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The evolution of electromagnetic (EM) solitons due to nonlinear coupling of

circularly polarized intense laser pulses with low-frequency electron-acoustic

perturbations is studied in relativistic degenerate dense astrophysical plasmas

with two groups of electrons: a sparse population of classical relativistic

electrons and a dense population of relativistic degenerate electron gas.

Different forms of localized stationary solutions are obtained and their

properties are analyzed. Using the Vakhitov-Kolokolov stability criterion, the

conditions for the existence and stability of a moving EM soliton are also

studied. It is noted that the stable and unstable regions shift around the

plane of soliton eigenfrequency and the soliton velocity due to the effects

of relativistic degeneracy, the fraction of classical to degenerate electrons and

the EM wave frequency. Furthermore, while the standing solitons exhibit stable

profiles for a longer time, the moving solitons, however, can be stable or

unstable depending on the degree of electron degeneracy, the soliton

eigenfrequency and the soliton velocity. The latter with an enhanced value

can eventually lead to a soliton collapse. The results should be useful for

understanding the formation of solitons in the coupling of highly intense

laser pulses with slow response of degenerate dense plasmas in the next

generation laser-plasma interaction experiments as well as the novel

features of x-ray and γ-ray pulses that originate from compact astrophysical

objects.
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1 Introduction

The nonlinear propagation of intense electromagnetic (EM) waves in plasmas is

typically associated with a wide variety of interesting nonlinear phenomena, such as the

generation of wakefields (Roy et al., 2019), parametric instabilities (Quesnel et al., 1997;

Barr et al., 1999; Gleixner and Kumar, 2020), harmonic generation (Mori et al., 1993; Shen

et al., 1995), self-focusing of wave envelopes (Esarey et al., 1997), generation of intense
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electric and magnetic fields (Borghesi et al., 2002b; Wagner et al.,

2004), and localization of EM waves as solitons (Farina and

Bulanov, 2001; Sundar et al., 2011; Roy et al., 2019). One

particular class of waves that caught attention in the context

of laser-plasma interactions in relativistic regimes is the EM

solitons. Many years back, in 1956, Akhiezer and Polovin

proposed a set of relativistic electron fluid equations coupled

to the Maxwell equations to model the interactions of intense EM

waves with plasmas and found exact nonlinear wave solutions

(solitons) in relativistic plasmas. Such EM solitons are high-

frequency laser pulses that are typically modulated by low-

frequency plasma density perturbations and that propagate

without any diffraction or spreading out of waves. They

appear in the context of various plasma environments and

have potential applications, e.g., in laser fusion and plasma-

based particle accelerators (Sen and Kaw, 1994; Esirkepov

et al., 2002; Farina and Bulanov, 2005). Relativistic EM

solitons have been observed in two-dimensional (2D) and

three-dimensional (3D) particle-in-cell (PIC) simulations

(Bulanov et al., 1999; Sentoku et al., 1999; Esirkepov et al.,

2002) and also detected in experiments using proton imaging

techniques (Borghesi et al., 2002b,a). It has also been shown

(Bulanov et al., 1999; Esirkepov et al., 2002) that nearly twenty

five to forty percent of the laser pulse energy goes into the

generation of EM solitons or soliton-like structures which may

persist as appreciable signatures in the forms of modulated pulses

in the radiation spectra (ranging from radio to γ-rays) that

emanate from compact astrophysical objects.

The interaction of highly intense laser pulse or EM waves

with ponderomotive force driven slow response of plasma

density perturbations has been known to be one of the most

powerful mechanisms for the generation of wakefields or the

formation of EM solitons and hence for particle acceleration at

relativistic speed in high intensity electromagnetic fields.

Although in high density regimes the Fermi pressure seems

to be the dominant effect, the main dominating force in such

nonlinear interactions is typically the EM wave

ponderomotive force. It has been seen that the degeneracy

Fermi pressure mainly contributes to the wave dispersion and

hence plays key roles for the transition from wakefield

generation to the soliton formation [See, e.g., (Roy et al.,

2019) and references therein]. There are some other effects

such as spin-orbit interaction (Asenjo et al., 2012, 2011;

Morandi et al., 2014), the Darwin term (Asenjo et al., 2012,

2011), and pair-production (Hebenstreit et al., 2011) which

may, however, become important in some other contexts than

the present theory. It is to be noted that the mechanism of

soliton formation considered here may not be directly related

to the quantum electrodynamics in which the Schwinger limit

is applicable. The electrons achieve relativistic speed by the

ponderomotive force of the highly intense EM fields, and high

density degenerate plasmas can thus be generated

simultaneously, e.g., with the production of X-rays and γ-

rays in the environments of compact astrophysical objects like

white dwarfs.

