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With the onset of large-scale astronomical surveys capturing millions of

images, there is an increasing need to develop fast and accurate deconvolution

algorithms that generalize well to different images. A powerful and accessible

deconvolution method would allow for the reconstruction of a cleaner

estimation of the sky. The deconvolved images would be helpful to

perform photometric measurements to help make progress in the fields of

galaxy formation and evolution. We propose a new deconvolution method

based on the Learnlet transform. Eventually, we investigate and compare

the performance of different Unet architectures and Learnlet for image

deconvolution in the astrophysical domain by following a two-step approach:

a Tikhonov deconvolution with a closed-form solution, followed by post-

processing with a neural network. To generate our training dataset, we extract

HST cutouts from the CANDELS survey in the F606W filter (V-band) and

corrupt these images to simulate their blurred-noisy versions. Our numerical

results based on these simulations show a detailed comparison between the

considered methods for different noise levels.
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1 Introduction

In the upcoming decade, large telescopes such as the Vera C. Rubin Observatory
(LSST) and Euclid will offer a broader view of the universe by capturing several images.
Both these telescopes would be covering a huge part of the sky, thus giving us access
to a wide variety of objects, and capturing images in various frequency bands. Each
frequency band captures certain unique information, which is beneficial for tracing the
constituent components of galaxies. In addition, these surveys aim to go deeper—thus
capturing fainter objects, and to higher redshifts—thus capturing very distant objects.
A huge variety of galaxy images would help us better understand their origin and
evolution. From an astrophysical point of view, the ultimate aim is to translate the
information carried by these images and derive physical inferences (for e.g.: obtaining
the metallicity, morphology, or flux of different galaxies). Unfortunately, imperfections
are generated by every image acquisition system. Usually, a blurring effect is introduced
in the images, which is modeled by a Point Spread Function (PSF) and is considered
to be space-invariant. Moreover, the sensor variations introduce noise in the images,
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which is usually additive, white, and Gaussian. As such, there is a
dire need to develop fast and accurate deconvolution algorithms
that generalize well to different images. In addition, bad pixels or
cosmic ray hits also need to be taken into account. Generally, they
are relatively easily identifiable, and a good solution would be to
apply an in-painting method to replace the bad pixel values by
reasonable ones. In this paper, we assume that this pre-processing
step has been carried out, and that we can directly deal with the
clean images. A powerful and accessible deconvolution method
would allow for the reconstruction of a cleaner estimation of the
sky. Deconvolution is useful for a broad range of applications,
such as galaxymorphology studies, substructure identification in
galaxies, bulge/disk separation, etc. Deconvolution is also very
important for comparing two images at different resolutions.
Hence, technical development in the field of image processing is
essential to answering the fundamental questions in astrophysics.

By using the least-squares method, one can partially
reconstruct the image; however, the solution oscillates
while solving the equation since the problem is ill-
conditioned. Broadly speaking, it belongs to the family of
ill-posed problems that could alternatively be handled using
regularization. Due to these effects, simply minimizing the
Mean Squared Error (MSE) between the observation and the
reconstruction does not lead us to proper convergence. To
tackle this, constraints associated with the signal’s energy,
such as its derivatives (Bertero and Boccacci, 1998), total
variation (Rudin et al., 1992; Chambolle et al., 2010) or sparsity
(Starck et al., 2015; Farrens et al., 2017), could be added. These
routinely usedmethods are apt for solutions optimizing theMSE.
For such inverse problems, sparse wavelet regularization using
the ℓ0 or ℓ1 norm has remained the routinely used approach
for astrophysical image deconvolution. It has led to striking
results, such as an improvement in resolution by a factor of
four in the Cygnus-A radio image reconstruction compared to
the standard CLEAN algorithm (Garsden et al., 2015). Sparsity
could be considered a weak prior on the distribution of the
wavelet coefficients of the solution.This comes from the fact that
most images could be represented in a more compressedmanner
in the wavelet domain. The advancement in deep learning over
the recent past has presented encouraging outcomes in the
field of deconvolution (Xu et al., 2014). Within the astrophysics
community, deep learning approaches have been introduced to
carry out model fitting that could be considered as a parametric
deconvolution (Tuccillo et al., 2018). Particularly, Unets
(Ronneberger et al., 2015) have gathered tremendous attention
due to their effectual performance, which can be attributed to
their highly non-linear processing and the availability of large
training datasets. Based on Unet, Sureau et al. (2020) developed
the Tikhonet method for deconvolving galaxy images in the
optical domain. Tikhonet is a two-step deep learning-approach,
the first being a Tikhonov deconvolution, i.e., with a standard
quadratic regularization, followed by a neural network denoising

