system (see a discussion in Section 5 of
this paper).

However it is important to note that some form of drift
processes are in principle playing a role, despite the fact they
do not appear in Eq. 4. The drift-diffusion relations in Eqs 2, 3
demonstrate this fact. Equations 2, 3 do not state that the drift
coefficients “C” � 0, but rather that “C” takes a restricted set of
values such that the only drift to occur is determined by gradients
in the diffusion coefficients themselves (e.g., see discussions in
Lemons (2012) and Zheng et al. (2019) for the slightly simpler
cases of dynamics in pitch-angle space only and a single “action-
integral” space only, respectively). These insights are one benefit
of using this Markovian approach—and one can conclude that
Eq. 4 describes a particular subset of a more rich set of possible
particle dynamics, that are described by Eq. 1.

It is therefore of great interest to try and derive Fokker-Planck
equations for a given system using the Markovian approach (as
opposed to the historically more standard Vlasov-Maxwell
approach), to see if we can gain more insights regarding
energetic particle dynamics. One important question is to
discover when a more standard “diffusion equation” such as
Eq. 4 is appropriate, and when a more rich formalism such as Eq.
1 is necessary.

3 EXACT EQUATIONS OF MOTION

We consider a right-handed xyz co-ordinate system, with a
uniform background magnetic field B0 � (B0, 0, 0) defining x
as the “parallel’” direction, with “perpendicular” quantities in the
yz plane. Particle velocities are defined according to

v � vx, vy, vz( ) � |v| cos α, sin α cos ϕ, sin α sin ϕ( ).
The magnetic components of a field-aligned electromagnetic

spectrum can be expressed as a sum over all considered wave-
modes k. We define k � �k|Ω0|c−1x̂, with Ω0 � qB0/(m0c) the
signed relativistic gyrofrequency in the background fieldB0, and �k
a dimensionless variable such that −∞< �k<∞. We can define
the magnetic wave fields using Fourier transforms over the
dimensionless variable �k

By x, t( ) � 1
2π

∫∞

−∞
~By

�k, x, t( )d�k � 1
2π

∫∞

−∞
~B �k( )cosψ �k, x, t( )d�k,

(5)

Bz x, t( ) � 1
2π

∫∞

−∞
~Bz

�k, x, t( )d�k
� ∓ 1

2π
∫∞

−∞
~B �k( )sinψ �k, x, t( )d�k. (6)

The ∓ sign corresponds to right-/left-handed waves (e.g., field-
aligned whistler-mode and electromagnetic ion-cyclotron waves
respectively). Note that by using a dimensionless �k, this implies
that ~B(�k) has the same dimensions as B0, i.e. that of a magnetic
field. The phase is defined by
ψ(�k, x, t) � k · x − ω(�k)Δt � �k|Ω0|c−1x − ω(�k)Δt, with ω �
ω(�k) the dispersion relation of mode �k. For completeness, the

Fourier amplitudes of the magnetic and electric perturbations,
~B(�k, x, t) and ~E(�k, x, t) respectively, associated with a given
single wave mode characterized by the wave-vector k, are
defined by

~B �k, x, t( ) � 0, ~By
�k, x, t( ), ~Bz

�k, x, t( )( )
� ~B �k( ) 0, cosψ �k, x, t( ), ∓ sinψ �k, x, t( )( ), (7)

~E �k, x, t( ) � 0, ~Ey
�k, x, t( ), ~Ez

�k, x, t( )( )
� vph �k( ) 0, ~Bz

�k, x, t( ),−~By
�k, x, t( )( ), (8)

where we have used the assumption that the electromagnetic
fields ∝ ei(k·x−ω(�k)(t−t0)), such that ∇ × ~E � ik × ~E,
z~B/zt � −iω(�k)~B, and vph(�k) � ω(�k)/|k|. The electric
components of the wave can then be constructed from Eqs 5,
6 by using Eq. 8.

