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Black holes play an important role in linking microphysics with macrophysics,

with those of the Planck mass (MP ~ 10−5 g) featuring in any theory of quantum

gravity. In particular, the Compton-Schwarzschild correspondence posits a

smooth transition between the Compton wavelength (RC ∝ 1/M) below the

Planck mass and the Schwarzschild radius (RS ∝ M) above it. The duality

between RC and RS implies a form of the Generalized Uncertainty Principle

(GUP) and suggests that elementary particlesmay be sub-Planckian black holes.

The simplest possibility is that the ADMmass has the formM + βM2
P/M for some

constant β and this model can be extended to charged and rotating black holes,

clearly relevant to elementary particles. Another possibility is that sub-Planckian

black holesmay arise in loop quantum gravity and this explicitly links black holes

and elementary particles. Higher dimensions may modify both proposals. If

there are n extra dimensions, all with the same compactification scale, one

expects RS∝M1/(1+n) below this scale but RC depends on the form of the higher-

dimensional wave-function. If it is spherically symmetric, then RC ∝ M−1, so

duality is broken and the Planck mass is reduced, allowing the possibility of TeV

quantum gravity. If the wave-function is pancaked in the extra dimensions, RC∝
M−1/(1+n) and so duality is preserved but the Planck mass is unchanged.
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1 Introduction

Whatever final theory amalgamates relativity theory and quantum mechanics, it

is likely to involve two features: 1) what is termed the Black Hole Uncertainty

Principle (BHUP) correspondence; and 2) the existence of extra dimensions on

sufficiently small scales. Both features are expected to become important at the

Planck length, RP ~ 10−33 cm, and possibly on much larger scales. It is striking that

black holes are involved in both these features and indeed there are many other ways

in which these objects provide a link between macrophysics and microphysics (Carr,

2018).
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As regards feature (1), the duality under the transformation

M → M2
P/M between the Compton wavelength for a particle of

mass M, RC = Z/(Mc), and the Schwarzschild radius for a black

hole of mass M, RS = 2GM/c2, suggests a unified Compton-

Schwarzschild expression with a smooth minimum in the (M, R)

plane. This implies that elementary particles may in some sense

be sub-Planckian black holes. This proposal goes back to the

1970s, when it was motivated in the context of strong gravity

theories.

As regards feature (2), if there are n extra spatial dimensions

compactified on some scale RE, then RS scales as R
1/(1+n) for R <

RE, leading to the possibility of TeV quantum gravity and black

hole production at accelerators if RC scales as M−1 for R < RE.

However, the higher-dimensional Compton wavelength depends

on the form of the (3 + n)-dimensional wavefunction and in some

circumstances one might expect RC ∝ M−1/(1+n) for R < RE. This

preserves the duality between RC and RS but TeV quantum

gravity is precluded. Nevertheless, the extra dimensions could

still have consequences for the detectability of black hole

evaporations and the enhancement of pair-production at

accelerators on scales below RE.

The plan of this paper is as follows. Section 2 discusses the

BHUP correspondence in general terms. Section 3 applies the

correspondence to black holes in Loop Quantum Gravity (LQG),

this being the first historical study of this kind. Section 4 then

considers the simplest application of the BHUP correspondence:

the‘M + 1/M’ Schwarzschild model and its extension to charged

and rotating black holes. Higher-dimensional black holes are

discussed in Section 5 and some concluding remarks about the

connection between particles and black holes are made in

Section 6.

2 The Black Hole Uncertainty
Principle correspondence

A key feature of the microscopic domain is the (reduced)

Compton wavelength for a particle of rest mass M, with the

region R < RC in the (M, R) diagram of Figure 1 being regarded as

the “quantum domain”. A key feature of the macroscopic domain

is the Schwarzschild radius for a body of massM, with the region

R < RS being regarded as the “relativistic domain”. The Compton

and Schwarzschild lines intersect at around the Planck scales,

RP �
�����
ZG/c3√

~ 10−33cm, MP �
�����
Zc/G√

~ 10−5g, (1)

and divide the (M, R) diagram into three regimes, which we label

quantum, relativistic and classical. There are several other

interesting lines in the figure. The vertical line M = MP marks

the division between elementary particles (M < MP) and black

holes (M > MP), since the size of a black hole is usually required

to be larger than the Compton wavelength associated with its

mass. The horizontal line R = RP is significant because quantum

fluctuations in the metric should become important below this

(Wheeler, 1955). Quantum gravity effects should also be

important whenever the density exceeds the Planck value,

ρP = c5/(G2Z) ~ 1094 g cm−3, corresponding to the sorts of

curvature singularities associated with the big bang or the

centres of black holes. This implies R<RP(M/MP)1/3, which
is well above the R = RP line for M ≫ MP, so the shaded region

specifies the ‘quantum gravity’ domain.

