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A superposed epoch analysis (SEA) is a simple, yet powerful statistical analysis

technique, used to identify patterns in the temporal evolution of observed

quantities relative to defined epochs. In some cases, the event duration and

time between epochs (epoch length) can be highly variable. If the measured

response scales with the event duration or epoch length, then the underlying

temporal patterns can be suppressed when analyzed in absolute time. In this

article, we describe an adaptation of the traditional SEA, where we apply time-

normalization to each event and present a Python package sea_norm which

implements the time-normalized SEA. Rather than defining a singular epoch

time, a start, epoch, and end time are defined for each event, separating

each event into two intervals. For every event, the duration of both intervals

is normalized to a common time axis, essentially stretching or compressing

each interval, such that each respective epoch interval is the same length for

all events. This technique has the advantage of identifying temporal patterns

not observed in a traditional SEA. Given a time series, a list of event start,

epoch, and end times, and specified binning dimensions the Python package

sea_norm returns a time-normalized SEA analysis of the time-series. This

technique is widely applicable across the Space Physics field, where events

have defined start and end times, and where the response to those events may

scale proportionally with event length. We provide examples demonstrating

how the SEA code works with one-dimensional and two-dimensional time

series, and how users can specify their own statistics to use in the superposed

analysis (e.g., percentiles).
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1 Introduction

Many sciences and scientific fields of research use measurements of observed
quantities in response to a specific event, usually with the aim of understanding the
mechanics of the physical system which have led to that response, not least, within
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the various fields of space science. Repeated events such
as geomagnetic storms and substorms, can drive activity
throughout Earth’s magnetosphere, prompting the response
of many measurable processes, including magnetic field
dipolarizations, substorms injections, wave-particle interactions,
and local or global precipitation of electrons and ions
(e.g. O’Brien et al., 2003; Summers and Thorne, 2003;
Meredith et al., 2011; Katsavrias et al., 2019; Wang et al., 2019).
While these processes can typically be analyzed as individual
events, sparse measurements and limited data availability may
not provide sufficient temporal or spatial coverage required
to develop a comprehensive understanding of the processes
(e.g. Wang et al., 2019). For common and repeatable events, a
statistical analysis, utilizing data obtained from many events
can provide improved spatial and temporal coverage of the
region of interest (e.g., the outer radiation belt), allowing
researchers to gain additional insight into the events and
more importantly, the underlying physical processes (e.g.
Yokoyama, 1997; Halford et al., 2010; Hutchinson et al., 2011;
Murphy et al., 2018; Murphy et al., 2020; Olifer et al., 2021;
Walton et al., 2022).

A superposed epoch analysis (SEA) is one of the most
powerful and widely used statistical analysis techniques
for studying the temporal evolution of observed quantities
in response to a specific type of event, and relative to a
defined epoch. Studies have utilized a conventional SEA for
a range of physical phenomena and Python packages have
previously been released which perform this conventional SEA
analysis (Larsen et al., 2010; Morley et al., 2011). For example,
Turner et al. (2019) used near-equatorial measurements of
energetic electrons in Earth’s outer radiation belt during
geomagnetic storm events. In their analysis, the point of
minimum Sym-H in each event was used as the singular epoch
time and a range of statistics (includingmedian, mean, etc.) were
calculated. In particular, Turner et al. (2019) demonstrated the
existence of both an energy and storm driver dependence in
the storm-time response of electrons in the outer radiation belt.
In space physics, this conventional SEA has been extensively
used in relation to geomagnetic storm activity. For example,
authors have studied both the response of energetic particles
during storms (e.g. Meredith et al., 2011; Whittaker et al., 2014;
Olifer et al., 2021; Smirnov et al., 2022), as well as the storm-time
response of various plasma waves (e.g. O’Brien et al., 2003). SEA
studies are not limited to storms, rather any event which can be
studied in large numbers is ideal for SEA studies. This includes,
for example, substorms (e.g. Boakes et al., 2011; Liu et al., 2011;
Katsavrias et al., 2019), the response of the radiation belt to
varying solar wind drivers (e.g. Hietala et al., 2014) and nightside
particle injections (e.g. Gabrielse et al., 2014).