using a 4-scaleXDense Unet. Giving the Tikhonov deconvolution
as an input to the network, the training aims at minimizing the
MSE between the reconstruction and the ground truth image. It
was shown that Tikhonet surpassed sparse regularization-based
methods in terms of the MSE and a shape criterion, where a
measure of the galaxy ellipticity was used to encode its shape
(Sureau et al., 2020).

While the multiple instances of non-linearity are inherent
to artificial neural networks, the idea of learning with training
data could even be extended to methods that exploit sparsity.
Recently, Ramzi et al. (2021) presented a novel architecture,
termed Learnlet, that preserves the properties of sparsity-
based approaches (for example, linear decomposition and
reconstruction steps, good generalization properties, exact
reconstruction) while simultaneously capturing the prowess of
neural networks. The Learnlet decomposition aims at learning
a filter bank in a denoising setting with backpropagation
and gradient descent. Learnlets were originally proposed for
denoising and have been shown to have better generalization
properties than Unets (Ramzi et al., 2021), while Unets showed
better performances. In this paper, we investigate if the
Learnlet neural network could also be a good alternative to
Unet for deconvolution. We propose a new deconvolution
approach based on the Learnlet decomposition, using the
same two-step approach as in Sureau et al. (2020), but by
substituting the Unet denoiser by Learnlet. We compare
our results on images extracted from the CANDELS survey
(Grogin et al., 2011; Koekemoer et al., 2011). In Section 2, we
introduce the deconvolution problem and the deep learning-
methods that have been developed to tackle them. In Section 3,
we discuss the concept of Learnlet decomposition as introduced
by Ramzi et al. (2021), and extend the idea to use the network for
image deconvolution.We detail out the process of generating our
dataset and perfoming the numerical experiments in Section 4,
and in Section 5, we demonstrate the results obtained for these
experiments. Finally, in Section 6, we conclude our work.

2 Deep learning-based
deconvolution

2.1 The deconvolution problem

Let y ∈ ℝn×n be the observed image and h ∈ ℝn×n be the PSF.
The observed image can be modelled as

y = h ∗ xt + η (1)

where xt ∈ ℝn×n denotes the target image, ∗ denotes the
convolution operation, and η ∈ ℝn×n denotes additive Gaussian
noise. Our aim is to recover the ground truth image xt. One could
partly recover an estimate x̂ of xt by the help of the least-squares
method. However, the solution would oscillate because Eq. 1
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is ill-conditioned. More broadly, it falls under the category of
an ill-posed problem, which could be handled by regularization
(Bertero and Boccacci, 1998).

Convolutional Neural Network architectures like Unet
(Ronneberger et al., 2015) have shown to be very efficient in
image noise removal, as seen in Gurrola-Ramos et al. (2021).
The Unet was originally developed for biomedical image
segmentation. Since then, it has been found to be relevant
to many other imaging problems, not just segmentation.
Meanwhile, denoising methods based on wavelets are no longer
the state-of-the-art. However, they have theoretical guarantees
[as seen in Donoho (1995)]. Unets consist of a multi-scale
approach similar to wavelets, which allows the signal to be
analyzed at multiple resolutions. The prime difference comes
from the usage of non-linearities at various steps. Wavelets
include only a single non-linearity step (wavelet shrinkage)
when used for denoising. Contrastingly, Unets rely on several
ReLU and max-pooling steps. The denoising analysis in Unets
becomes very complicated due to such chained non-linearities.
Particularly, it is tough to understand how a network that is
trained on one kind of noise could be used for other kinds
of noise. Moreover, a few works (Gottschling et al., 2020) even
demonstrate that deep learning-based methods are unable to
recover features that their classical counterparts can.

