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We present the results of numerical studies of the whistler wave parametric

decay instability in the system with the suppressed Landau damping of ion

acoustic waves (IAWs) based on the self-consistent Darwin particle-in-cell (PIC)

model. It has been demonstrated that a monochromatic whistler wave

launched along the background magnetic field couples to a counter-

propagating whistler mode and co-propagating ion acoustic mode. The

coupling of the electromagnetic mode to the electrostatic mode is guided

by a ponderomotive force that forms spatio-temporal beat patterns in the

longitudinal electric field generated by the counter-propagating whistler and

the pump whistler wave. The threshold amplitude for the instability is

determined to be δBw/B0 = 0.028 and agrees with a prediction for the ion

decay instability: δBw/B0 = 0.042 based on the linear kinetic damping rates, and

δBw/B0 = 0.030 based on the simulation derived damping rates. Increasing the

amplitude of the pump whistler wave, the secondary and tertiary decay

thresholds are reached, and cascading parametric decay from the daughter

whistler modes is observed. At the largest amplitude (δBw/B0 ~ 0.1) the primary

IAW evolves into a short-lived and highly nonlinear structure. The observed

dependence of the IAW growth rate on the pump wave amplitude agrees with

the expected trend; however, quantitatively, the growth rate of the IAW is larger

than expected from theoretical predictions. We discuss the relevant space

regimes where the instability could be observed and extensions to the

parametric coupling of whistler waves with the electron acoustic wave (EAW).
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1 Introduction

Finite-amplitude electromagnetic fluctuations known as

whistler waves are frequently observed in the Earth’s

magnetosphere (Burtis and Helliwell, 1969; Maksimovic et al.,

2001; Cattell et al., 2008) and solar wind (Lacombe et al., 2014;

Tong et al., 2019; Agapitov et al., 2020; Cattell et al., 2021). They

are known to play a significant role in regulating the electron

populations in the radiation belt region (Thorne, 2010),

especially during active periods of geomagnetic activity

(Meredith et al., 2001; Reeves et al., 2013; Mourenas et al.,

2014). In addition to the nonlinear interactions between the

whistler waves and resonant electrons in this space plasma

environment (Agapitov et al., 2015a), these waves contribute

to heating and acceleration processes in the solar wind (Vocks

et al., 2005) and magnetosheath regions (Huang et al., 2018). The

nonlinear resonant wave-particle interaction manifests itself as

the frequency chirping phenomena in the whistler mode chorus

waves (Omura et al., 2008; Gao et al., 2014). Multiband chorus

waves have been detected by the THEMIS satellites and nonlinear

wave-wave coupling mechanisms have been proposed as a

potential generation mechanism for this observation (Gao

et al., 2016), and more recently, the origin of the chorus

emission period has been linked to the drift velocity of

energetic electrons (Gao et al., 2022). Furthermore, an analysis

of waveforms from the Van Allen Probes has revealed possible

parametric coupling between whistler waves and electron

acoustic modes (Agapitov et al., 2015b).

Under certain conditions, large amplitude monochromatic

plasma waves are nonlinearly unstable and can decay into other

types of fluctuations. One such nonlinear process is the

parametric decay instability in which a forward propagating

parent wave decays into two daughter waves (Forslund et al.,

1972). The decay instability has been investigated in whistler

mode waves Umeda et al. (2014), circularly polarized Alfvén

waves (Terasawa et al., 1986), Langmuir waves (Umeda and Ito,

2008), and light waves (Usui et al., 2002). In the parametric decay

instability of parallel propagating whistler waves, a backward

propagating daughter whistler wave and forward or backward

ion acoustic or electron acoustic wave mode are involved. The

instability threshold is determined by the product of the damping

rates of the daughter waves, which can be large due to the

increased Landau damping rate of the ion acoustic waves,

particularly when the electron and ion temperatures are

comparable in the plasma. When the ion and electron

temperatures are comparable there is a possibility of

parametric decay via an ion quasimode, however, this involves

non-parallel propagation (Shukla, 1977).

Previous studies of the whistler wave parametric decay

instability have been made using one and two-dimensional

fully electromagnetic particle-in-cell (PIC) simulation models

(Umeda et al., 2014, 2018; Ke et al., 2018). For a large amplitude

pump whistler wave (δBw/Bo ~ 0.3) and frequency near the

electron cyclotron frequency, the energy of the electron bulk

velocity supporting the parent wave is converted into thermal

energy perpendicular to the background magnetic field. This

increase of perpendicular thermal energy relative to parallel

thermal energy triggered an electron temperature anisotropy

instability which in turn, caused heating and acceleration of

the electrons. For smaller amplitudes (δBw/Bo ~ 0.03–0.07) and

only parallel propagation, it was found that proton heating and

field-aligned acceleration occurred through the Landau

resonance due to the enhanced ion acoustic wave. Above δBw/

Bo ~ 0.05 it has been reported that a secondary parametric decay

of the daughter whistler wave can occur (Karbashewski, 2017; Ke

et al., 2017). Two-dimensional simulations indicate that the 2D

decay instability is quite different compared to purely parallel

propagation, with different time scales and wave-particle

interaction dynamics (Umeda et al., 2017; Ke et al., 2018).