In some cases, such as that of geomagnetic storms, event
duration can be highly variable. If the measured response of an
event scales with the event duration, or the event can be separated
into phases which scale with phase duration (e.g. geomagnetic

storm phases), then the underlying temporal patterns can be
suppressed when analyzed in absolute time, as with a traditional
SEA. A solution to this is an adaptation of the traditional SEA,
where time-normalization is applied to each event. Such an
analysis helps to identify temporal patterns not observed in a
traditional SEA. In a time-normalized SEA, rather than defining
a singular epoch time, a start, epoch and end time are defined for
each event, separating each event into two intervals (or phases).
For every event, the duration of the two intervals is normalized
to a common time axis, essentially stretching or compressing
each interval, such that each respective epoch interval is the same
length for all events. The SEA statistics (e.g., mean) are then
calculated along the time-normalized axis of each phase using
a binning algorithm.

Studies in space physics have utilized the time-normalized
SEA technique for geomagnetic storms in a number of ways.
Halford et al. (2010) used a time-normalized SEA to examine
electromagnetic ion cyclotron (EMIC) wave occurrence in
the outer radiation belt during geomagnetic storms, clearly
showing heightened EMIC wave occurrence during the main
phase of storms. Time-normalized SEA has also revealed
further characteristics of geomagnetic storms and shock
events, including the response of energetic electrons (e.g.
Murphy et al., 2018, 2020; Walton et al., 2022), geomagnetic
indices (e.g. Yokoyama, 1997) and various solar wind parameters
(e.g. Hutchinson et al., 2011; Kilpua et al., 2015). To our
knowledge, there is no widely available Python code which
performs a time-normalized SEA.

In this article, we present a new Python package, sea_norm
(GitHub link: https://github.com/samwalton7645/SEA_Code),
capable of performing the adapted time-normalized SEA, given a
time series, specified binning dimensions and list of events with
defined start, epoch and end times. In the following sections, we
describe the Python code and it is functionality, before providing
examples demonstrating both a one-dimensional and a two-
dimensional time-normalized SEA. This technique is widely
applicable across the Space Physics field, where events have
defined start and end times, and where the response to those
events may scale proportionally with event length.

2 The sea_norm module

In this section, we detail the methodology behind the time-
normalized SEA implemented in the sean() function, within
the sea_norm module. We further describe the prerequisites
for the sea_norm module, the input parameters and return
values of the sean() function.

The time-normalized SEA is executed as follows:

1) Each event in the superposed epoch analysis is split into two
phases defined by three times, the start, epoch, and end of
each event. The first phase is defined as the start of the event
to the epoch time (phase 1).The second phase is defined from
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FIGURE 1
Illustration of how the time-normalized superposed epoch analysis is performed on the Dst index. The top panel shows the conventional SEA
alignment, where st1,2,3 and et1,2,3 represent the start times and end times, respectively, of three different geomagnetic storms, aligned at their
epoch times. The bottom panel shows the time-normalized SEA for the same storms. Phase 1 and phase 2 are highlighted as labeled, where
each colored block represents a single normalized time bin.

the epoch time until the end of the event (phase 2).The phase
1 and 2 arrays are produced and input by the user.

2) For every event, phase 1 and 2 are then normalized between
0 and 1.

3) The normalized phases are then binned into a set of equally
spaced bins, the number of bins being defined by the user.
For example, if phase 1 was divided into four bins, the time
axis would be divided into bins with edges [0, 0.25, 0.50, 0.75,
1.00].

4) For each phase, a set of statistics is then determined for the
data residing in each bin (e.g. the mean and median).

5) If a 2D superposed epoch analysis is performed the data is
binned in a second dimension before calculating the statistics
of each bin.