For a ground truth image x ∈ ℝn×n, let x̃ = x+ ϵ be
its corrupted version generated by adding Gaussian noise
ϵ∼N (0,Cn×n) with a known covariance Cn×n. For a denoiser
Nθ, the general optimization problem can be represented as:

argmin𝔼x [‖x−Nθ (x̃)‖22] (2)

2.2 The Tikhonet solution

Tikhonet is a two-step deep learning-based deconvolution
method. The first step involves deconvolving the input image
with a Tikhonov filter based on a quadratic regularization.
Let H ∈ ℝn

2×n2 be the circulant matrix associated with the
convolution operator h.Then, the Tikhonov solution ofEq. 1 can
be written as:

x̂ = (H⊤H+ λΓ⊤Γ)−1H⊤y, (3)

where Γ ∈ ℝn
2×n2 corresponds to the linear Tikhonov filter which

is set to a Laplacian high-pass filter to penalize high frequencies,
and λ ∈ ℝ+ corresponds to the regularization weight, whose
appropriate value for every image is found by Stein’s Unbiased
Risk Estimate (SURE) minimization (Sureau et al., 2020). The
Tikhonov step results in a deconvolved image that contains
correlated additive noise which can be removed in a following
step by a four-scale XDense Unet. The training is aimed to make
the network learn the mapping from the Tikhonov output x̂ to
the ground truth image xt while minimizing the MSE (Eq. 2).

The model architecture heavily impacts the denoising
performance. It should have some multi-scale processing in
order to capture distant correlations, pointing to the usage of a
Unet like layout (Ronneberger et al., 2015) shown in Figure 1,
which has already found success in solving inverse problems
(Jin et al., 2017). Ideally, one should also aim to bring down the
trainable parameter count. Considering these factors, theXDense
Unet inherits the global layout from (Jin et al., 2017), but with
these alterations (Sureau et al., 2020):

• At each scale, the convolutional layers were replaced
by dense blocks introduced by Huang et al. (2017),
which decrease the parameter count by concatenating
feature maps from the previous layers to the current
layer’s input, and were claimed to help preserve
information, enable reusing features, and limit vanishing
gradients.

• 2D convolutions were substituted by 2D separable
convolutions (Chollet, 2017), which helped decrease
the parameter count in the model by assuming that
correlations across feature maps and spatial correlations
can be independently captured.

• The max-pooling step was changed to average pooling,
since it led to over-segmentation of the final estimates.

• The skip connection from the input to the output
layer (Jin et al., 2017) was removed, since it degraded the
network performance particularly at low Signal-to-Noise
ratio (SNR).

The first two alterations notably bring down the parameter
count per scale of the Unet, thus increasing the potential
number of scales for a given number of trainable parameters.
Additionally, we remove the biases from the convolutional layers,
as they have been shown to lead to a low generalisation capacity
(Mohan et al., 2020). In all, the XDense Unet model has 184,301
trainable parameters.

2.3 Advantages and drawbacks of
Tikhonet for astronomical image
deconvolution

Tikhonet presents many advantages:

• It provides better results than standard techniques usually
used in astrophysics (Sureau et al., 2020).

• It is an extremely fast method working for both optical and
radio image deconvolution, therefore well-adapted to the
forthcoming big data challenges.

• It allows to easily take into account the spatial variation
of the PSF. Indeed, we know that the PSF in large surveys
such as the Canada-France Imaging Survey (CFIS) or
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FIGURE 1
The global Unet architecture. Note that the input dimensions are 128× 128 in our case. The number of channels for each feature map is
indicated on the top of the blue rectangles. Here, there are 64 base filters. The different scales in this model help analyze the images at multiple
resolutions. Credit: Ronneberger et al. (2015).

Euclid varies spatially. It was shown by Sureau et al. (2020)
that Tikhonet can handle such data by deconvolving each
galaxy in the field independently and using the PSF
corresponding to the center of the galaxy. The PSF field
is generally not known, but can be reconstructed from
observed stars present in the image (Liaudat et al., 2021;
Liaudat et al., 2022).

• Many galaxies share very similar morphologies. Having a
learning process allows to capture these morphologies and
improve the deconvolution.

However, it also has a few drawbacks:

• Generalization properties are not so good. It was shown
that Unet does not perform well on image morphologies or
noise levels that were not included in the training dataset
(Ramzi et al., 2021).