The formation of envelope solitons in the interactions of

circularly polarized EM waves with cold plasmas have been

studied by Kozlov et al. (1979). They employed the

quasineutral approximations to establish the existence of

small-amplitude localized solutions in the form of drifting

solitons. A subsequent numerical investigation has been

focused on EM solitons of relativistic amplitude (Kozlov et al.,

1979). Mima et al. (Mima et al., 1986) studied the propagation

characteristics of solitary waves and predicted as possible charged

particle acceleration mechanism. Furthermore, Kaw et al. (Kaw

et al., 1992) solved a set of coupled nonlinear equations for

modulated light pulses and electron plasma waves, and discussed

the nonlinear relationship among the group velocity, amplitude,

and the frequency of envelope solitons. Farina and Bulanov

(Farina and Bulanov, 2001) investigated the influence of ion

motion on relativistic solitonic structures and they showed that

the amplitude of moving solitons can be limited by this influence.

In an another investigation and in a weakly relativistic regime,

the nonlinear propagation of one-dimensional weakly nonlinear

solitary waves in cold plasmas was studied using the reductive

perturbation technique by Kuehl and Zhang, 1993. The nonlinear

theory of weakly relativistic circularly polarized EM pulses in

warm plasmas in the forms of bright and dark solitons was

considered by Poornakala et al. (2002) in different parameter

regimes. The one-dimensional (1D) dynamics of EM solitons in

relativistic electron–ion plasmas has also been studied (Lontano

et al., 2003, 2002). Furthermore, the existence of single- and

multiple-peak solitary structures and their stability, mutual

interaction and propagation in inhomogeneous cold plasmas

were examined by Saxena et al. (2006). Recently, using the

Vakhitov-Kolokolov criterion, the stability and dynamical

evolution of linearly polarized EM solitons were studied in the

framework of a generalized nonlinear Schrödinger (GNLS)

equation in relativistic degenerate dense plasmas (Roy and

Misra, 2020). However, the present work considers the

interactions of circularly polarized EM waves with two groups

of electrons (one classical relativistic hot electron species with a

small concentration and the bulk relativistic degenerate electron

gas). While the two-electron species in plasmas support low-

frequency electron-acoustic waves Misra et al. (2021), the single

species electrons with stationary background of ions as in (Roy

and Misra, 2020) are rather relevant for high-frequency

Langmuir waves. So, the evolution equations and the results,

to be obtained in the present study, will be significantly different

from those of the work of (Roy and Misra, 2020). In an another

work, the nonlinear coupling of EM waves and low-frequency

electron-acoustic density fluctuations was considered by

Shatashvili et al. (2020) in relativistic astrophysical plasmas

with two-temperature electrons. They reported that the

modulated EM waves can propagate in the subsonic or

supersonic regimes. However, the existence criterion, the
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dynamical evolution and stability of EM solitons were not

studied in this investigation.

The aim of this work is to advance the previous theory

(Shatashvili et al., 2020) of EM waves in relativistic degenerate

dense plasmas and to report the detailed analysis for the existence

of different kinds of localized soliton solutions, their stability

analysis using the Vakhitov-Kolokolov criterion, as well as their

dynamical evolution by a simulation approach. It is found that

the parameter domains for the stable and unstable regions

predicted in the linear analysis well agree with the simulation

results. The motivation for studying a two-temperature electron

plasma is due to fact that although there is no direct observational

evidence for the existence of two groups of electrons in relativistic

degenerate regimes, based on the information available from the

theories and some relevant observations, it is expected that such

highly relativistic degenerate astrophysical plasmas coexisting

with classical relativistic hot electron flow can exist, e.g., during

the formation of relativistic jets due to accretion-induced

collapsing of white dwarfs into black holes (Begelman et al.,

1984; Kryvdyk, 1999; Kryvdyk and Agapitov, 2007). The

relativistic dense plasmas where the background distribution

of electrons deviates from the thermodynamic equilibrium can

also appear in the context of laser produced plasmas or ion beam

driven plasmas (Gibbon, 2005; Hau-Riege, 2011). In such cases,

the system energy mostly flows into the electrons, thereby

generating fully degenerate electrons with long tails or

partially degenerate electrons with high temperature tails, and

allowing the division of background electrons with two different

temperatures. The excitation of low-frequency electron-acoustic

waves in these systems are believed to play key roles in the

nonlinear wave coupling and the formation of coherent

structures like solitons.

2 Basic equations

The nonlinear coupling of high-frequency circularly

polarized intense EM waves and slow plasma response of low-

frequency electron-acoustic perturbations in unmagnetized

plasmas composed of a dense relativistic degenerate electron

gas (with number density nd ≡ nd0 + δnd), a sparse population of

nondegenerate classical electrons (with number density ncl ≡ ncl0
+ δncl), and immobile ions is governed by the following

Zakharov-like equations (Shatashvili et al., 2020).