The purpose of this paper is to investigate the growth and

subsequent nonlinear evolution of the parametrically unstable,

parallel propagating electron whistler modes. Since the ion

dynamics are essential, we use a magneto-inductive PIC

simulation (Darwin model) (Busnardo-Neto et al., 1977)

which allows for larger time steps due to the exclusion of the

light wave branch. The threshold, growth rate, and saturation

dynamics of the parametric decay instability are investigated and

one of the main results is the establishment of the threshold

condition for initiation of multiple decays of the daughter modes

generated from the initial single wave decay process.

The organization of this paper is as follows: in Section 2 we

detail the relevant theory for the coupling and parametric decay

instability between whistler waves and ion acoustic waves and

outline the setup of the UPIC simulation software; in Section 3 we

present the simulation results and analysis of the parametric

decay pathways; and in Section 4 we make a comparison of the

simulation results with models, discuss relevant regimes for the

observation of the instability, and summarize the main results.

2 Theory and modeling

2.1 Whistler-ion acoustic parametric
decay

In this section, we present a model for the ponderomotive

coupling and parametric decay of a whistler wave into daughter

whistler and ion acoustic waves. We consider a uniform plasma

with a background magnetic field oriented along the x-

component of a Cartesian coordinate system, B � B0x̂.

Electromagnetic and electrostatic waves are considered to

propagate with wave vectors parallel to the background

magnetic field and thus the transverse electromagnetic wave

fields will be strictly in the yz-components, and the

longitudinal electrostatic field is strictly in the x-component.

The whistler wave dispersion relation for parallel propagation
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with respect to the background magnetic field is derived from the

cold plasma dispersion relation for magnetized plasmas, or

Lassen-Appleton-Hartree equation, as, (Lassen, 1926;

Appleton, 1927; Hartree, 1931; Gurnett and Bhattacharjee, 2005),

k2c2

ω2
pe

≃ 1 − ωpe

ω ω − ωce( ) (1)

where ωpe is the electron plasma frequency and ωce is the electron

cyclotron frequency; in formulating the dispersion ion motion

has been neglected. Figure 1 is a plot of ω/ωpe as a function of kc/

ωpe with Eq. 1 shown by the black dotted curve; ωce/ωpe = 1/3 is

used to construct the curve and is the same as the ratio used in the

simulations presented herein. The parallel propagating whistler

wave is a right-hand, circularly polarized, transverse

electromagnetic wave that approaches a resonance at ωce as k

increases. Near the resonance, the wavelength is on the order of

the electron cyclotron radius and the phase velocity and group

velocity of the whistler wave both approach zero. The wave-

particle interactions are strong near resonance and the wave will

experience cyclotron damping as energy is transferred to the

electrons; as a result, the whistler branch is more strongly

damped as k increases.

Ion acoustic waves (IAWs) are low-frequency electrostatic,

longitudinal waves manifesting as oscillations of the plasma ions

and electrons that are analogous to collisional sound waves in a

gas. The dispersion relation for ion acoustic waves of singly

ionized ions is dependent on both the temperature of the

electrons, Te, and ions, Ti, as well as the mass of the ions, M,

and defines the ion acoustic velocity cs,

cs � γekBTe

M

1

1 + k2λ2De

+ γikBTi

M
( )1/2

(2)

where kB is the Boltzmann constant, λDe is the electron Debye

length, and γs is the heat capacity ratio with γi = 3 for ions in one-

dimension and γe = 1 for isothermal electrons (Chen, 1984). Ion

acoustic waves experience heavy Landau damping by ions

moving at velocities near the ion acoustic phase velocity, thus

the waves become significant only when Te ≫ Ti and the

contribution of the ion temperature term becomes negligible.

Under this assumption, an inspection of Eq. 2 reveals that the ion

acoustic wave has a nearly linear relationship between ω and k

until k2λ2De ≫ 1, at which point the ion acoustic wave approaches

a resonance at the ion plasma frequency ωpi; this condition is only

for large k and for the relevant parameter space of the present

study the ion acoustic wave is dispersionless (c2s ≈ kBTe/M). The
dashed black curve in Figure 1 shows Eq. 2 for the parameters

used in the simulation, which will be detailed in Section 2.2.