Starting from the Lorentz force law (F � q(E + v × B)), we
derive the exact relativistic equations of motion for particle
position x, gyrophase ϕ, pitch-angle α, and kinetic energy E,
due to interactions with a field-aligned right-/left-handed
electromagnetic spectrum as defined by Eqs 5, 6. The details
of this process are in Supplementary Appendix A, and the results
are given by Eqs 9–12 below.

dx

dt
� |v| cos α � v‖ � c

����������
E E + 2ER( )√
E + ER

cos α, (9)

dE

dt
� ∓Ω0

2π

����������
E E + 2ER( )√

sin α∫∞

−∞
1

η �k( ) ϵ �k( )sin ζ �k, x, t( )d�k,
(10)

dα

dt
� ±Ω0

2π
∫∞

−∞
1 − 1

η �k( ) E + ER����������
E E + 2ER( )√ cos α( )ϵ �k( )

sin ζ �k, x, t( )d�k, (11)

dϕ

dt
�Ω0 −1+ 1

2π
∫∞

−∞
cotα− 1

η �k( )sinα E+ER���������
E E+2ER( )√( )ϵ �k( )[

cosζ �k,x,t( )d�k], (12)

with ζ(�k, x, t) � ψ(�k, x, t) ± ϕ(x, t) a combination of wave phase
and particle gyrophase; ϵ(�k) � ~B(�k)/B0 a dimensionless/
normalised magnitude of magnetic wave field mode �k; and η(�k) �
|k|c/ω(�k) the refractive index of mode �k. In Table 1 we list many
(but not all) of the important algebraic symbols used in this
manuscript.

4 DERIVATION OF THE WEAK
TURBULENCE TRANSPORT
COEFFICIENTS
4.1 Expansions of the Equations of Motion
The equations of motion Eqs 9–12 are nonlinear, coupled
ordinary differential equations in the variables (x, E, α, ϕ).
Therefore we seek solutions via expansion in a small
dimensionless parameter, and the form of the equations
suggests that ϵ(�k) is a sensible small parameter to choose.
This is an example of a solution in a regime of “weak
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turbulence” (e.g., see Sagdeev and Galeev (1969)), which in our
context will mean to solve the equations of motion up to and
including the second order in ϵ(�k).

In the same way as was done in Lemons (2012), we look for
solutions up to and including second order, i.e., of the form

x t( ) ≈ x 0( ) t( ) + x 1( ) t( ) + x 2( ) t( ), (13)

E t( ) ≈ E 0( ) t( ) + E 1( ) t( ) + E 2( ) t( ), (14)

α t( ) ≈ α 0( ) t( ) + α 1( ) t( ) + α 2( ) t( ), (15)

ϕ t( ) ≈ ϕ 0( ) t( ) + ϕ 1( ) t( ) + ϕ 2( ) t( ), (16)

such that terms with a “(n)” superscript are proportional to ϵn.
Without loss of generality, we state the following initial
conditions: x(t0) � x(0)(t0) � x0; E(t0) � E(0)(t0) � E0; α(t0) �
α(0)(t0) � α0; and ϕ(t0) � ϕ(0)(t0) � ϕ0. Therefore

x 1( ) t0( ) � x 2( ) t0( ) � E 1( ) t0( ) � E 2( ) t0( ) � α 1( ) t0( ) � α 2( ) t0( )
� ϕ 1( ) t0( ) � ϕ 2( ) t0( ) � 0.

(17)

Inserting Eqs 13–16 into the equations of motion Eqs 9–12
leads to zeroth-, first- and second-order equations of motion for
x(0), x(1), x(2), E(0), E(1), E(2), α(0), α(1), α(2), ϕ(0), ϕ(1) and ϕ(2). Full
details of this expansion process and solution methods are given
in Supplementary Appendix B.

4.2 Diffusion Coefficients for Weak
Turbulence
In this paper we have considered integral sums of Fourier modes
(Fourier transforms) for the electromagnetic perturbations. This

corresponds to an infinite spatial domain (whereas a finite spatial
domain would correspond to a finite sum of discrete Fourier
modes). Therefore we conduct a spatial average over − L/2 < x <
L/2 but formally send L → ∞. The further averaging procedure
that we will consider will be over gyrophase, ϕ. In particular we
will assume that (to zeroth order) particles are uniformly
distributed over position x and phase ϕ, i.e. x(0)(t) and ϕ(0)(t)
remain uniformly distributed over [ − L/2, L/2] and [0, 2π]
respectively. This “random-phase” approximation (Lemons et al.,
2009; Lemons, 2012) is standard in the derivations of quasilinear
theory (e.g., assumptions regarding spatial and azimuthal/
gyrotropic symmetries of the distribution function in Kennel
and Engelmann (1966)). We therefore define the ensemble
averaging 〈. . .〉 for a generic function A as