The process described above is illustrated in Figure 1. The
top panel shows the setup of a conventional SEA with Dst data
for three storms of differing lengths, aligned at their respective
epoch times. The bottom panel shows the time-normalized SEA
setup. Each event is separated into phase 1 (st to the epoch time)
and phase 2 (epoch time to et). For each event, phase 1 and 2
are normalized, and the time-normalized axes are binned into
equally spaced bins. In the example here, phase 1 is binned into
three bins and phase 2 into 16 bins (identified by the colored
blocks), plotted with the time axis labeled relative to the epoch
time and in terms of the number of normalized time bins.
As Figure 1(bottom) illustrates, this process effectively stretches
(e.g., the red event) or compresses (e.g., the orange event) events
about the epoch time such that they are all the same length.

Finally, a set of statistics is calculated for each bin, completing
the time-normalized superposed epoch analysis.

The time-normalized SEA analysis described above
is implemented in the sea_norm module (Walton and
Murphy, 2022), which can be downloaded via the GitHub link:
https://github.com/samwalton7645/SEA_Code. The user can
download a .zip file of the repository to a local repository,
extract the files, and then installed via the terminal using the
command ‘pip install’, within the ‘SEA_Code’ directory. The
prerequisite packages are Pandas v1.1.5 or later, Numpy v1.21.6
or later, Scipy v1.2.1 or later, and tqdm v4.36.1 or later, used
within Python 3.6. sea_norm may work on earlier versions of
Python and the respective packages, but is untested. Pandas
and Numpy are used for data handling and manipulation;
Scipy is used for the .stats.binned_statistic() and
.stats.binned_statistic_2d() functions, which bin
the time-normalized data and calculate the SEA statistics for
each bin; tqdm is used to add progress bars to the display when
using the sea_norm package, since statistical analysis can be
somewhat time intensive.

The sean() function is the bulk of the time-normalized
SEA code and implements the analysis described above and
illustrated in Figure 1. sean() requires input data in the form
of a Pandas DataFrame with a datetime index, as the index is
used to normalize the data within phases. The list of events
is specified using the events argument as a list of three arrays
[st, ep, et], containing start times in st, epoch times in
ep and end times in et, in a datetime format. Unless otherwise
specified using the cols argument, a 1D SEA is performed on
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TABLE 1 An example array for when sean() is used to perform a 1D superposed epoch analysis on AE data only, using the default statistics.

t_norm AE_mean AE_median AE_lowq AE_upq AE_cnt

-20.0 214.209,852 108.0 54.0 250.0 19651.0
-19.0 221.725,136 96.0 48.0 255.0 19580.0
-18.0 209.517,656 102.0 46.0 251.0 19590.0
-17.0 225.828,864 102.0 46.0 268.0 19562.0
-16.0 236.405,764 102.0 47.0 311.0 19559.0
⋮
115.0 186.718,109 133.0 62.0 251.0 4,013.0
116.0 188.601,150 132.0 59.0 247.0 4,013.0
117.0 178.943,151 127.0 56.0 236.0 4,001.0
118.0 142.817,818 95.0 52.0 192.0 4,012.0
119.0 124.726,202 84.0 50.0 168.0 4,090.0

every column in the DataFrame. x_dimensionsmust also be
specified as a list [x1, x2], containing the number of bins in
phase 1 and phase 2 of the superposed epoch analysis. Ifsean()
is being used for a 2D SEA, the y_col argument must be used
to specify the column which should be used for the y-axis, and a
2D SEA will be performed on the remaining columns. For a 2D
SEA, y_dimensions must also be specified as a list [y_min,
y_max,y_spacing], containing theminimum andmaximum
y boundaries, as well as the desired bin spacing for the second
dimension.