The coupling of whistler waves, which are transverse

electromagnetic waves, and ion acoustic waves, which are

longitudinal electrostatic waves, is achieved through the

ponderomotive force, or Miller force (Miller, 1958). The

ponderomotive force is a nonlinear effect that has been used

to describe many plasma phenomena, such as the self-focusing of

lasers in a plasma (Max, 1976), electromagnetic-electrostatic

mode conversion in non-uniform plasmas (Morales and Lee,

1974), and density structures in the auroral ionosphere (Bellan

and Stasiewicz, 1998). The force arises due to spatial variations in

the amplitude of an oscillating electric field δE = Es(r) cos (ωt);

the force per m3 on the electrons in a plasma is (Chen, 1984),

Fp � −ϵ0
2

ω2
pe

ω2
∇〈E2

s〉 (3)

where 〈. . .〉 indicates a time average over the period of the wave,

2π/ω. The force is the same for both electrostatic and

electromagnetic perturbations though the mechanism behind

the force is different. In the electrostatic case, particles are

forced into regions of lower field amplitude by the larger

electric force in high field regions. In the case of an

electromagnetic wave, the force arises from a second order

Lorentz v × B force along the wave vector that varies with the

spatial variation of the electric field. In both cases, theMiller force

due to the spatial variations of the electric field results in a build-

up of particle density in lower field regions. Equation 3 is for

electrons, but one can see that the ponderomotive force is

proportional to the spatial gradient of the electric field as well

as the density of the region and will therefore be felt by all

charged particles. However, because of the mass dependence, the

effect is smaller for ions relative to the force on electrons by a

FIGURE 1
Ponderomotive coupling between whistler waves and ion
acoustic waves. A pump whistler wave (black filled circle) creates
ponderomotive beat patterns (black dash-dotted curve) with the
whistler wave branch (black dotted curve). The ion acoustic
branch (black dashed curve) is coupled to the pump whistler wave
and whistler branch where it intersects with the pondermotive
beating (black hollow circles). The solid black line indicates ωce/
ωpe =1/3.
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factor of me/M. Thus, the ponderomotive force on the ions can

often be neglected; however, at low frequencies, the ions will

respond to the charged regions created by the ponderomotive

force on electrons.

A subset of nonlinear wave-wave interactions are known as

parametric decay instabilities and involve a three-wave coupling

between a pump wave and two daughter modes. The three

coupled waves involved must satisfy a set of matching

conditions Neubert (1982).

ωw � ωT ± ωL (4)
kw � kT ± kL (5)

Where the subscript w refers to the pump wave, the subscript T

refers to the transverse daughter wave, and the subscript L is the

longitudinal daughter wave. In Section 3 we present 1-D PIC

simulations designed to observe parametric coupling of an

imposed, monochromatic, pump whistler wave with daughter

whistler and IAW waves that exist in the plasma as thermal

modes. The pump whistler forms spatial beats in the transverse

electric fields with each of the thermal whistler modes and this

sets up a ponderomotive force in the parallel direction equal to,

FP � −ϵ0
2

ω2
pe

ω2
∇〈 Ew + ET( )2〉 ≃ − ϵ0

ω2
pe

ω2
B

∇〈Ew · ET〉 (6)

where we assume a uniform pump wave with 〈E2
w〉 � 0, the

gradient of the 〈E2
T〉 term is small and may be discarded, and

only the cross term 〈Ew ·ET〉 will contribute to the

ponderomotive force. Here, we denote all of the whistler

modes apart from the pump as ET. The ponderomotive

beating will force low amplitude electrostatic perturbations

parallel to B0 with frequency ωB = ωw − ωT and wavenumber

kB = kw − kT when ωw > ωT, and frequency ωB = ωT − ωw and

wavenumber kB = kT − kw when ωT > ωw. In Figure 1 the pump

whistler is indicated by a filled black circle and the

ponderomotive beating patterns are indicated by the dash-

dotted curves. In Section 3 we will demonstrate that this

ponderomotive beating of the whistler branch with a

monochromatic pump does form low amplitude electrostatic

wave perturbations with the pattern predicted in Figure 1.

The ponderomotive beating branch facilitates coupling to

an ion acoustic mode at (kL, ωL), so long as kB ≈ kL and ωB ≈
ωL, and forms a set of three coupled waves between the pump,

daughter whistler, and daughter IAW. The ponderomotive

force will drive the growth of the resonant IAW which will in

return drive the growth of the resonant daughter whistler.

The location of the electrostatic coupling in ωk-space

between the electromagnetic whistler modes and

electrostatic IAW occurs at the intersections of the

pondermotive beating and IAW branch; this is indicated in

Figure 1 by the hollow circles. For the present electrostatic

mode, only beating with counter-propagating whistler waves

will lead to a parametric decay channel.

In the regime where ωce < ωpe the whistler wave pump

generates parametric instabilities above a certain threshold

amplitude. The parametric instability that is dominant over a

wide range of parameters is the ion decay instability. Near the

threshold amplitude, with the matching conditions satisfied, the

threshold is given by (Nishikawa, 1968; Forslund et al., 1972),

Bw

Bo
( )2

> 8 1 + ckw
ωpe

( )2( )βe γT
ωT

( ) γL
ωL

( ) (7)

where kw is the pump wavenumber, electron plasma beta is

defined as βe � 8πnTe/B2
o, and γT and γL are the damping rates of

the transverse and longitudinal daughter modes, respectively.

The frequency and wavenumber matching conditions require ωL

≃ 2kwcs and ωT ≃ ωw at − kw. Therefore, the product of the linear

damping rates of the transverse and longitudinal daughter modes

essentially determines the threshold amplitude needed to excite

the parametric decay instability. These damping rates can be

computed from linear kinetic theory to give an estimate of

threshold pump wave amplitude.