〈A〉 � lim
L→∞

1
L
∫L/2

−L/2
1
2π

∫2π

0
Adϕ0( )dx0. (18)

We use this definition of ensemble averaging to complete the
derivation of the weak turbulence diffusion coefficients in
Supplementary Appendices B, C. Note that the integrals are
performed “over the initial conditions” for particle position and
gyrophase, x0 and ϕ0 respectively. The zeroth-order solutions for
x(0)(t) and ϕ(0)(t) in Supplementary Appendix B demonstrate
that particles initially uniformly distributed in x0 and ϕ0 will stay
uniformly distributed at all later times t, to zeroth-order.
Therefore the assumption of random-phase is justified and
consistent to zeroth-order. This corresponds philosophically to
the “integration over unperturbed (i.e., zeroth-order) orbits, as is
commonplace in the aforementioned Vlasov-Maxwell treatments
of quasilinear theory (e.g., see Kennel and Engelmann (1966);
Verscharen and Chandran (2013).

TABLE 1 | Many of the important algebraic symbols that are used in this article.

Variable name Symbol Notes

Distribution function f � f(E, α, t) Gyrotropic and spatially averaged
Position x − L/2 < x < L/2 , L → ∞
Relativistic Kinetic Energy E Does not include rest mass energy
Rest mass m0

Speed of light in vacuo c
Particle charge q Includes the sign of charge
Particle rest mass energy ER ER � m0c

2

Relativistic momentum p p � cm0v , |p|2c2 � E(E + 2ER)
Velocity v
Background magnetic field B0 B0 � B0x̂
Parallel and perpendicular ‖ and ⊥ p⊥ � p ×B0/|B0| , p‖ � p ·B0/|B0|
Pitch angle α p⊥ � p sin α , p‖ � p cos α
Particle gyrophase ϕ

Relativistic gyrofrequency (signed) Ω0 Ω0 � qB0/(m0c)
EM perturbations (Fourier transforms) ~E and ~B Equations 5–8

Wavenumber k k � kx̂ � |Ω0|c−1�kx̂
Wave frequency ω ω � ω(�k)
Refractive index η η(�k) � |k|c/ω
Normalised Fourier amplitude ϵ ϵ(�k) � ~B(�k)/|B0|
Elapsed time Δt Δt � t − t0
Ensemble averages 〈. . ., 〉 Equation 18
Diffusion coefficients {Dαα ,DEα ,DEE } Equation 19
Superscript notation e.g x(n) variable of order ϵn
Subscript notation e.g. x0 variable evaluated at t � t0
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We note that the expansions defined by Eqs 14, 15, the initial
conditions of Eq. 17, and the zeroth-order solutions of the
equation of motion in Supplementary Appendix B lead to the
following definitions (up to second-order)

Δα � α t0 + Δt( ) − α t0( ) ≈ α 1( ) t0 + Δt( ) + α 2( ) t0 + Δt( ),
ΔE � E t0 + Δt( ) − E t0( ) ≈ E 1( ) t0 + Δt( ) + E 2( ) t0 + Δt( ).
Therefore, considering contributions to the diffusion

coefficients in energy and pitch-angle up space up to and
including second order in ϵ(�k) leads to

Dαα,DαE,DEE{ } ≈ 〈α 1( )2〉
2Δt ,

〈α 1( )E 1( )〉
2Δt ,

〈E 1( )2〉
2Δt{ }. (19)

The calculations in Supplementary Appendices B, C then
provide the following weak turbulence expressions

Dαα � |Ω0|
4π

c

|Ω0|∫
∞

−∞
lim
L→∞

1
L
ϵ2 �k( )( )[ ] 1 − ω �k( )

k · v 0( )
‖
cos2α0⎛⎝ ⎞⎠2

× 1 − cos ω �k( ) − k · v 0( )
‖( )/Ω0 ± 1( )ΔtΩ0[ ]{ }

Δt|Ω0| ω �k( ) − k · v 0( )
‖( )/Ω0 ± 1( )2 d�k

(20)