2i
z

zt
+ vg

z

zz
( )A + b0

z2A

zz2
+ b1NA + b2|A|2A � 0, (1)

z2

zt2
− z2

zz2
( )N � −3b3z

2|A|2
zz2

, (2)

where N ≡ δnd/nd0 is the dimensionless degenerate electron

density perturbation and A ≡ eA/mc2 is the dimensionless EM

wave vector potential with e denoting the elementary charge, m

the electron mass, and c the speed of light in vacuum. In Eqs. 1, 2,

the time and space coordinates are normalized according to t →
tω0 and z → zω0/cs, where ω0 (k0) is the EM wave frequency

(wave number) given by the high-frequency dispersion relation:

ω2
0 � c2k20 +Ω2

d + αω2
ed and cs is the electron-acoustic speed,

defined by, c2s � (1/3)αc2R2
0/

������
1 + R2

0

√
. Here, ωed ≡

���������
4πnd0e2/m

√
is the plasma oscillation frequency of degenerate electrons,

Ω2
d � ω2

ed/
������
1 + R2

0

√
, α = ncl0/nd0 (≪ 1) is the ratio between the

equilibrium number densities of classical and degenerate

electrons, and R0 � Z(3π2nd0)1/3/mc measures the degree of

electron degeneracy, i.e., R0 ≪ 1 (≫ 1) corresponds to weakly

relativistic (ultra-relativistic) degenerate plasmas. Also, vg is the

EM wave group velocity normalized by cs, b0 � (dvg/dk0)ω0/c2s
represents the group velocity dispersion, b1 � (ωed/ω0)2(1 −
κ2/

������
1 + R2

0

√
) is associated with the nonlocal nonlinearity, b2 �

(ωed/ω0)2(α + κ2/(1 + R2
0)3/2) is the coefficient of the cubic

nonlinear term, and b3 � (
������
1 + R2

0

√
− κ2)/R2

0 with 2/3< κ2 ≡ 1 −
R2
0/3(1 + R2

0)< 1 corresponds to the ponderomotive

nonlinearity.

The model Eqs. 1, 2 have been derived using a set of

relativistic fluid equations coupled to the Maxwell equations

on several assumptions, namely, the thermodynamic

temperature of classical electrons is much lower than the

Fermi temperature, the characteristic wave frequency is much

higher than the de Broglie frequency, and the EM pump wave is

weakly relativistic. Furthermore, it has been assumed that the two

electron species have different effective masses (md > mcl) in

which the effective mass of classical electrons (mcl) is determined

by their thermodynamic temperature while that of degenerate

electrons (md) is determined by their number density Shatashvili

et al. (2020). The model was essentially derived to explore novel

nonlinear coupling of high-frequency EM waves with low-

frequency electron-acoustic waves and the modulational

instability induced by the new physics originating due to the

flow of classical relativistic electrons in relativistic degenerate

plasmas Shatashvili et al. (2020). Such plasmas, coexisting with a

classical hot accumulating astrophysical flow, are interesting and

important plasma ingredients in the environments of white

dwarf stars, e.g., during the relativistic jet formation from

collapsing white dwarfs to black holes (Begelman et al., 1984;

Kryvdyk, 1999; Kryvdyk and Agapitov, 2007). The model can

similarly be used to explore the new particle-acceleration

mechanism via the formation of wakefield generation and EM

solitons in which the degeneracy pressure can play a decisive role

for the transition from wakefield generation to soliton formation

(Roy et al., 2019).

It is to be noted that although there are similar works in the

literature along the lines of the present study, no previous results

in the literature can be recovered in some particular limits,

namely nonrelativistic plasma flow or weakly relativistic

degeneracy (classical) of the present model Eqs. 1, 2.

However, there are some studies on electromagnetic envelope

solitons in relativistic magnetized plasmas based on the NLS
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formalism. For example, starting from a set of relativistic fluid

equations coupled to the circularly polarized EM wave equation,

Borhanian et al. (Borhanian et al., 2009) studied the

modulational instability and the evolution of circularly

polarized EM wave envelopes in magnetized plasmas. Their

formalism was based on a multiple scale perturbation

approach to derive the NLS equation (without any nonlocal

nonlinearity) which is distinctive from the present approach.

Furthermore, the existence and the properties of standing high-

frequency EM solitons were studied by Mikaberidze and

Berezhiani, 2015 in a fully degenerate overdense electron

plasma by considering a set of relativistic fluid and Maxwell

equations. Their evolution equations for traveling EM solitons

are similar to Eqs. 3, 4 obtained in Section 3. Since the formalism

considered in these studies is different from the present one, one

cannot recover the previous results even in some particular cases

as mentioned before.