Above threshold, the real frequency and maximum growth

rate of the parametrically unstable ion wave are given by ω ≈ ωL +

iΓ, where ωL ≃ 2kwcs and,

Γ
ωT

≃
���
ωci

ωL

√
Bw

Bo
(8)

This result implies that the growth rate scales linearly with pump

wave amplitude and is inversely proportional to the square root

of the ion mass. These analytical results will be used to compare

with the simulations. We mention here that the equation for the

ion wave growth rate is obtained from the dispersion relation for

the three-wave mode coupling presented in (Forslund et al.,

1972).

2.2 Simulation setup

To investigate the nonlinear growth and saturation of the

parametric decay instability for parallel propagating

monochromatic whistler waves the Darwin particle-in-cell

(PIC) simulation model is used and based on the spectral

code developed as part of the UCLA particle-in-cell (UPIC)

framework (Decyk, 2007). The simulation has previously been

used to model the whistler wave instabilities driven by the

temperature anisotropy in the solar wind and Earth’s

magnetosphere (Hughes et al., 2016).

The Darwin PICmodel removes the transverse component of

the displacement current in Ampere’s law, therefore, the high-

frequency light waves are excluded while leaving the other waves,

such as the whistler wave, unaffected (Busnardo-Neto et al.,

1977). In comparison to the conventional explicit

electromagnetic PIC model, the Darwin PIC method is more

computationally efficient since the Courant condition for the
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time step is not restricted to following the light waves. The grid

spacing, Δx, is required to resolve the Debye length to avoid

numerical heating of the plasma. Since we focus on the

parametric decay of the parallel propagating whistler wave, a

1-D PIC simulation model with periodic boundary conditions is

utilized. Fully 3-D electromagnetic fields and velocities are

included but only spatial variation in the x-direction is

present. A uniform background magnetic field is imposed

along the x-axis.

The UPIC code uses dimensionless parameters where time is

normalized to the plasma frequency, t → ωpet, space is

normalized to the grid spacing, x → x/Δx, where the grid

spacing is determined by the dimensionless thermal velocity

of the electrons vte → vte/Δxωpe and is an input to the code,

the charge of each species s is normalized to the elementary

charge, qs → qs/e, the mass of each species is normalized to the

mass of an electron,ms→ms/me, and these provide the necessary

normalizations for all other quantities (Decyk, 2007). The

simulation input parameters used, unless otherwise stated, are

the time step Δt = 0.2ωpet, electron thermal velocity vte = 1.00,

number of time steps Nt = 5001, number of grid cells Nx = 512,

number of particles per species Np = 184320, and cyclotron

frequency ωce/ωpe = 1/3, c/ωpeΔx = 10, electron-ion temperature

ratio Te/Ti = 100, and electron-ion mass ratio M/me = 16.

The choice of the low mass ratio is justified and made for

several reasons: (i) computational efficiency, higher mass ratios

require significantly more time steps to resolve the long time

scales associated with ion dynamics and require a larger spatial

grid to achieve sufficient k-space resolution; (ii) increasing the

IAW frequency to the order of the whistler waves, this makes the

illustration of the dynamics in both simulations and theoretical

descriptions more clear; and (iii) part of the motivation for this

work is a similar process that could occur for the EAW, the low

mass ratio IAW decay is a precursor for studies of the EAW with

a similar dispersion.

The UPIC code wasmodified to enable the external driving of

transverse electric fields. The whistler wave driving is

accomplished by adding sinusoidal wave fields each iteration

to the self-consistent electric fields; the amplitude is slowly

increased as the system responds to the external fields and

when done correctly the wave continues to propagate once

the driver is turned off. To launch a whistler wave the

external driver needs to be right-hand circularly polarized and

the external electric fields added to the self-consistent fields are.

Ewz � Ew t( )cos kwx − ωwt( ) (9)
Ewy � Ew t( )sin kwx − ωwt( ) (10)

In all simulations, the amplitude Ew(t) increases linearly to some

maximum at ωpet = 100 and the driver fields are eliminated. The

driven wave mode is chosen to have ωw ≈ 0.161ωpe and kwc/ωpe ≈
0.98 corresponding to mode number mw = 8 where k = 2πm/Nx.

The amplitude of the self-consistently propagating

electromagnetic wave is determined from the magnetic field at

ωpet = 150. It is not necessary to perturb the transverse magnetic

fields and velocities as the system will respond each iteration to

the pumped electric fields and set up the necessary conditions for

the wave to continue propagating if the pump is matched to a real

FIGURE 2
(A) Whistler branch visible in δ~Ey in a cold electron, fixed ion simulation. (B) Ponderomotive coupling pattern in δ~Ex for a low amplitude pump
whistler (δBw/B0=0.1) in a cold electron, fixed ion simulation. (C) Ion acoustic branch seen in δ~ni in a hot electron, cold ion simulation (Te/Ti=100). The
solid line in each is ωce/ωpe and the dashed curves represent the respective branch shown in each panel.
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mode of the plasma. Additionally, since a parallel whistler mode

has no longitudinal component the particles are loaded

uniformly at time ωpet = 0.