DαE � −|Ω0|
4π

c

|Ω0|
�����������
E0 E0 + 2ER( )√

sin α0

∫∞

−∞
lim
L→∞

1
L
ϵ2 �k( )( )[ ] 1

η �k( ) 1 − ω �k( )
k · v 0( )

‖
cos2α0⎛⎝ ⎞⎠

× 1 − cos ω �k( ) − k · v 0( )
‖( )/Ω0 ± 1( )ΔtΩ0[ ]{ }

Δt|Ω0| ω �k( ) − k · v 0( )
‖( )/Ω0 ± 1( )2 d�k

(21)

DEE � |Ω0|
4π

c

|Ω0| E0 E0 + 2ER( )( )sin2α0 ∫∞

−∞
lim
L→∞

1
L
ϵ2 �k( )( )[ ] 1

η �k( )2
× 1 − cos ω �k( ) − k · v 0( )

‖( )/Ω0 ± 1( )ΔtΩ0[ ]{ }
Δt|Ω0| ω �k( ) − k · v 0( )

‖( )/Ω0 ± 1( )2 d�k

(22)

with

v 0( )
‖ � c

�����������
E0 E0 + 2ER( )√
E0 + ER

cos α0x̂, (23)

the zeroth order approximation solution for the parallel velocity
(i.e. the unperturbed solution).

Equations 20–22 show that the weak turbulence diffusion
coefficients all involve integrating over a time-dependent factor
that we define as A

A � 1 − cos RΔtΩ0( )[ ]
R2Δt|Ω0| , (24)

with

R � ω �k( ) − k · v 0( )
‖( )/Ω0 ± 1. (25)

The term designated by R determines how close to resonance a
given particle is with a given right-/left-handed electromagnetic
wave mode (described by ω � ω(�k)). R � 0 indicates an exact

cyclotron resonance (e.g., see Tsurutani and Lakhina (1997)), and
larger values of |R| indicate that a wave and particle are further
away from resonance. In Figure 1 we plot some important
features of A.

In Figure 1A we show A as a function of |Ω0|Δt, for given fixed
values of |R| � 0.05, 0.1, 0.2, 0.5. There are two important features
to note: 1) A and therefore the weak turbulence diffusion
coefficients demonstrate a periodic dependence on the elapsed
timescale Δt (albeit with the contributions becoming less
significant as |Ω0|Δt → ∞); 2) for smaller values of |R|
(i.e., closer to cyclotron resonance), the contribution to the
weak turbulence coefficients from this factor A is more
significant, at all times.

In Figure 1B we show the maximum value of A that is
obtained, as a function of the value of |Ω0|Δt, and for given
fixed values of |R| from R � 10−2 to R � 1 (see colour bar). When |
R| indicates that waves and particles are closer to resonance (i.e. |
R| is closer to 0), then Amaximizes at later times (this can also be
seen from Figure 1A). One important implication to note is that
particles further away from resonance (larger values of |R|)
contribute most to A at earlier times.

In Figure 1C we show A as a function of R, for given fixed
values of |Ω0|Δt � 10, 102, 103. This shows that as |Ω0|Δt → ∞,
the weak turbulence diffusion coefficients are essentially
determined only via particles that are close to or exactly in
resonance |R| ≈ 0. Equivalently, for smaller elapsed times
|Ω0|Δt, we can state that the contribution to diffusion from
non-resonant particles is non-negligible and worthy of
consideration.

4.3 Diffusion Coefficients in Resonant
Diffusion Quasilinear Theory
The expressions for the diffusion coefficients, “D”, defined by Eqs
20–22 are in principle valid for any Δt that satisfies ΔtC ≤ Δt≪ 1/|
D|, for ΔtC a particle de-correlation time (e.g., see Liu et al. (2010);
Lemons (2012); Osmane and Lejosne (2021) for discussions of the
de-correlation time). The standard interpretation of the
quasilinear theory in this context is to understand that ΔtC
≫|Ω0|