The sean() function returns a Pandas DataFrame
containing the time-normalized SEA time-series, as well as a
dictionary of metadata for the performed analysis (e.g., which
statistics were returned and which columns the analysis was
run on). The returned DataFrame contains a column with
the SEA for each data column and statistic calculated in the
analysis. By default, sean() returns the mean, median, lower
and upper quartiles, and counts for each data column. If a 2D
SEA was performed, the returned DataFrame further contains a
column for each bin of the second dimension and the metadata
dictionary contains a dictionary of y-axis metadata (e.g.,
y-axis min, max and bin size). As an example, Table 1 shows the
columns of a returned DataFrame when the input DataFrame
contains a single time-series AE (see also the examples below).
In a 2D analysis the same columns are returned but each column
is further binned by the second dimension and the column
names are appended with the second dimensions bin number.
For example, in a 2D analysis the AE median column in Table 1
would become AE_median_n where n is the second dimension
bin number. Finally, in both the 1D and 2D cases, the index of
the returned DataFrame is the bin normalized time. For example
if phase 1 was binned into 20 bins and phase 2 120 bins then the
index goes from -20 to 119 in steps of 1.

For additional functionality, sean also allows users to define
their own statistics via the seastats argument. This can
simplify or speed up the SEA analysis by calculating only a
subset of the default statistics. This can also be used for a more
in-depth analysis by allowing users to define a more complex set
of statistics to be calculated. The seastats argument is passed as

a dictionary of the form: “stat_name”:stat_function.
stat_function can be a string e.g. as defined in
scipy.stats.binned_statistic(), a callable, e.g.,
np.nanmean, or a lambda defined callable e.g., the 90th
percentile: p90 = lambda stat:np.nanpercentile

(stat, 90). The ‘stat_name’ key is used to label of the
columns of the returned DataFrame (see Table 1).

3 Examples of use

In this section, we demonstrate how the sea_norm package
can be used to analyze both 1D and 2D data for 168 geomagnetic
storm events within a 12-year time period (1992–2004). For the
purposes of the examples presented, we import the Pandas and
Numpy packages as below, as well as the Matplotlib package,
which is used for plotting the examples. Finally, we import the
sean() function from the sea_norm package:

We then load all data required for the examples in this
section:
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For the 1D examples, we use OMNIWeb parameters solar
wind speed (V), dynamic pressure (P), Southward interplanetary
magnetic field (Bz), Sym-H and the Auroral Electrojet (AE)
index. For the 2D example, we use SAMPEX PET flux
measurements from the low energy (ELO, 1.5–6.0 MeV) electron
channel and the high energy (EHI, 2.5–14.0 MeV) electron
channel, and L-shell (L) for the y-axis data. The list of
events, ‘StormList_short.txt’, is a list of geomagnetic
storms identified by the algorithm described in Walach and
Grocott (2019). All data is during the 1992–2004 time period.

The number of bins is defined for phase 1 and phase 2 as
below, which remain the same for all examples:

We use 20 bins for the pre-epoch phase and 120 bins for the
post-epoch phase to loosely reflect the relative proportions of a
geomagnetic storm.

3.1 One-dimensional SEA

The below Python code shows a simple example use of the
sean() function to produce a 1D, time-normalized SEA for
all of the OMNI parameters in our DataFrame (V, P, Bz , Sym-
H and AE). A subset of columns can be specified by passing the
column names via the cols argument. For example, to perform
the analysis on only AE, use sea_cols = [‘AE’].

Figure 2 shows the plot resulting from the above code,
presenting the mean, median and quartiles of, from top

FIGURE 2
Result of the one-dimensional, time-normalised superposed
epoch analysis for OMNIWeb parameters solar wind speed (V),
dynamic pressure (P), southward interplanetary magnetic field
(Bz), Sym-H and the Auroral Electrojet (AE) index. The statistics
plotted are the mean (red), median (blue solid), upper and lower
quartiles (blue dashed) for data within 168 geomagnetic storms
from 1992–2004.

to bottom, V, P, Bz , Sym-H and AE. It is clear that a
successful execution of the sean() function has produced
the characteristic geomagnetic storm profile for the OMNI
parameters. V, P and AE show characteristic increases before
the storm epoch, while Bz shows a characteristic negative turn.
Sym-H shows the typical storm shape, sharply turning negative
pre-epoch, before gradually recovering post-epoch.