3 Results

We begin this section by demonstrating with the PIC

simulation the ponderomotive beating model outlined in

Section 2.1. Throughout this section a quantity A in xt-space

may be shown in kt-space and mω-space (i.e. kω-space); the

spatially Fourier transformed quantity will be denoted as �A and

the spatio-temporally Fourier transformed quantity will be

denoted as ~A. Figure 2A shows the transverse electric field

fluctuations δ~Ey and illustrates the thermal whistler branch in

a simulation where the ions remain fixed, the wave driver is kept

off, and the electrons are relatively cold at vte = 0.10 to reduce the

cyclotron damping at frequencies close to ωce. The theoretical

curve for the whistler branch from Figure 1 is shown by the white

dashed line and is in excellent agreement with the simulation. It is

these low amplitude whistler waves that will form spatial beats in

the transverse electric fields with the pump wave to produce the

ponderomotive force along x.

Figure 2B shows the longitudinal field fluctuations δ~Ex for

the same simulation parameters but with the driven wave

launched with an amplitude of δBw/B0 ~ 0.1. With no

electrostatic wave to couple to due to the fixed ions, the low

amplitude ponderomotive beating patterns are observed and

FIGURE 3
Single parametric decay of whistler wave with δBw/B0=0.032 (A),(B), and (C) xt-space,mt-space, andmω-space of δEy, respectively (D),(E), and
(F) xt-space,mt-space, andmω-space of δni, respectively. Dashed curves indicate the whistler and IAW branches in (C) and (F), respectively, and the
solid line is ωce/ωpe. The mode number m is related to the wave number by the relation k =2πm/Nx.
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show remarkable agreement with the theoretical curves. The

beating with whistler waves higher than the pump is suppressed

relative to the low-frequency waves, as is the beating with co-

propagating waves when compared to the counter-propagating

waves; thus it may be expected that the dominant decay path will

involve the lower frequency counter-propagating whistler and

co-propagating IAW highlighted in Figure 1. Next, the electron

thermal velocity is returned to the nominal value of vte = 1.00, the

moving ions are introduced and the driven wave is removed; the

resulting thermal ion acoustic fluctuations in δ~ni are shown in

Figure 2C and again are in good agreement with the predicted

dispersion.

The ingredients for observing the parametric decay of the

whistler wave are all contained in Figure 2 and demonstrate

the ponderomotive model. The inclusion of the pump wave

with the nominal simulation parameters creates the situation

where the parametric decay may be observed for a large

enough amplitude pump. The first observed decay activity

occurs at δBw/B0 = 0.028. Figure 3 shows the simulation result

for a pump wave with amplitude δBw/B0 = 0.032. In Figure 3A

the xt-space evolution of δEy shows the linear growth of the

pump whistler and its subsequent self-consistent propagation

after ωpet = 100. In Figure 3B the same is seen at mode number

m = 8 in kt-space. At ωpet ≈ 350 we observe the rapid growth of

a monochromatic electromagnetic wave counter-propagating

to the pump wave. This is confirmed as a whistler wave in

Figure 3C where the pump mode and a daughter whistler

mode are observed at mw = 8 and mT1 = −6 along the whistler

branch.

In Figure 3D, E we observe the growth of an electrostatic

structure in δni and δ�ni, respectively, coinciding with the growth

of the whistler wave at ωpet ≈ 350. The kω-space of δ~ni in

Figure 3F shows this is an ion acoustic daughter wave at

mL1 = 14. The parametric decay conditions in Eqs 4, 5 for the

wave frequency and mode number yield: ωT1 + ωL1 = (0.119 +

0.038)ωpe = 0.157ωpe and mT1 + mL1 = −6 + 14 = 8; this is

approximately equal to ωw and matchesmw. Figure 4A shows the

expected parametric decay path for a counter-propagating

daughter whistler wave with ωT < ωw; a comparison of the

theoretical and observed decay shows a small difference due

to the non-integer mode numbers that are unavailable to the

spectral code.

In Figure 1 we highlighted that there were two possible

locations for coupling to the ion acoustic wave in kω-space by

a given pump wave; for both couplings, the daughter whistler

wave is counter-propagating with the pump wave, however, one

corresponds to ωT <ωw and the other to ωT > ωw. While the latter

is certainly a possible decay channel, the former dominates and

this is likely due to the increased cyclotron damping of the higher

whistler modes. This is supported by the amplitude of the

pondermotive beat modes in Figure 2B that show beats with

ωT < ωw whistler modes are the strongest and the beating

becomes nearly non-existent as ωT approaches ωce. Though

not investigated here, the coupling to the counter-propagating

IAW and counter-propagating whistler with ωT > ωw could

conceivably occur under the right conditions.