The Compton and Schwarzschild lines transform into one

another under the transformation M → M2
P/M, which

suggests some connection between elementary particles and

black holes. This relates to what is termed “T-duality” in string

theory and maps momentum-carrying states to winding states

(Zwiebach, 2009). Although the Compton and Schwarzschild

boundaries correspond to straight lines in the logarithmic plot

of Figure 1, this form presumably breaks down near the Planck

point due to quantum gravity effects. One might envisage two

possibilities: either there is some form of critical point at the

Planck scale, so that the separation between particles and

black holes is maintained (Isi et al., 2013), or there is a smooth

minimum, as indicated by the broken line in Figure 1, so that

the Compton and Schwarzschild lines merge (Carr et al.,

2016). Which alternative applies has important implications

for the relationship between elementary particles and black

holes.

One way of smoothing the transition between the Compton

and Schwarzschild lines is to invoke some form of unified

expression which asymptotes to the Compton wavelength and

Schwarzschild radius in the appropriate regimes (Carr, 2015).

The simplest such expression would be

RCS � βZ

Mc
+ 2GM

c2
, (2)

FIGURE 1
Division of (M, R) diagram into classical, quantum, relativistic
and quantum gravity domains. The boundaries are specified by the
Planck density, Compton wavelength and Schwarzschild radius.
From Carr (2018).
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where β is a dimensionless constant. In the super-Planckian

regime, this becomes

RS′ � 2GM
c2

1 + β

2
MP

M
( )2[ ] M≫MP( ), (3)

with the second term corresponding to a small correction to the

usual Schwarzschild expression. In the sub-Planckian regime, it

becomes

RC′ � βZ

Mc
1 + 2

β

M

MP
( )2[ ] M≪MP( ), (4)

with the second term corresponding to a small correction to the

usual expression for the Compton wavelength. More generally,

one might consider any unified expression RC′ (M) ≡ RS′(M)
which has the asymptotic behaviour βZ/(Mc) for M ≪ MP

and 2GM/c2 for M ≫ MP.

An expression of the form (3) arises in the quantum

N-portrait model of Dvali et al. (Dvali et al., 2011), which

regards a black hole as a weakly-coupled Bose-Einstein

condensate of gravitons. From holographic considerations, the

number of gravitons in the black hole isN ≈ M2/M2
P and one can

then argue that the black hole radius is (Frassino et al., 2016)

RCS ≈
2GM
c2

1 + β

2N
( ) M>MP( ), (5)

which is equivalent to Eq. 3. An expression of the form (4) also

arises in the context of the Generalized Uncertainty Principle

(GUP). This is because it can be argued that the Uncertainty

Principle should be modified to the form (Adler, 2010)

Δx � Z

Δp
+ α

R2
P Δp

Z
, (6)

where α is a dimensionless constant. The first term represents the

uncertainty in the position due to the momentum of the probing

photon and leads to the usual expression for the Compton

wavelength if one substitutes Δx → R and Δp → cM. The

second term represents the gravitational effect of the probing

photon and is much smaller than the first term for Δp ≪ cMP.

Variants of Eq. 6 are also motivated by string theory (Veneziano,

1986; Witten, 1996), non-commutative quantum mechanics

(Gross and Mende, 1988; Amati et al., 1989; Yoneya, 1989;

Konishi et al., 1990; Scardigli, 1999), general minimum length

considerations (Maggiore, 1993a; Maggiore, 1993b; Maggiore,

1994), polymer corrections in the structure of spacetime in LQG

(Ashtekar et al., 2003a; Hossain et al., 2010) and some

approaches to quantum decoherence (Kay, 1998).

The GUP is usually restricted to the sub-Planckian domain

(M <MP). However, if we rewrite Eq. 6 using Δx→ R and Δp→
cM even in the super-Planckian regime, we obtain a revised

Compton wavelength which applies for all M:

RCS � Z

Mc
+ α

GM

c2
. (7)

This resembles Eq. 2 except that the constant is associated

with the second term. This suggests that there is a different kind

of positional uncertainty for an object larger than the Planck

mass, related to the size of a black hole. This is not unreasonable

since the usual Compton wavelength is below the Planck length

here and also an outside observer cannot localize an object on a

scale smaller than its Schwarzschild radius. This is termed the

Black Hole Uncertainty Principle (BHUP) correspondence (Carr,

2015) or the Compton-Schwarzschild correspondence when

discussing an interpretation in terms of extended de Broglie

relations (Lake and Carr, 2015).