−1, i.e., that particles decorrelate over many gyroperiods.
As we let Δt|Ω0| → ∞ in our formalism, we see that A tends to
zero everywhere away from R � 0. At R � 0, the limit as Δt|Ω0|→
∞ is at first not clear, and so we can use l’Hopital’s rule to show
that

lim
Δt|Ω0|→∞

1 − cos RΔtΩ0( )
Δt|Ω0|R2

� lim
Δt|Ω0 |→∞

sin RΔtΩ0( )
R

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣ � πδ R( ),

via one definition of the Dirac delta function. This gives

Dαα,QL � Ω2
0

W0

π

2
∫∞

−∞
~W �k( ) 1 − ω �k( )

k · v 0( )
‖
cos2α0

⎛⎝ ⎞⎠2

δ ω �k( ) − k · v 0( )
‖ ± Ω0( )d�k,

(26)

making use of: (i) δ(X/Ω0) � |Ω0|δ(X); (ii) defining W0 �
B2
0/(2μ0) as the background magnetic field energy density; (iii)

and defining
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~W �k( ) � 1
2π

c

|Ω0| limL→∞

1
L

~B
2 �k( )
2μ0

,

the magnetic wave energy density associated with mode
k � |Ω0|c−1�kx̂. ~W(�k) is defined such that the spatially
averaged magnetic wave energy density associated with the
magnetic wave turbulent spectrum, Wwave, is defined as

Wwave � B2
wave

2μ0
� ∫∞

−∞
~W �k( )d�k.

Note that the “limL→∞1/L” does not send all results to zero.
This spatial average (over an infinite domain) is common in
studies of quasilinear theory (e.g., see Kennel and Engelmann
(1966); Summers (2005)). In fact, the “1/L” factor in the
denominator competes with an “L” factor in the numerator
due to the fact that the integral over all space (i.e., L) of B2

y +
B2
z � (By + iBz)(By − iBz) yields

LB2
wave �

1
2π

∫∞

−∞
~B
2
k( )dk � 1

2π
c

|Ω0|∫
∞

−∞
~B
2 �k( )d�k. (27)

A discussion of this feature is given in Lyons (1974), for
example.

Similarly, we obtain

DαE,QL � −Ω
2
0

W0

π

2
sin α0

�����������
E0 E0 + 2ER( )√

× ∫∞

−∞
~W �k( ) 1

η �k( ) 1 − ω �k( )
k · v 0( )

‖
cos2α0

⎛⎝ ⎞⎠δ ω �k( ) − k · v 0( )
‖ ±Ω0( )

d�k,

(28)

DEE,QL � Ω2
0

W0

π

2
sin2α0 E0 E0 + 2ER( )( )

∫∞

−∞
~W �k( ) 1

η2 �k( ) δ ω �k( ) − k · v 0( )
‖ ±Ω0( )d�k. (29)

The definitions of “D” in equations Eqs 26, 28, 29 are
consistent with those in the standard relativistic and non-

bounce-averaged quasilinear theory, e.g., see Glauert and
Horne (2005); Summers (2005).

Therefore, taking |Ω0|Δt → ∞ has allowed us to obtain the
time-independent quasilinear diffusion coefficients in energy and
pitch-angle space, from the corresponding time-dependent weak
turbulence coefficients. This calculation and process mirrors the
same result as presented in Lemons (2012), for the more
restricted pitch-angle case.

5 DISCUSSION

5.1 Weak Turbulence Diffusion Coefficients
The first main result of this paper is the derivation of the diffusion
coefficients, Dαα, DαE and DEE, under the assumption of “weak
turbulence” only–namely that the amplitude of the “kth” mode is
much smaller than that of the background uniform field,
ϵ(�k) � ~B(�k)/B0 ≪ 1. Under this assumption, we spatially
average and impose one further condition of “random phase”
(i.e., particles uniformly distributed over gyrophase, and also
known as gyrotropy), to obtain the weak turbulence diffusion
coefficients in Eqs 20–22.

The result is a diffusion coefficient, “D”, that is not only a
function of the plasma refractive index, background magnetic
field strength and electromagnetic wave perturbation spectrum,
but also a function of elapsed timescale, Δt. The expressions in
Eqs 20–22 are in principle valid for any Δt that satisfies ΔtC ≤
Δt≪ 1/|D|, for ΔtC a particle de-correlation time. The details and
properties of these weak turbulence diffusion coefficients require
further investigation (in particular their dependency on time).
However, we note that it is now well established that the
considered elapsed timescale can play a crucial role on the
nature of particle diffusion in energy and pitch-angle space
(e.g., see Watt et al. (2021)). A careful consideration of the
elapsed timescale has been shown to be important in the
interpretation of the diffusion coefficient and general nature of
the charged particle dynamics: for situations with zero wave-
growth rate (e.g., see Liu et al. (2010); Liu et al. (2012); Lemons
(2012); Allanson et al. (2020)); but also in the context of growing