Figure 5 presents the simulation result for a pump wave with

amplitude δBw/B0 = 0.052 in the same format as Figure 3. The

FIGURE 4
Cascading parametric decay paths. The dotted curve is the whistler branch, the dash-dotted black curve is the ponderomotive beating with the
counter-propagating low-frequency whistlers, and the dashed black line is the ion acoustic wave. The parametric 3-wave coupling is indicated by
the solid red curve where the (x, y) pairs in each panel are the locations of the red circles (A) Primary decay of pump whistler wave. (B) Secondary
decay of the daughter whistler wave. (C) Tertiary decay of the secondary daughter whistler wave.
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growth of the T1 wave begins earlier at ωpet ≈ 200 but the rate of

the growth is considerably reduced as seen in the panel of δ�Ey.

The T1 mode is accompanied by the simultaneous and more

rapid growth of another electromagnetic mode; this is confirmed

to be a counter-propagating (with respect to T1) whistler wave,

T2, atmT2 = 5 and ωT2 = 0.107ωpe. In the ion fluctuations, there is

first the growth of the L1 mode and this is followed by the growth

of a co-propagating (with respect to T1) ion acoustic structure,

L2, at mL2 = −11 and ωL2 = 0.019ωpe.

The observed decay path is still the primary decay seen at

lower pump amplitudes, however, this is accompanied by a

secondary decay. The growth of the primary decay is

significantly reduced due to the cascade of energy to the

secondary decay as the pump wave drives the growth of all

four daughter waves. The expected matching conditions of the

secondary decay channel are shown in Figure 4B, wheremT1 = −6

is explicitly used as the intermediate pump wave, and agree

favourably with the simulation results. Notably, the mode

numbers again are non-integers and this explains the small

discrepancies between the simulation and prediction. The

threshold for the secondary decay occurs at δBw/B0 ≈ 0.036

and can be identified by a rapid reduction in the growth rate of

the primary daughter modes as will be discussed in Section 4.

Increasing the pump wave further to δBw/B0 ≳ 0.063

results in a tertiary decay channel of another counter-

propagating whistler wave and IAW to L1. This is shown

in Figure 6 for δBw/B0 = 0.103 in the same format as Figures 3,

5. In the δEy and δ�Ey plots we observe a larger growth rate for

FIGURE 5
Double parametric decay of whistler wavewith δBw/B0=0.052 (A),(B), and (C) xt-space,mt-space, andmω-space of δEy, respectively (D),(E), and
(F) xt-space, mt-space, and mω-space of δni, respectively. Dashed lines indicate the whistler and IAW branches in (C) and (F), respectively, and the
solid line is ωce/ωpe.
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the primary decay, followed by the secondary, and finally the

tertiary, T3 mode. However, in the δni and δ�ni panels the L1

structure is observed to grow to a very large amplitude at

ωpet ≈ 300 and become highly nonlinear; this is evidenced by

the development of a mirror mode at m*L1 = −14 and the zero

frequency content at mL1 and mL1* in the δ~ni plot. The

structure initially propagates with the ion acoustic velocity

but slows and becomes nearly stationary as the wave steepens;

the structure is short-lived and decays rapidly as energy

cascades to the other daughter modes. Given the

continuous cascade of parametric decays, it is interesting

this over-driven primary IAW regime does not lead to a

quaternary decay or even higher decay channels that

provide a sink for the excess pump energy.

The electromagnetic modes remain linear and follow a

clearly defined decay path with all four whistler modes

highlighted in the δ~Ey plot; similarly, apart from the zero

frequency modes, the three daughter IAWs are observed in

δ~ni. The tertiary whistler mode T3 has mT3 = −4 and ωT3 =

0.075ωpe, and the tertiary IAW L3 has mL3 = 9 and ωL3 =

0.031ωpe. These modes meet the matching

conditions with T2 and are close to the expected decay

channel in Figure 4C.

Lastly, we investigate a case with cascading parametric decays

for a higher mass ratio of M/me = 400 to demonstrate the

universality of the effect. The grid size has been expanded to

Nx = 2048, while the number of particles per cell has been kept

constant by increasing the total number of particles per species to

FIGURE 6
Triple parametric decay of whistler wave with δBw/B0=0.103 (A),(B), and (C) xt-space,mt-space, and mω-space of δEy, respectively (D),(E), and
(F) xt-space, mt-space, and mω-space of δni, respectively. Dashed lines indicate the whistler and IAW branches in (C) and (F), respectively, and the
solid line is ωce/ωpe.
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Np = 737280. We choose here to pump mode number mw = 20

(ωw ≈ 0.09) — and not mw = 32 for a direct comparison to the

smaller grid—to keep the dynamics in xt-space more easily

visible; this is expected to somewhat reduce the threshold for

instability, and indeed the primary decay threshold is observed to

be δBw/B0 ≈ 0.02, however, to observe a cascade still requires the

amplitude to be well above the threshold. The small IAW

frequency at the relevant mode numbers for decay to occur

means that the whistler modes involved have very little spread in

frequency and mode number compared with the previous cases;

the primary decay hasmT1 = −19 and ωT1 ≈ 0.08 for the daughter

whistler, and ML1 = 39 and ωT1 ≈ 0.01 for the daughter IAW.