3 Localized stationary soliton

Before we investigate the conditions for the existence of EM

solitons and their stability, we first look for some simple localized

stationary soliton solutions that relativistic two-temperature

plasmas can support and that are correlated with the plasma

density depletion. So, looking for a localized stationary soliton

solution of Eqs. 1, 2, we introduce the coordinate transformations

ξ = z − vgt, τ = t, and assume the vector potential A to be of the

form A = a(ξ) exp(iωτ) and N ≡ N(ξ), where ω is the EM soliton

eigenfrequency. Under these transformations Eqs. 1, 2 reduce to

b0
d2a

dξ2
− 2ωa + b1Na + b2a

3 � 0, (3)

v2g − 1( ) d2N

dξ2
� −3b3d

2a2

dξ2
. (4)

Solving Eq. 4 yields the following expression for the density

perturbation.

N � 3b3
1 − v2g

a2. (5)

Here, we note that since 2/3 < κ2 < 1, b3 is always positive. Also,

from the high-frequency dispersion relation and the expression for

the electron-acoustic speed cs stated in Section 2, it can be noted that

vg > 1 holds (for which we have a density depression) in the

moderate or weakly relativistic degenerate regime. However, vg <
1 holds (for which we have a density hump) for R0 ≫ 1, i.e., in the

ultra-relativistic regime. Thus, it follows that the stationary localized

EM solitons may exist in a wide range of values of the degeneracy

parameter R0. Since the density perturbation cannot vanish in the

region of EM field localization, there is no possibility of the

formation of cavitation at some point in the region.

Next, eliminating N from Eqs. 3, 5, we obtain the following

nonlinear differential equation for the wave amplitude a.

d2a

dξ2
− μa + f a2( )a � 0, (6)

where μ = 2ω/b0 is the nonlinear frequency shift measuring the

inverse of the square of the characteristic width of the soliton and

f is the nonlinear function of the wave amplitude, given by,

f a2( ) � 1
b0

b2 + 3b1b3
1 − v2g

⎛⎝ ⎞⎠a2. (7)

Clearly, |f| is an increasing function of a. However,

considering f as a function of k0 (or ω0) we note that while its

absolute value increases in a small interval 0 ≲ k0 ≲ 0.1, the same

decreases in the other small sub-interval 0.1 < k0 ≲ 0.3 and tends

to vanish for k0 ≳ 0.3. In the latter, the localized soliton solution

may not exist. Furthermore, |f| becomes higher (> 1) with higher

values of the degeneracy parameter R0 ≳ 30 and with a small

increment of α and ω. Thus, there must be some parameter

restrictions for which the nonlinearity is not too high, i.e., |f|≲ 1

or a bit more for the existence of EM solitons with

amplitude a ~ O(1).

In what follows, we integrate Eq. 6 and use the boundary

conditions, namely a → 0, da/dξ → 0, and d2a/dξ2 → 0 as ξ

→ ±∞ to obtain the following energy balance equation for

the motion of a pseudoparticle of unit mass in which a plays

the role of a pseudo-coordinate and ξ that of the pseudo-

time.

1
2

da

dξ
( )2

+ V a( ) � 0, (8)

where the pseudopotential V(a) is given by

V a( ) � 1
4b0

b2 + 3b1b3
1 − v2g

⎛⎝ ⎞⎠a4 − 1
2
μa2. (9)

For the existence of finite-amplitude EM solitons, the

pseudopotential V must satisfy the following conditions:

1) V(0) = V′(0) = 0.

2) V′′(a) < 0 at a = 0, so that the fixed point at the origin

becomes unstable.

3) V(am ≠ 0) = 0 and V′(am) ≷ 0 according to when the solitary

waves are compressive (with positive potential, i.e., a > 0) or

rarefactive (with negative potential, i.e., a < 0). Here, am ���������������������
4ω/[b2 + 3b1b3/(1 − v2g)]

√
represents the soliton amplitude.

When the above conditions are satisfied one can then

integrate Eq. 8 and use the boundary conditions stated before

to find the following soliton solution.

a ξ( ) � am sech ξ/Δ( ), (10)
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where Δ � �����
b0/2ω

√
is the width of the EM soliton. Since the

amplitude am is to be real, we must have either vg < 1 or

vg >
����������
1 + 3b1b3/b2

√
. We note that vg < 1 is satisfied either in

the regime of k0 ≪ 1 for a moderate value of R0 or in the regime

0 ≤ k0 ≲ 1 with R0 ≫ 1. Thus, EM solitons in relativistic

degenerate plasmas can travel as subsonic and supersonic

waves (Shatashvili et al., 2020).

We numerically verify the aforementioned conditions for the

existence of EM solitons in different parameter regimes and plot

the Sagdeev potential V(a) against a and the corresponding

soliton profiles as shown in Figure 1. We note that the

conditions for V(a) are satisfied in a wide range of values of

R0 including R0 ≪ 1 and R0 ≫ 1 implying that EM solitons can

exist both in the weakly relativistic and ultra-relativistic regimes.