FIGURE 1 | In (A)we showA as a function of |Ω0|Δt, for given fixed values ofR � 0.05, 0.1, 0.2, 0.5. In (B)we show themaximum value ofA that is obtained, as a function of
the value of |Ω0|Δt, and for given fixed values of R from R � 10−2 to R � 1 (see colour bar). In (C) we show A as a function of R, for given fixed values of |Ω0|Δt � 10, 102, 103.
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and saturating wave modes (e.g., see Camporeale and Zimbardo
(2015); Allanson et al. (2021))

One particularly interesting observation to make is that when
considered over finite timescales, the weak turbulence diffusion
coefficients demonstrate the contribution towards particle
diffusion of wave modes that are not in exact resonance (R ≠
0). Specifically, the terms in the integrand of Eqs 20–22 admit
contributions towards particle diffusion (i.e. for a specific value of
energy and pitch angle) from a range of wavemodes (i.e., different
values of �k), i.e. not only those wave modes that satisfy the
cyclotron resonance condition (R � 0). This phenomenon is
known as resonance broadening—the importance of which has
been noted by numerous authors (e.g., see Dupree (1966);
Karimabadi and Menyuk (1991); Karimabadi et al. (1992); Cai
et al. (2020)).

Furthermore, we note that Lemons (2012) discussed some
possible restrictions to the validity of the general methodology
that they, and we, present. Namely, that for very small pitch
angles the assumption of a very small magnetic field perturbation
(as compared to the background magnetic field strength) may not
be sufficient to derive meaningful weak turbulence and
quasilinear theories. This is essentially due to the appearance
of a cot α factor appearing in the equation for dϕ/dt (Eq. 3b in
Lemons (2012), and note that they use θ in place of α). Lemons
(2012) develop a “small-correlation time” theory to specifically
investigate the small pitch angle regime, but explain that it will be
difficult to demonstrate the validity of their theory. Equation 12
in this manuscript demonstrates that there may be a similar
regime of interest for the system that we consider. However, these
considerations are subtle and are beyond the scope of this study.

It will be interesting to further investigate the properties of the
weak turbulence diffusion coefficients: 1) the nature of their
dependency on elapsed timescale Δt; 2) and the role of the
resonance-broadening effect (and in particular its
correspondence to the pre-existing literature). These
considerations are left for future work and are beyond the
scope of this study.

5.2 Quasilinear Diffusion as a Limit of Weak
Turbulence
The second main result of this paper is a new derivation via the
Markov method of the pitch-angle and energy diffusion
coefficients (Dαα,QL, DαE,QL and DEE,QL), that are equivalent to
those used in the standard relativistic quasilinear theory, in the
resonant diffusion limit (e.g., see Glauert and Horne (2005);
Summers (2005)). These results are given in Eqs 26–29, and
are derived from the weak turbulence diffusion coefficients in Eqs
20–22 under the assumptions of elapsed times much greater than
the gyroperiod, Δt ≫ 1/|Ω0|. These results build on the pitch-
angle diffusion results similarly derived by Lemons (2012). We
have derived these equations in the context of field-aligned waves
only. Because the waves are field-aligned, an integral over wave
normal angle is avoided, as is the sum over different resonance
numbers, which would be required in a treatment of obliquely
propagating wave modes (e.g., see Lyons (1974); Glauert and

Horne (2005); Albert (2005). It will be interesting in future works
to consider non-zero wave normal angles.