Thus, any cascade will be observed as a sequential decrease in

mode number for the subsequent daughter modes. Figure 7

presents the cascade at the higher mass ratio in the same

format as the previous cases. It is clear from the evolution of

the dominant mode numbers in the mt-space diagrams that a

parametric decay cascade is occurring. We again observe

nonlinear and nearly stationary structures in the ion density

as there is considerable power in the zero-frequency modes.

4 Discussion

In this section, we discuss the dynamics of the daughter wave

growth, parametric instability thresholds, relevance to the

radiation belts and solar wind, and finish with a summary of

the main results. Figure 8 displays the evolution of the field and

particle energies and the mode growth for the triple parametric

decay case in Figure 6. Figure 8A displays the fractional

transverse and longitudinal electric field energy, relative to the

total electric field energy; Figure 8B displays the fractional energy

FIGURE 7
Triple parametric decay of whistler wave with δBw/B0=0.095 with amass ratio ofM/me =400 (A),(B), and (C) xt-space,mt-space, andmω-space
of δEy, respectively (D),(E), and (F) xt-space,mt-space, andmω-space of δni, respectively. Dashed lines indicate the whistler and IAW branches in (C)
and (F), respectively, and the solid line is ωce/ωpe.
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of the electromagnetic fields and kinetic energies of the electrons

and ions; and Figures 8C, D show the m vs t growth of the

whistler and IAW daughter modes, respectively. The initial ramp

of the driven whistler wave puts the majority of the field energy

into the transverse component. The first decay of the pump and

subsequent growth of the nonlinear ion acoustic structure occurs

at ωpet = 300 and rapid transfer of energy from the transverse to

the longitudinal electrostatic field occurs simultaneously. This is

accompanied by a small growth in the electron and ion kinetic

energies (B), though only minimal heating is observed

throughout the decay process. The growth of the primary

decay is rapid and the whistler wave T1 experiences only

slight damping (C) in comparison to the IAW damping (D);

this results in the growth of the transverse fraction compared to

the longitudinal. Each subsequent decay is observed in the

fractional electric field energy (D) as an increase in the

longitudinal fraction and subsequent decay.

The growth rates, γ/ωpe, of the daughter modes can be

extracted from the mt-space for each pump wave amplitude.

Figure 9 shows these growth rates from δBw/B0 ~ 0.016–0.103.

The scaling of the growth rate for the ion acoustic mode with

pump mode amplitude is shown in Figure 9B and this agrees

with the trend obtained in Eq. 8. Quantitatively, the

theoretical growth rates are lower than the simulation

values indicating that modifications to the theory are

needed in this parameter regime.

FIGURE 8
Analysis of energy transfer and wave growth during the triple decay for δBw/B0=0.103 (A) Fractional electric field energy that is contained in the
longitudinal electric field (red dotted curve) and transverse electric field (blue solid curve) (B) Fractional energy of the electromagnetic fields (black
solid curve), electron kinetic energy (red dotted curve), and ion kinetic energy (blue dash-dotted curve) (C) and (D) growth of the parametric decay
modes for the daughter whistler and ion acoustic waves, respectively. The solid black curve is the pump whistler, the red dotted curve is the
primary decay, the blue dash-dotted curve is the secondary decay, and the green dashed curve is the tertiary decay.

FIGURE 9
Growth rates of whistler and IAW modes as the pump amplitude, δBP/B0, increases show clear transitions between single, double and triple
decay (A) Whistler modes. (B) IAW modes.
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The threshold value of the single parametric decay instability

from the simulations is δBw/B0 ~ 0.028 and the theoretical value

obtained from Eq. 7 is found to be δBw/B0 ~ 0.042, using the

linear kinetic theory results for the daughter mode damping

rates. This discrepancy is possibly due to the linear orbit

approximations used to compute the damping rates. Damping

rates used from the simulation, Figure 8D, gives a threshold value

of δBw/B0 ~ 0.030 which is in closer agreement with the measured

simulation value.

At δBw/B0 ~ 0.036 the secondary decay threshold is reached

and the growth rates of the primary whistler and IAW modes

rapidly drop. At the threshold, the growth rate of the secondary

whistler mode exceeds that of the primary whistler, while the ion

acoustic wave growth rates are comparable to each other. The

tertiary threshold is reached at δBw/B0 ~ 0.063, as the pump

amplitude is increased the secondary and tertiary whistler growth

rates appear to saturate while the primary whistler growth rate

increases linearly with the pump amplitude. The IAW rates all

continue to increase with the primary IAW exceeding the growth

rate prior to any of the cascades.