• It is not clear how Unets deal with images containing noise
with non-white statistical properties (for e.g.: Poisson,
non-stationary Gaussian noise), while sparsity-based
techniques can easily consider different kinds of noise
(Starck et al., 2015).

• There is no theory to support the method.

In a denoising framework, the Learnlet decomposition has
shown interesting properties that could also be considered for
deconvolution.

2.4 Using a deeper Unet

In addition to the compact XDense Unet, we also tested
the performance of Unet-64, a deeper Unet as used in
Ramzi et al. (2021) that has 31,023,940 trainable parameters
(around 170 times more parameters than XDense Unet). The
architecture is the same as shown in Figure 1. As in the case of
Tikhonet, we used the bias-free Unet architecture, as these biases
lead to a low generalisation capacity (Mohan et al., 2020). The
full Python implementation of the code is publicly available 1.

3 Learnlet deconvolution

3.1 Learnlets

Denoisingmethods based onwavelets are no longer the state-
of-the-art, but have theoretical guarantees and are the baseline
for other approaches. In cases where guarantees are desired, like
medical applications, they are the suitable candidates. Recently,
Ramzi et al. (2021) presented a new network architecture, called
Learnlet, which exploits one of themost desirable usefulnesses of
deep learning: using gradient descent to improve the expressive

1 https://github.com/zaccharieramzi/understanding-Unets.
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power of wavelets, while preserving some interesting wavelet
properties like exact reconstruction.

In the presence ofWhiteGaussianNoise (WGN), if Σ denotes
the set of possible values for the noise standard deviation σ, m
the number of scales, and θ = (θs,θt,θa) ∈ Θm a given set of
parameters, then Learnlets are defined as the following function
fθ from (ℝ

n×n ×Σ) to ℝn×n:

fθ (x̃,σ) = Sθs (Tθt (Aθa (x̃) ,σ)) (4)

where
1. Aθa is the analysis function, which is equivalent to the

wavelet transform with learned filters:

Aθa (x̃) = ((Fθa(i) ∗ g(h̃
i−1 (x̃)))m

i=1
, h̃m (x̃)) (5)

where:

• Fθa(i) is the filter bank at scale i. θa(i) are the convolution
kernels all of the same square size.

• h̃:y↦ ū(h ∗ y) is a low-pass filtering (h) followed by
decimation (ū).

• g is a high-pass filter given by: g(y) = y− u(h̃(y)), where
u is the upsampling operation performed using a bicubic
interpolator.

Only F(i)θa filters are learned, while keeping the high and low
pass filters (g,h) fixed.

2. Tθt is the thresholding function. Ramzi et al. (2021) chose
the soft-thresholding operation since it offers more stability
(Abrial et al., 2007). Owing to the linear nature of the analysis
operator, one could straightforwardly apply the thresholding
strategy to any other type of noise, including non-stationary
Gaussian noise. In case of white Gaussian noise with variance σ2,
this function is described as:

Tθt (((di)
m
i=1,c) ,σ) = (((tij (dij,σ))

Ji
i=1
)
m

i=1
,c) (6)

where tij(d,σ) = σ̂ijST(
1
σ̂ij
dij,θ
(ij)
T σ), with:

• dij ∈ ℝ
n

2i−1
× n

2i−1 the output of the jth filter of ith scale.
• σ̂ij the estimated standard deviation of dij when white
Gaussian noise with variance 1 is input to the transform.

• θ(ij)T the level of thresholding applied to the jth analysis filter
at scale i.

• ST(d,s) the soft-thresholding function applied point-wise
on d with threshold s: ST(d,s) = sign (d)max(|d| − s,0).

3. Sθs is the synthesis function, which is equivalent to the
wavelet reconstruction operator with learned filters and is linear.
It is described recursively as:

Sθs ((di)
m
i=1,c) = S

(m−1)
θs
((di)

m−1
i=1 ,u (c) + Fθs(m) ∗ dm) (7)

where S∅(∅,c) = c and:

• Fθs(i) is the filter bank at scale i. θs
(i) are the convolution

kernels all of the same square size.
• u is an upsampling operation performed by a bicubic
interpolator.