However, as noted before in highly degenerate regimes (R0 ≳ 30),

the nonlinear function f tends to become much higher in

magnitude. So, such highly degenerate regimes may not be

admissible for the existence of soliton solution in the

particular form. From the subplot (a) of Figure 1 it is evident

that for certain parameter values,V(a) crosses the a-axis at a = am
andV < 0 for 0 < a < am. Such am is the amplitude of the soliton as

is evident from the profiles in subplot (b). The width of the

soliton can also be obtained either using the relation W = |am/

Vmin| from the profiles of V(a) [subplot (a)] or from the profiles

of a(ξ) [subplot (b)]. Here, Vmin represents the absolute

minimum value of V. When a value of either the degeneracy

parameter R0 or the soliton frequency ω (or the wave number k0)

is increased, a significant increment (reduction) of the soliton

amplitude (width) is noticed. However, the amplitude remains

the same and the width gets reduced when a fraction of classical

to degenerate electrons are slightly enhanced.

4 Stability of electromagnetic solitons

In this section, we focus on the evolution of slowly varying

weakly nonlinear small amplitude circularly polarized EM wave

envelopes and their stability in relativistic degenerate dense

plasmas. So, we introduce a slowly varying complex envelope

in the form:

A � 1
2

ae−it + a∗eit( ), N � 1
2

N2e
−i2t +N∗

2 e
i2t( ), (11)

where we have considered the odd harmonics (first order) for the

vector potential A and even harmonics (second order) for the

density perturbation N. Since we are looking for an evolution

equation for the wave potential A of the NLS type, the

contributions of other harmonics may not be so important. In

Eq. 11, the asterisk denotes the complex conjugate of the physical

quantity. Substituting the expansions of Eq. 11 into Eq. 2 and

collecting the second harmonic terms ~ exp(−i2t), we obtain the

following expression for N2.

N2 � 3
8
b3
z2a2

zz2
. (12)

Next, substituting the expansions of Eq. 12 into Eq. 1 and

collecting the first harmonic terms ~ exp(−it), we obtain the

following equation for the EM wave amplitude a.

FIGURE 1
The Sagdeev potential V(a) [subplot (A)] and the corresponding soliton solutions a(ξ) [subplot (B)] are shown for different values of the
parameters as in the legends with a fixed value of k0 = 0.3.
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i
z

zt
+ vg

z

zz
( )a + P

z2a

zz2
+ Q1|a|2a + Q2

z2a2

zz2
a∗ � 0. (13)

Eq. 13 can further be reduced to the following form by applying

the transformations ξ = z − vgt and τ = t, i.e.,

i
za

zτ
+ P

z2a

zξ2
+ Q1|a|2a + Q2

z2a2

zξ2
a∗ � 0, (14)

where the coefficients of the dispersion (p) and the local (Q1) and

nonlocal (Q2) nonlinear coefficients are

P � 1
2
b0, Q1 � 3

8
b2, Q2 � 3

32
b1b3. (15)

Eq. 14 is in the form of a generalized nonlinear Schrödinger

(GNLS) equation in which the cubic (local) and derivative

(nonlocal) nonlinearities are significantly modified by the

effects of the relativistic degeneracy of dense electrons,

percentage of nondegenerate electrons as well as the EM

pump wave frequency. Here, by the local nonlinearity we

mean the effect that occurs due to the interactions of different

kinds of carrier harmonic modes (including self-interactions) at

nonlinear regimes. On the other hand, the nonlocal nonlinearity

appears due to the ponderomotive force of EM wave fields on the

slow response of plasma density fluctuations. In the limit of R0≪
1, the nonlocal effect tends to become less significant and the

local cubic nonlinearity prevails. However, as one gradually

enters from the weakly to ultra-relativistic regimes with R0 ≫
1, the nonlocal term dominates over the local nonlinearity in the

domain of higher values of k0. Thus, it becomes significant to

study the evolution of localized wave envelopes and their stability

especially in the relativistic degeneracy regime. So, we look for a

localized stationary solution of Eq. 14 in the form of a moving

soliton (distinctive from that in Section 3) as a �
ρ(η) exp[iθ(η) + iλ2τ] where η = ξ − v0τ with v0 denoting the

soliton velocity (which, in general, is different from vg) in the

moving frame of reference. Next, substituting this solution into

Eq. 14, we obtain the following coupled equations for the soliton

phase and the amplitude.

βθηηρ + 4β − 2b0( )ρηθη − 2v0ρη � 0, (16)

ρηη +
3
8β

b1b3ρρ
2
η �

3
4β
ρ3 b1b3θ

2
η − b2( )

+ρ
β

2λ2 − 2θηv0 + b0θ
2
η( ), (17)

where β = b0 + (3/8)b1b3ρ
2. Integrating Eq. 16 and using the

boundary conditions, namely ρ, ρη, ρηη → 0 as η → ±∞, we

obtain dθ/dη ≈ v0/b0, whereas Eq. 17 gives on integration

ρ2η �
ρ2

b0β
2λ2b0 − v20 −

3
8
b0 b2 − b1b3

v20
b2o

( )ρ2[ ]. (18)

Further integration of Eq.18 gives a soliton solution in the

following implicit form.