3.1.1 User-defined statistics
As mentioned in Section 2, the default for sean() is to

return the mean, median, lower and upper quartiles and counts.
However, sean() is capable of accepting user-defined statistics.
In the below Python code, we define a set of lambda functions
to be input into sean() as the user-defined statistic. In this
case, the np.percentile() function is used to define the
deciles using the makepercentile() function and a simple
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FIGURE 3
Result of the one-dimensional, time-normalised superposed
epoch analysis for solar wind speed (V), for data within 168
geomagnetic storms. Deciles are calculated for data between
1992 and 2004. The color indicates the exact decile, referring to
the legend plotted on the right.

for loop. The seastats variable is assigned to a dictionary
containing ten lambda functions, which are input into sean()
via theseastat parameter. To speed up the analysis, the deciles
are only calculated for solar wind velocity.

The resulting plot is shown in Figure 3. All ten deciles are
plotted with a color assigned as displayed to the right of the plot.

The temporal storm profile is similar to the V panel in Figure 3
median (50th percentile) and the upper and lower (25th and
75th percentiles, respectively), showing the characteristic rapid
increase in solar wind speed V pre-epoch, followed by a gradual
decrease post-epoch.

3.2 Two-dimensional SEA

To also demonstrate the sean() function’s 2D capability,
we present the below Python code, which produces the plot in
Figure 4 for SAMPEX PET flux data. For the y-dimensions
(L-shell dimension), we set boundaries of L = 2.5 and L = 5.5,
with a bin-spacing of L = 0.2. L-shell dimensions are chosen to
reflect data availability in this particular data set.

Figure 4 shows the result of the above Python code. Once
again, the time-normalized SEA has produced the characteristic
temporal storm profile for the ELO and EHI (relativistic)
energies. Pre-epoch, electron flux shows rapid decreases at
outside L ≈ 3.5, before recovering post-epoch.
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FIGURE 4
Result of the two-dimensional (L-shell vs. time),
time-normalised superposed epoch analysis for SAMPEX PET
fluxes between 1992 and 2004, for 168 geomagnetic storms.
The colors are on a logarithmic scale, and show flux from the
low energy (ELO, 1.5–6.0 MeV) electron channel on the top
panel and from the high energy (EHI, 2.5–14.0 MeV) electron
channel on the bottom panel.

4 Conclusion and future possibilities

In this article, we have presented sea_norm, a new python
packagewhich is able to perform a time-normalized SEAon both
1D and 2D data. The bulk of sea_norm is contained within
the sean() function, where the only required inputs are a time
series, a list of events and specified binning dimensions for the
normalized time-axis (and for the y-dimensions if performing
a 2D analysis). sean() returns a Pandas DataFrame with the
completed SEA, along with the relevant metadata.

We have demonstrated three potential uses of sean(): a 1D
SEA, performed on multiple time series parameters; a 1D SEA
with user-defined statistics; and a 2D SEA for two time series
binned by L-shell.

While the 1D and 2D functionality of the sea_norm

package covers the vast majority of common SEA uses, future
developments of sea_norm could incorporate a 3D version.
This would provide sea_norm the capability of producing
more in-depth analysis of events where more than one spatial
dimension is of interest. For example, a 3D SEA could be used
with SAMPEX flux data in both the L-shell and magnetic local
time (MLT) dimensions throughout a geomagnetic storm. An
animated L vs. MLT plot could then be produced, depicting the
2D spatiotemproal evolution of electrons in the radiation belts
during a storm.

The superposed epoch analysis (SEA) has been used as
an effective tool in time-series data analysis for over 100
years (Chree, 1913) and extensively used in Space Physics.
The simple nature of the SEA makes it a powerful tool for
statistical analysis whose results are easy to interpret and

analyze. The time-normalized SEA discussed here provides a
solution to a potential short-coming of the conventional SEA,
whereby events of differing length can smear the underlying
dynamics researchers wish to study. sea_norm provides a
convenient method to perform a time-normalized SEA, allowing
researchers to circumvent potential pitfalls in a traditional SEA
analysis. Overall, sea_norm provides any researcher in any
field who utilizes time series in their work to rapidly perform
a time-normalized superposed epoch analysis and identify the
underlying statistical patterns in their data.
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