To make Learnlets behave as closely as possible to wavelets
and hence more intuitive, Ramzi et al. (2021) constrain the
thresholding levels to lie within [0,5] and force the analysis
filters to have a unit norm. Figure 2 shows a schematic of the
Learnlet architecture. The full Python implementation of the
code is publicly available2.

3.2 Deconvolution with learnlets

Similar to Tikhonet deconvolution, in Learnlet
deconvolution, we find the closed-form solution x̂ as given in
3. x̂ is then post-processed by a Learnlet network, which is also
trained on pairs of Tikhonov outputs x̂ and ground truth images
xt tominimize theMSE (Eq. 2).The followingmodel parameters
were chosen for the Learnlet architecture, which amounted to
372,000 trainable network parameters (Ramzi et al., 2021):

• m = 5 scales.
• 256 learnable analysis filters plus 1 fixed identity analysis
filter Fθa(i) of dimensions 3× 3.

• 257 learnable synthesis filters Fθs(i) of dimensions 5× 5.

Additionally, Learnlets also require the standard deviation
of the noise σnoise as an input to the model. An interesting
thing to note here is that after the Tikhonov deconvolution
step, the nature of the noise changes from White Gaussian
(uncorrelated) to Colored Gaussian (correlated). Even though
Ramzi et al. (2021) developed Learnlets for White Gaussian
Noise (WGN) removal, we observe that the algorithm is able
to adapt its thresholding step (Eq. 6) and efficiently recover the
solution. This is supported by the results shown in Section 5.
Note that there also exist methods to estimate the noise
standard deviation in an image with an accuracy of around 1%
(Starck et al., 2015).

In all of the deconvolution methods -

• The Tikhonov deconvolution step remains the same, while
the network that post-processes the Tikhonov output x̂
differs.

• The success lies on the training accuracy between the
Tikhonov deconvolution x̂ and the ground truth image xt.

• The network used for post-processing acts as a denoiser.The
efficiency and accuracy of the denoising step governs the

2 https://github.com/zaccharieramzi/understanding-Unets.
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FIGURE 2
Schematic representation of the Learnlet model, with m = 2 scales. Inputs/outputs are represented by the red nodes. The light-green nodes
denote functions with learnable parameters. Credit: Ramzi et al. (2021).

reconstructed output, which should ideally be as close to the
target image xt as possible.

4 Dataset and experiments

The code was implemented in Python 3.6, using
TensorFlow 2.2 (Abadi et al., 2015) for model design. All
simulations and trainings were performed on the Yggdrasil
supercomputer based at the University of Geneva, using a
single Titan RTX Turing GPU with 24 GB RAM for each
job.

4.1 Dataset generation

4.1.1 Ground truths—CANDELS
The Cosmic Assembly Near-IR Deep Extragalactic Legacy

Survey, CANDELS (Grogin et al., 2011; Koekemoer et al., 2011),
was conceived to record the first third of galactic evolution
from z = 8 to 1.5 via deep imaging of more than 250,000
galaxies.The entire survey consists of five different imagemosaics
(GOODS-N, GOODS-S, EGS, UDS, COSMOS), each covering
different regions of the sky. To generate our training dataset,
using Python, we extracted cutout windows of dimensions
128× 128 pixels from the CANDELS FITS image mosaics
in the F606W filter (V-band) by centering them at the
object centroid, without any dynamic range-scaling. For larger
objects, we adaptively increased the cutout window dimensions
to completely enclose them. In that case, if the window
dimensions exceeded 128× 128 pixels, we downsampled the

images to 128× 128. To select good galaxy candidates and
exclude point-sized objects, we use the following filtering
criteria:

• MAG_AUTO <26 (AB magnitude in SExtractor “AUTO”
aperture).

• Flux_Radius80 > 10 (80% enclosed flux radius in
pixels).

• FWHM >10 (full width at half maximum in pixels).

In all, we end up with 22,317 ground-truth images.