± η �
�����������
3b1b3ρ

2
0b0

8 2λ2b0 − v20( )
√

tan−1
�����������
8β/3b1b3

ρ20 1 − ρ2/ρ20( )
√⎛⎝ ⎞⎠

+ b0/2( )���������
2λ2b0 − v20

√ ln

��
β

√ −
�����������
bo 1 − ρ2/ρ20( )√

��
β

√ +
�����������
bo 1 − ρ2/ρ20( )√∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣,
(19)

where ρ0 is the maximum amplitude of the soliton, given by,

ρ20 �
8
3

2λ2b0 − v20( )b0
b2b

2
0 − b1b3v20

. (20)

From Eqs. 19, 20 it follows that the conditions for the

existence of real solutions require

2λ2b0 − v20 > 0, b2b
2
0 − b1b3v

2
0 > 0. (21)

We will consider these conditions and discuss about the

existence domains in more details shortly. In fact, Eq. 19

describes two branches of soliton solutions which are

symmetric about the origin and which, when combined

together, form a complete soliton profile. The characteristics

of these solitons are displayed in Figure 2 for different values of

the parameters, namely the degeneracy parameter R0, the soliton

velocity v0 and the eigenfrequency λ. It is noted that in contrast to

the effects of the soliton velocity, i.e., by increasing values of

which the soliton amplitude decreases but the width broadens,

the effects of the electron degeneracy and the eigenfrequency are

to enhance the soliton amplitude but to reduce the width

significantly as similar to those observed in Figure 1. The

percentage of classical electrons α has also the similar effects

on the soliton profiles as in Figure 1. Physically, for the present

model, the wave dispersion is provided by the degeneracy

pressure of electrons as well as by the separation of charged

particles (Poisson equation). However, as the values of the

degeneracy parameter R0 increase, the coefficients of the

group velocity dispersion p and the nonlocal nonlinearity

(associated with the ponderomotive force) Q2 tend to decrease

but those of the cubic nonlinearity Q1 increase and remain

smaller than Q2 in the regime 0 < R0 ≲ 20. As a result, the

increased wave energy from amplification is accommodated by

an increase in soliton amplitude and a reduction in its width. If

the density ratio α is slightly increased or if one considers the

high- or ultra-relativistic degeneracy regimes, the ponderomotive

nonlinearity tends to dominate over the cubic nonlinearity which

results into a depletion of both the amplitude and width.

However, some other nonlinear phenomena including the

soliton collapse can also take place which we will examine in

the end of this section.

It is to be mentioned that the profiles in Figure 2 are not

exactly the cusp solitons. The spiky shape appears due to

numerical plots of the two functions with plus and minus

signs in Eq. 19 separately, which seem to mismatch at the top

of the curves. The latter may be a sort of numerical error.

However, cusp solitons may appear in the context of NLS
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equations with saturating nonlinearities [See, e.g., (Wadati et al.,

1980)].

It is now imperative to study the stability of the moving

solitons given by Eq. 19. To this end, we use the Vakhitov-

Kolokolov stability criterion (Vakhitov and Kolokolov, 1973)

according to which the solitons are said to be stable against a

longitudial perturbation if

dP0

dλ2
> 0, (22)

where P0 is the soliton photon number, defined by,

P0 � ∫ |a|2 dξ. (23)

The expression for P0(λ) can be obtained by integrating Eq.

18 with respect to ηwith the limits for ρ as 0 and ρ0, and using Eq.

23 as

P0 λ( ) �
�
8

√
b0��������������

3 b2b
2
0 − b1b3v

2
0( )√

×

�
2

√
β0�����

3b1b3
√ cot−1

������
8b0

3b1b3ρ
2
0

√⎛⎝ ⎞⎠ − ρ0

��
b0
4

√⎡⎢⎢⎣ ⎤⎥⎥⎦, (24)

where β0 � b0 + (3/8)b1b3ρ20 (the value of β at ρ = ρ0). Thus,

according to the stability condition [Eq. 22], the moving EM

soliton (19) is said to be stable in the region λ < λs and unstable in

the region λ > λs, where λs is some critical value of λ at which P0
achieves a local maximum and beyond which dP0/dλ

2 < 0. Since

finding an analytic form of λs is extremely difficult, we try to

obtain its values by a numerical approach for different sets of

values of the parameters. The profiles of P0(λ) and the

corresponding values of λs are exhibited in Figure 3 with the

variations of the degeneracy parameter R0, the soliton velocity v0
and the classical to degenerate electron number density ratio α.