5.3 Novel Derivation of theWeak Turbulence
and Quasilinear Diffusion Theories
The standard derivations of the quasilinear theory
(Drummond and Pines, 1962; Vedenov et al., 1962; Kennel
and Engelmann, 1966; Lerche, 1968; Lyons, 1974; Summers,
2005) are founded upon a perturbative analysis of the Vlasov-
Maxwell equations (e.g., see Schindler (2007)), and describe
the evolution of a gyrophase-averaged (gyrotropic) particle
distribution function in an infinite and homogeneous
collisionless plasma with a uniform and static background
magnetic field, although we do note a comparatively recent
example of a derivation by Brizard and Chan (2004) that does
include spatial inhomogeneities from the very outset. The
standard derivations rely on a number of assumptions: 1)
sufficiently small electromagnetic wave power and a
correspondingly sufficiently large spectral width (e.g., see
Karpman (1974); Tong et al. (2019)); 2) sufficiently small
wave growth rates and slowly varying wave spectra, and a
correspondingly slowly varying spatially averaged distribution
function (e.g., see Kennel and Engelmann (1966); Davidson
et al. (1972)); 3) a wave spectrum that satisfies the so-called
“Chirikov resonance overlap condition” (e.g., see Zaslavskiĭ
and Chirikov (1972); Artemyev et al. (2015)). Quasilinear
theory in the limit of resonant diffusion further restricts
that wave growth rates actually tend to zero (Kennel and
Engelmann, 1966), and this is the version of the quaslinear
theory that is commonly used in numerical radiation belt
diffusion models (e.g., see Beutier and Boscher (1995);
Albert et al. (2009); Su et al. (2010); Subbotin et al. (2010);
Glauert et al. (2014)).

The approach presented in this paper to derive the weak
turbulence and quasilinear diffusion coefficients has some
important benefits. Firstly, our derivations rely on fewer
technical assumptions than those mentioned above for the
case of the quasilinear theory in the resonant diffusion limit
(zero wave growth rate). Ultimately, the main two assumptions
are the small wave amplitudes ϵk, and the “random-phase”
criteria. Secondly, we believe that the theory has a very
intuitive and “user-friendly” entry point, namely an expansion
of particle trajectories that obey the Lorentz force law,
F � q(E + v × B), under the influence of prescribed
electromagnetic waves expressed as Fourier transforms. There
may be considerable algebra that follows, but the route through
the calculation is quite straightforward to understand and is based
on commonly used techniques. Furthermore, the emergent
dependence of the transport coefficients on timescale is one
example of the insight that can be derived using this
approach. We anticipate that this approach can be used to
derive transport equations and associated transport coefficients
for a wider variety of systems and circumstances, and we leave
this for future work, e.g., electromagnetic fields with non-zero
wave normal angles.
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5.4 Nonlinear Wave-Particle Interactions
Numerous observations have shown the prevalence of high-amplitude
electromagnetic whistler-mode and ion-cyclotron waves in the Earth’s
inner magnetosphere (Cattell et al., 2008; Cully et al., 2008; Breneman
et al., 2011; Kellogg et al., 2011;Wilson et al., 2011; Hendry et al., 2019;
Tyler et al., 2019; Zhang et al., 2019; Zhang et al., 2021), such as are
responsible for local changes in the energy and pitch-angle of radiation
belt electrons. These high “nonlinear” wave amplitudes cast some
doubt on the applicability of the quasilinear theory in such cases.
Furthermore, a number of co-ordinated wave and particle
measurements have directly demonstrated the existence of
nonlinear wave-particle interactions in the Earth’s inner
magnetosphere (Agapitov et al., 2015; Foster et al., 2016; Kurita
et al., 2018; Mozer et al., 2018; Shumko et al., 2018). Therefore, an
improved theoretical understanding and modelling capability of
radiation belt dynamics that incorporates the most appropriate
elements of the quasilinear and nonlinear theories of wave-particle
interactions is an important and outstanding question (e.g., seeOmura
et al. (2008); Albert et al. (2013); Tao et al. (2012a,b); Omura et al.
(2015); Camporeale (2015); Camporeale and Zimbardo (2015);
Artemyev et al. (2018); Mourenas et al. (2018); Vainchtein et al.
(2018); Zheng et al. (2019); Gan et al. (2020); Allanson et al. (2020);
Allanson et al. (2021)).