4.1.2 Simulations
All the extracted ground truth images are convolved with

a Gaussian PSF with an FWHM of 15 pixels, which visually
blurs the images such that individual small-scale structures are
lost. As seen from Eq. 3, since the algorithm takes the PSF
as an input parameter and performs Tikhonov deconvolution
in the first step, the method would work with any other kind
of blurring kernel. The actual performance of the method
is mainly dependent on the neural network training, which
corresponds to the denoising step. After convolution, we add
white Gaussian noise with a standard deviation σnoise having
a value such that the faintest object in our dataset has a peak
SNR close to 1 and is hence barely visible. For this value of
σnoise, we observe a range of SNR values depending on the
magnitude of the galaxy. Eventually, the σnoise values are also
required as inputs to the Learnlet architecture. Finally, the
batch of noisy simulations and their corresponding ground truth
images is randomly split into Train-Test subsets in the ratio
0.9:0.1
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4.2 Pre-processing

Each image x(i) was normalised by subtracting its own mean
μ(i) and scaling within the [−1,1] range as follows:

x(i) − μ(i)
max [xt(i) − μ

t
(i)]

(8)

where xt(i) and μt(i) denote the ith target image and its
corresponding mean. The denominator ensures that all target
images have a maximum pixel intensity of 1, and that all
noisy images are scaled with respect to their corresponding
targets such that the ratios of the peak intensities between
them remain the same before and after normalization. Since
the flux of the target image is spread out by the PSF as a
result of convolution, the noisy images have a lower peak
intensity than their corresponding target images. One of the
main goals of astrophysical deconvolution is to recover this drop
in peak intensity. During training, we augment our dataset by
performing random rotations in multiples of 90°, translations
and flips along horizontal and vertical axes. Data augmentation is
also beneficial for making neural networks invariant to rotations
and translations.

4.3 Training

After performing a Tikhonov deconvolution as described
by Eq. 3, the networks were trained to learn the mapping
from the Tikhonov outputs x̂ to the ground truth images xt

while minimizing the MSE (Eq. 2). The images were fed to the
networks in mini-batches of size 32. All networks were trained
until convergence was achieved.We trained the networks with an
Adam optimizer (Kingma and Ba, 2014) and an initial learning
rate of 10−3, which was then decreased by half every 25 epochs
until it reached a minimum of 10−5. The way we generate our
dataset (as described in Section 4.1) results in images with
varying noise levels, which ensures that the training is not biased
by a certain noise level.Table 1 shows a performance comparison
of the three methods.

5 Results

For evaluation, our test dataset contains images with varying
noise levels (4.1.2). To perform a quantitative comparison, we use
the Normalised Mean Squared Error (NMSE) and the Structural
Similarity Index Measure (SSIM), two commonly used metrics
to quantify image-reconstruction quality. To measure the NMSE
and SSIM,weweighted all images by aGaussianwindowcentered
around the galaxy.TheFWHMfor each object was obtained from
its catalog and used for the Gaussian weighting, thus ensuring
that the window would only encircle the object and discard
the noise present in the background of the target images. An
illustration of the same along with the noisy Tikhonov output x̂
is shown in Figure 3. To visually analyze the final deconvolution
results, in Figure 4, we show ten examples of reconstructed
galaxies with different morphologies in decreasing order of SNR.
We observe that Tikhonet is mostly able to reconstruct pixels
around the central region. Consequently, it is able to deconvolve

TABLE 1 Performance comparison of the three deconvolutionmethods. The runtime per imagewas calculated on the sameGPU onwhich the networks
were trained.

Method No. of parameters Epochs Training time (hrs.) Runtime per image (ms)

Tikhonet 184,301 40 3.65 4.02
Learnlet 372,000 150 9.81 30.8
Unet-64 31,023,940 500 16.9 26.3

FIGURE 3
An example of Tikhonov output (second image) along with the weighted Target image using a Gaussian window (fourth image).
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FIGURE 4
Ten examples of deconvolved images in decreasing order of SNR along with the corresponding residuals. Unet-64 results in the best
reconstructions with the cleanest residuals.

small objects but is unable generalize well to extended objects.
Learnlet and Unet-64, on the other hand, are also able capture
small-scale structures and non-central peaks present in the
images, while well-preserving the global shape simultaneously.
Moreover, visually, their performace is consistent on both high

and low SNR images, with an even further improvement for
Unet-64. We also compute and show the residual maps for these
three deconvolution methods. The residuals are defined as:

Residual = y− h ∗ Nθ(x̂) (9)
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FIGURE 5
(A) Windowed NMSE as a function of the Magnitude (MAG), (B) Windowed SSIM as a function of MAG. An SSIM of 1 implies that the images are
identical. (C) The Flux Error as a function of MAG. Unet-64 generalizes very well to the entire range of magnitudes.

where y corresponds to the noisy image,h is the PSF, x̂ is the noisy
Tikhonov input, and Nθ is the network model.