The stable and unstable regions can be predicted, respectively,

FIGURE 2
Two branches of soliton solutions [Eq. 19], symmetric about the origin, are plotted against ξ with a fixed α = 0.01 and different values of the
parameters as in the legends. While subplot (A) is shown for a moderate value of R0, subplot (B) is for relatively a higher value of R0. The soliton
characteristics are significantly modified due to different degrees of relativistic degeneracy.
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with the conditions λ < λs, dP0/dλ
2 > 0 and λ > λs, dP0/dλ

2 < 0. It is

found that, an increase of each of R0, v0 and k shifts the instability

threshold λs towards its higher values, implying that the stability

domains (λ < λs) are significantly enhanced. This means that, in

contrast to linearly polarized EM waves (Roy and Misra, 2020),

the circularly polarized EM solitons cab be stable in high density

degenerate plasmas with two-temperature electrons.

Next, apart from the Vakhitov-Kolokolov stability criterion,

we also examine if there be any constraints on the parameters λ

and v0 in order to have a real soliton solution Eq. 19. These

constraints together with the stability criterion stated before can

provide the existence as well as the stable and unstable regions of

EM solitons. In this context, we find the limits for the parameters

λ and/or v0 from Eq. 21 as

FIGURE 3
The soliton photon number P0(λ) is plotted against the eigenfrequency λwith a fixed α = 0.01 and for different values of the other parameters as
in the legends. The solitons are stable (unstable) in the regions λ < λs, dP0/dλ

2 > 0 (λ > λs, dP0/dλ
2 < 0).

FIGURE 4
The stable and unstable regions as well as the existence domains of EM solitons are shown in the (v0, λ)-plane for diferent values of the
parameters: (A) R0 = 20, α = 0.01, k0 = 0.5, (B) R0 = 30, α = 0.01, k0 = 0.5, and (C) R0 = 20, α = 0.01, k0 = 0.6.
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v0 < vs ≡ b0 min
�
2

√
λ,

�������
b2/b1b3√{ }. (25)

Thus, considering Eqs. 21, 22, 25, we obtain the regions

for the existence of EM solitons and their stability/instability

in the (v0, λ)-plane as shown in Figure 4. Different critical

values of λ and v0 are indicated by the text arrows and so are

v0 > vs where no soliton solution exists. Thus, the existence

regions together with the stable and unstable regions are

those satisfy the conditions: λ < λs, v0 < vs, dP0/dλ
2 > 0 (Stable)

and λ < λs, v0 < vs, dP0/dλ
2 < 0 (Unstable) as indicated in the

subplots. We find that as the value of the degeneracy

parameter R0 increases, the stable/unstable regions shift

towards unstable/stable ones with a significant reduction

of vs but a significant increase of λs. The wave number k0
has also similar effects on the stable and unstable regions,

however, a change in λs is not so effective. Although in the

region of v0 > vs, no real analytic soliton solution [cf. Eq. 19]

exists, there may be some other numerical solution of Eq. 14.

Such a discrepancy may occur due to an initial small phase

difference between the approximate analytical and numerical

solutions in the particular region. It is to be noted that the

Vakhitov-Kolokolov criterion is suitable only for the linear

stability of EM solitons that involve exponential growth or

decay of wave modes. It cannot predict the nonlinear

evolution of unstable envelope solitons or the stability of

localized solutions that have arbitrary profiles. However, due

to the presence of both the cubic and nonlocal nonlinearities,

the GNLS equation can admit, apart from the envelope

solitons, the soliton collapse or some other nonlinear

features which are out of scope of the present study.

Relying on the existence as well as the stable and unstable

regions of EM solitons obtained so far in the (v0, λ)-plane, we

now study the dynamical evolution of EM solitons by a numerical

simulation approach. The aim is also to verify whether these

regions indeed support the numerical soliton solutions. So, we

solve Eq. 14 by using the Runge-Kutta scheme with a time step

size Δτ = 0.001 and the initial condition (at τ = 0): a(ξ) ~

a0sech
2(ξ/8) exp(−iv0ξ). Figure 5 shows the evolution of EM

solitons after time τ = 150 with the spatial interval − 200 ≤
ξ ≤ 200 and 1,000 grid points for different values of the

parameters that fall in the existence and stable/unstable

regions. As an illustration, we consider two unstable regions

with 1) R0 = 20, λ = 1.5, v0 = 0.6, α = 0.01, k0 = 0.5 [subplot (a)]