While this study is focused on the parametric interaction

of whistlers with ion acoustic waves, there is the possibility of a

similar parametric interaction with the electron acoustic wave

(EAW) that has been proposed by Agapitov et al. (2015b) as a

generation mechanism of nonlinear electrostatic structures

observed in the Earth’s radiation belts. The electron acoustic

wave is heavily damped and can largely be ignored in a plasma

with a single electron component, i.e. an electron population

associated with a single temperature. However, under certain

conditions, in plasmas with both hot (subscript h) and cold

(subscript c) electron populations the electron acoustic wave

becomes only weakly damped; the conditions for this were

first mapped by Gary and Tokar (1985) and are approximately

Th/Tc > 10 and 0 < nc < 0.8ne where nc + nh = ne. In Figure 10A

we show a possible setup for observation of the whistler-EAW

parametric instability, and in Figure 10B we demonstrate the

existence of the lightly damped EAW in the UPIC simulation.

The parameters for the EAW are Th/Tc = 100, nc/ne = 0.1, vth =

3.16, and ωce = 3ωpe/4. As outlined in Figure 10A the pump

wave should decay to a co-propagating EAW and counter-

propagating whistler, in a similar fashion to the IAW

coupling. However, from preliminary studies we observe

that the dominant coupling of the whistler wave is to the

electron plasma (Langmuir) wave branch (upper branch in

Figure 10) that is more unstable than the EAW. It is possible to

drive the EAW instability with a relative drift between the hot

and cold populations (Gary, 1987) and this condition was

present in the observations by Agapitov et al. (2015b); this

relative drift configuration may be required to observe the

whistler-EAW parametric instability.

FIGURE 10
Ponderomotive coupling between whistler waves and electron acoustic waves (EAW). (A) In the same format as Figure 1, the pondermotive
beating of the pump whistler wave and whistler branch can couple to the electron acoustic wave of a two-electron-species plasma (B)
Demonstration of the electron acoustic mode in the UPIC simulation using Th/Tc =100, vth =3.16 (vtc =0.316), nh =0.9ne (nc =0.1ne), and ωce/
ωpe =3/4.
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Recently, Parker Solar Probe has revealed that wave-wave

interactions may be as common in the solar wind as they are in

the Earth’s magnetosphere (Ma et al., 2021). Whistler waves are

assumed to control the generation of the superthermal electrons in

the solar corona and their dynamics during propagation in the solar

wind (Vocks and Mann, 2003; Vocks et al., 2005). The recent

observations by Solar Orbiter showed only anti-sunward

propagation of whistler waves at around 100 R⊙ (solar radii)

(Kretzschmar et al., 2021). However, observations of the Parker

Solar Probe at heliocentric distances from 20 to 50 R⊙ revealed

whistler waves propagating sunward (Agapitov et al., 2020; Dudok

de Wit et al., 2022), anti-sunward (Dudok de Wit et al., 2022), and

counter-streaming whistlers (Karbashews et al., 2022). The sunward

propagating whistler waves can significantly contribute to scattering

the strahl electrons into the halo population (Vocks et al., 2005;

Roberg-Clark et al., 2019). The higher amplitude of these waves

(5–10 times greater compared to whistlers observed by Solar

Orbiter) can suggest the local generation of these waves

(supported by the localized region of whistlers observation: above

22–25 R⊙ (Cattell et al., 2022)) by electron instabilities (probably

together with anti-sunward waves) or from a turbulent cascade of

anti-sunward whistler waves generated locally by beam instabilities.

Observations of ion acoustic waves in this region (reported in

(Mozer et al., 2020) and earlier from Helios observations

(Gurnett and Frank, 1978)) make the parametric cascading

through the ion acoustic mode to be a potentially feasible

generation mechanism of the observed sunward propagating

whistler population.

The main results of this paper can be summarized as follows. A

Darwin particle-in-cell (PIC) simulation model has been used to

study the parametric decay instability of parallel propagating

whistler waves in the presence of an undamped ion acoustic

wave (IAW). A field-aligned monochromatic whistler wave is

launched and couples to a counter-propagating whistler mode

and co-propagating ion acoustic mode. The coupling of the

electromagnetic fields to the electrostatic field via the

ponderomotive force forms spatio-temporal beat patterns in the

longitudinal electric field generated by the counter-propagating

whistlers and pump whistler wave. The threshold amplitude for

the instability is determined and agrees with a prediction using the

ion decay instability. As the amplitude of the pump whistler wave is

increased, secondary and tertiary decay thresholds are reached and

are observed to cascade from the daughter whistler modes. At the

largest amplitude (δBw/B0 ~ 0.1) the primary IAW evolves into a

short-lived and highly nonlinear structure. The growth rate scaling

with amplitude for the primary decay channel compares favourably

with analytical expressions.We presented preliminary results on the

parametric coupling of whistler waves with the electron acoustic

wave (EAW).

Concerning future studies, the present simulation model will be

used to explore the conditions under which parametric instability

involving the EAW can be present as has been observed in space

plasmas. Plasma conditions that support an undamped electron

acoustic wave are likely to also have a weakly damped ion acoustic

wave; future simulations could be performed with both modes

present to determine the dominant electrostatic coupling and

under what conditions this holds. Last, the present study focused

on 1-D processes, similar 2-D and/or 3-D studies could provide

insight into parametric interactions of oblique whistler waves that

are commonly found in both the magnetosphere and solar wind.
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