Ideally, one should see pure noise in the residuals. We can
see that there is still some structure present in the Tikhonet
residuals, which comes as a result of incomplete reconstruction.
The residuals are more structured in case of extended objects
as compared to smaller ones, which implies that Tikhonet
struggles to recover extended objects. Contrastingly, the Learnlet
and Unet-64 residuals contain minimal structure with no
orientational preference, which indicates that the reconstruction
is better regardless of the size of the galaxy.

In Figure 5, we show the trends obtained for windowed
NMSE and SSIM on our test dataset images binned according
to their magnitudes. All networks perform better on low
magnitude (or high SNR) images, and there is a decrease in
performance with an increase in the magnitude (or decrease in
SNR). Furthermore, for the range of magnitudes and metrics
considered, Unet-64 outperforms all other methods, followed by
Learnlet. The mean NMSE improvement is 11.4% when going
from Tikhonet to Learnlet, and 2.2% when going from Learnlet
to Unet-64. Similarly, the mean SSIM improvements are 10%
and 1.2% respectively. We also compare the three networks
based on their ability to preserve the image flux, which is
essentially the sum of all pixel intensities. As seen in Figure 5,
although the errors are very low for all the networks, Unet-
64 performs the best in terms of flux preservation, followed
by Learnlet and Tikhonet. More specifically for Tikhonet, the
error steeply increases with an increase in magnitude. On
the other hand, Unet-64 and Learnlet have flatter curves and
generalize well to all magnitudes, with Unet-64 generalizing
the best. Based on the metrics considered, we finally conclude
that Unet-64 deconvolution surpasses Learnlet and Tikhonet
deconvolution.

6 Conclusion

We proposed a new deconvolution method based on
the Learnlet transform. Consequently, we compared the
performance of Tikhonet, Learnlet, and Unet-64 for image
deconvolution in the astrophysical domain by adapting a two-
step approach involving a Tikhonov deconvolution followed by
post-processing with a denoiser. Visually, we observed that Unet-
64 and Learnlet are able to capture the small-scale structures in
the images in addition to the global shape, while simultaneously
well-preserving the flux. Since the networks were evaluated
on a range of noise levels, we could conclude that Unet-64
and Learnlet generalize well unlike Tikhonet, with Unet-64
having the best performance. These observations are further
supported by the quantitative metrics used for comparison,
where Unet-64 outperforms Learnlet and Tikhonet. As seen
in Table 1, although Tikhonet has the smallest runtime, it does
not performwell on extended objects. Furthermore, Unet-64 has
a smaller runtime per image compared to Learnlet, making it
more efficient. This makes it an ideal candidate to be used for
astrophysical image deconvolution. The strategy we proposed in
this paper for building the training dataset seems very efficient
and could easily be applicable to Euclid images by using the deep
field survey to build a training dataset that could eventually
be used for the wide field survey. More experiments will
however be required to check more in details the generalization
properties.

It would also be interesting to compare all the networks
with the shape constraint investigated in Nammour et al. (2022).
For Learnlets, as in the case of wavelets, various different
kinds of noise could be considered on a single model with an
undecimated implementation by adjusting the thresholding
function according to the noise. One could enhance the
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Unet-based methods by substituting the Unet with a
sophisticated denoiser like the Deep Iterative Down-Up CNN
(DIDN) (Yu et al., 2019), and adopt a similar strategy for
Learnlets by integrating them as elementary units of the DIDN
model. On a slightly different note, it would also be interesting
to test the concept of unrolled networks (Monga et al., 2021)
and neural augmentation (Behrens et al., 2021) in order to
mimic iterative deconvolution algorithms with theoretical
guarantees. A powerful and accessible deconvolution method
would allow for the reconstruction of a cleaner estimation
of the sky with less data than classical methods, which is
essential for optimising the observing time and the amount
of data required to attain a given image reconstruction
fidelity (Nammour et al., 2022). On a broader scope, these
deconvolution methods could also be applied to other
fields.
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