and 2) R0 = 30, λ = 0.2, v0 = 5, α = 0.01, k0 = 0.5 [subplot (c)] and a

stable region with R0 = 30, λ = 0.2, v0 = 0.6, α = 0.01, k0 = 0.5

[subplot (b)]. It is seen that as time goes on, the initial profile

tends to radiate and as the nonlinear and dispersion effects

intervene the dynamics, the soliton evolves into either a stable

pulse or an unstable one. Furthermore, the standing soliton with

v0 = 0, R0 = 20, amplitude a0 ~ 0.7, λ = 0.2, and photon number

P0 = 1.64 in the stable region oscillates around ξ = 0 with a

frequency close to the EM wave frequency and it remains stable

for a longer time interval. However, as the velocity is increased,

the moving soliton with v0 = 0.6, R0 = 30, amplitude a0 ~ 0.7, λ =

0.2, and photon number P0 = 17.6 in the stable region propagates

towards the upstream region and it displays an increase of the

wave amplitude [subplot (b)]. Physically, an increase of the

soliton velocity results into a reduction of the relative

eigenfrequency Λ ≡
��������
λ2 − v20/b0

√
but an enhancement of the

photon number which, in turn, increases the soliton

FIGURE 5
Dynamical evolution of EM solitons [Numerical solution of Eq. 14] for different parameter values that correspond to stable [subplot (B)] and
unstable [subplots (A) and (C)] regions [cf. Figure 4]. The parameter values for the subplots (A) to (C), respectively, are R0 = 20, λ = 1.5, v0 = 0.6, α =
0.01, k0 = 0.5; R0 = 30, λ = 0.2, v0 = 0.6, α = 0.01, k0 = 0.5; and R0 = 30, λ = 0.2, v0 = 2, α = 0.01, k0 = 0.5.
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amplitude. However, as time progresses the moving soliton

mitigates to a stable structure. On the other hand, by

increasing the eigenfrequency λ = 1.5 but retaining the soliton

speed at v0 = 0.6 with a different value of R0 = 20 [subplot (a)], we

find that the photon number is reduced to P0 = 1.05. As a result

the soliton in the unstable region exhibits a decay of its amplitude

and as time elapses, it reaches towards a steady state stable

soliton. Next, further considering an increased value of the

soliton velocity (v0 = 5), however, retaining R0 = 30 and λ =

0.2 that fall in the unstable region we find that the soliton photon

number increases and the soliton can no longer travel

undistorted, i.e., its amplitude aperiodically grows and

eventually leads to a collapse [subplot (c)].

5 Summary and conclusion

We have studied the generation of EM solitons in the

nonlinear interactions between a circularly polarized intense

EM pulse and low-frequency electron-acoustic density

fluctuations that are driven by the EM wave ponderomotive

force in relativistic degenerate dense plasmas with two groups

of electrons. The evolution of such solitons is described by a

coupled set of nonlinear equations for the EM vector potential

and the density fluctuations associated with the slow plasma

response (Shatashvili et al., 2020). Stationary localized soliton

solutions of the coupled equations are obtained and their

characteristics are analyzed with the parameters that

correspond to the relativistic degeneracy of electrons (R0),

the fraction of classical to degenerate electrons (α) and the EM

wave frequency (ω0).

Using the Vakhitov-Kolokolov stability criterion, we have

also studied the existence conditions and performed a linear

stability analysis of a moving soliton whose evolution is governed

by a GNLS equation with both the cubic (local) and derivative

(nonlocal) nonlinearities. Different stable and unstable regions

are obtained which shift around the (v0, λ)-plane due to

variations of the parameters R0, α, and ω0 that correspond to

different physical regimes in astrophysical settings. Here, v0 is the

soliton velocity and λ is the eigenfrequency. A direct numerical

simulation of the generalized GNLS equation reveals that the

parameter domains for the stability and instability of EM solitons

well agree with those predicted using the Vakhitov-Kolokolov

stability criterion. It is also found that an initially launched

moving soliton with an increased velocity in the instability

domain eventually collapses after a finite interval of time due

to higher nonlocal nonlinear effects than the cubic nonlinearity.

To conclude, it has been observed that relativistic high density

degenerate plasmas deviating from thermodynamic equilibrium

can appear not only in the context of laser produced plasmas or

beam driven plasmas but also in compact astrophysical objects like

white dwarf stars, neutron stars (Gibbon, 2005; Hau-Riege, 2011).

In these environments, since the system energy flows mostly into

the electrons, they may appear either as a group of partially

degenerate electrons with high temperature tails or a group of

relativistic classical and fully degenerate electrons. Such plasmas

are known to support low-frequency electron-acoustic waves

(Misra et al., 2021) which play key roles in the nonlinear wave

dynamics. Furthermore, these compact astrophysical objects

emanate different EM radiation spectra ranging from radio to

γ-rays. So, interactions of these intense pulses with high-density

plasmas may give rise the formation of solitons and other coherent

structures as localized bursts of x-rays and γ-rays. In this respect,

the present theoretical results could be useful for understanding

the characteristics of x-ray and γ-ray pulses as well as for the next

generation intense laser-solid density plasma interaction

experiments.
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