Theoretical and modeling studies (Albert and Bortnik, 2009; Liu
et al., 2012; Zheng et al., 2012; Lee et al., 2018; Artemyev et al., 2018;
Vainchtein et al., 2018; Mourenas et al., 2018; Zheng et al., 2019; Gan
et al., 2020; Allanson et al. (2020); Allanson et al. (2021)) indicate that an
effective incorporation of nonlinear wave-particle interactions into
existing modeling paradigms may require the addition of extra, or
modified, transport coefficients (or some other addition) to the version
of the Fokker-Planck equation that is currently used (e.g., see Schulz and
Lanzerotti (1974); Glauert et al. (2014)). There are a number of
candidate methods to achieve this (or a similar) goal, and a number
of these are summarized in Artemyev et al. (2021). A fully nonlinear
model of wave-particle interactions in the radiation belts would
necessarily need to include inhomogeneous background magnetic
fields and number density, to incorporate: 1) phase decorrelation
specifically due the inhomogeneity itself (e.g., see Albert (2010)): 2)
nonlinear effects known as phase bunching and phase trapping (e.g., see
Omura et al. (2008)). We do not include such spatial inhomogeneities
and therefore cannot describe these associated effects. However, we
emphasize that the methods in this paper do present a consistent
mechanism that allows for the derivation of not only the transport (drift
and diffusion) coefficients, but also the very form of the transport
(Fokker-Planck) equation itself, based upon prescribed electromagnetic
waves and some sensible physical assumptions. In future works, we
could derive drift-diffusion relations such as Eqs 2, 3 from first
principles for other situations, as opposed to a-priori assuming them
to hold. This advance is one of the main benefits of using the approach
demonstrated in this paper, and it remains to be seen if these methods
can be applied to include the inhomogeneous cases.

6 SUMMARY

In this paper we have presented new derivations of relativistic
weak turbulence and quasilinear diffusion models. These models

describe charged particle dynamics due to interactions with
right-/left-handed electromagnetic waves, and specifically for
the case of waves that are travelling parallel (and/or anti-
parallel) to the direction of the background magnetic field.
The approach differs from the most standard methods of
derivation, that are based upon the Vlasov-Maxwell set of
equations (e.g., see Kennel and Engelmann (1966)). Instead,
our approach uses the principles of Markovian dynamics, and is
fundamentally based on solutions to the single-particle Lorentz
force equation, F � q(E + v × B). In particular, we expand the
relevant equations of motion up to second order in a small
parameter, ϵ(�k) � ~B(�k)/|B0|, (the relative magnitude of
magnetic perturbations to the background magnetic field),
and then ensemble average the solutions to obtain the
diffusion coefficients. The approach used in this paper builds
upon the work by Lemons (2012), in which pitch-angle
dynamics were considered due to interactions with a static
magnetic field profile. The main conclusions and results of
this paper are as follows:

• A derivation and discussion of the general Fokker-Planck
equation to describe stochastic charged particle dynamics in
energy and pitch-angle space, using Markov theory (Eq. 1;
Section 2). This equation includes all possible advective and
diffusive dynamics, in principle. The form of the drift and
diffusion coefficients are then to be determined on a system-
by-system basis. In this paper we solve for the diffusive
dynamics only, and leave investigations of the drift
coefficients and drift-diffusion relations for future works;

• In sections 3 and 4 we solve the Lorentz force law using
expansions in the small parameter ϵ(�k), and then ensemble
average the results to derive the diffusion coefficients for a
weak turbulence approximations. The obtained diffusion
coefficients Dαα,DαE and DEE Eqs 20–22 are in principle
valid for any elapsed time Δt provided ΔtC ≤ Δt≪ 1/|D|, for
ΔtC the particle de-correlation time. These weak turbulence
diffusion coefficients: 1) display an interesting dependency
on Δt; 2) and also explicitly incorporate the effects of non-
resonant particles, as well as the standard effects of
cycolotron-resonant particles;

• The weak turbulence diffusion coefficients recover the
standard form as used in the resonant-diffusion limit of
relativistic quasilinear theory (e.g., see Glauert and Horne
(2005); Summers (2005)), when we consider elapsed
timescales much greater than a gyroperiod (i.e., we allow
Δt ≫ 1/|Ω0|, and formally |Ω0|Δt → ∞);

• Whilst the form of the quasilinear diffusion coefficients is
not new in and of itself, our new derivation has a number of
benefits, including: 1) the evident self-consistent
relationship between a more general weak turbulence
theory and the standard resonant diffusion quasilinear
theory (as is commonly used in e.g. radiation belt and
solar wind modeling); 2) the general nature of the
Fokker-Planck equation that can be derived without any
prior assumptions regarding its form; 3) the clear
dependence of the form of the Fokker-Planck equation
and the transport coefficients on given specific timescales.
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