Strictly speaking, Eqs 2, 7 are consistent only if α = 2 and

β = 1 but that would leave no free parameter at all. Therefore

an interesting issue is whether one should associate the free

constant in RCS with the 1/M term, as in Eq. 2, or the M term,

as in Eq. 7. Here we adopt the former approach, on the

grounds that the expression for the Schwarschild radius is

exact, whereas there is some ambiguity in the meaning of the

Compton scale. However, for comparison with the GUP

literature, we still need to identify an effective value of α

and a simple rescaling of the relationship between Δx and R

suggests α = 2/β. Another approach is to identify Δp with 1/M

rather than M for M > MP and Eq. 6 then equates α and β

directly. One might even argue that Δp has the form (M + 1/

M)−1, in which case Δx ~ 1/M and Δp ~ M in the particle case

(M < MP) and Δx ~ M and Δp ~ 1/M in the black hole case

(M > MP). This would be consistent with the extended de

Broglie relations (Hawking, 1974; Lake and Carr, 2015).

FIGURE 2
Hawking temperature (in Planck units) from Eq. 3 and surface
gravity argument as a function of M/MP for β = 1 (bottom), β = 0.5
(middle) and β = 0.1 (top). Also shown on the right is the Adler
prediction. From Carr et al. (2016).
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In the standard picture, one can calculate the black hole

temperature from the Uncertainty Principle by identifying it with

a multiple η of Δp. This gives (Hawking, 1974)

kT � ηcΔp � ηZc

Δx
� ηc2M2

P

2M
, (8)

which is precisely the Hawking temperature if we take η = 1/(4π).

If one adopts the GUP but assumes the usual black hole size, one

obtains the Adler form (Chen and Adler, 2003)

kT � ηMc2

α
1 ±

�������
1 − αM2

P

M2

√⎛⎝ ⎞⎠. (9)

The negative sign gives a small perturbation to the standard

Hawking temperature

kT ≈
ηM2

Pc
2

2M
1 − αM2

P

4M2
[ ] M≫MP( ) (10)

at largeM. However, the solution becomes complex whenM falls

below
��
α

√
MP, corresponding to a minimum mass, and it then

connects to the positive branch of Eq. 9. This form is indicated by

the curve on the right of Figure 2.

Eq. 9 is inconsistent with the BHUP correspondence since

this also modifies the relationship between the black hole radius

Δx and M. If we adopt Eq. 3 instead, then the surface gravity

argument gives a temperature

kT � M2
Pc

2

4πM 2 + βM2
P/M2( )

≈

M2
Pc

2

8πM
1 − β

2
MP

M
( )2[ ] M≫MP( )

Mc2

4πβ
1 − 2

β

M

MP
( )2[ ] M≪MP( ).

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩ (11)

This is plotted in Figure 2 and is very different from the Adler

form. As M decreases, the temperature reaches a maximum of

around TP and then goes to zero as M → 0.

An important caveat is that Eq. 6 assumes that the two

uncertainties add linearly. On the other hand, since they are

independent, it might be more natural to assume that they add

quadratically (Carr et al., 2011):

Δx �
�������������������
Z/Δp( )2 + αR2

PΔp/Z( )2√
. (12)

We refer to Eqs 6, 12 as the linear and quadratic forms of the

GEP, respectively. The latter corresponds to a unified expression

RCS �
��������������������
βZ/Mc( )2 + 2GM/c2( )2√

, (13)

where we have we have again introduced β. This leads to the

approximations

RS′ ≈
2GM
c2

1 + β2

8
MP

M
( )4[ ] M≫MP( ) (14)

and

RC′ ≈
βZ

Mc
1 + 2

β2
M

MP
( )4[ ] M≪MP( ). (15)

These might be compared to the exact expressions in the linear

case, given by Eqs 3, 4. As we now show, a model inspired by

LQG permits the existence of a black hole whose horizon size has

precisely the form (13).

3 Loop black holes

Loop Quantum Gravity is based on a canonical quantization

of the Einstein equations, written in terms of the Ashtekar

variables. One feature of this is that area is quantized, with its

smallest possible value being

Amin � 4π
�
3

√
γR2

P, (16)

where γ is the Immirzi parameter and of order 1. The quantity ao
≡ Amin/8π, together with the dimensionless polymeric parameter

δ, determines the deviation from classical theory.

One version of LQG, using the mini-superspace

approximation, gives rise to cosmological solutions which

resolve the initial singularity problem (Bojowald, 2001;

Ashtekar et al., 2003b; Bojowald, 2005). Another version gives

the loop black hole (LBH) solution (Modesto, 2010) and this

replaces the singularity in the Schwarzschild solution with

another asymptotically flat region. The metric depends only

on the combined dimensionless parameter ε ≡ δγ, which must

be small, and can be expressed as

ds2 � −G r( )c2dt2 + dr2

F r( ) +H r( ) dθ2 + sin2 θdϕ2( ) (17)

with

G r( ) � r − r+( ) r − r−( ) r + rp( )2
r4 + a2o

, F r( ) � r − r+( ) r − r−( )r4
r + rp( )2 r4 + a2o( ).

(18)
Here r+ = 2GM/c2 and r− = 2GMP2/c2 are the outer and inner

horizons, respectively, and rp ≡
����
r+r−

√ � 2GMP/c2, where M is

the black hole mass and

P ≡
�����
1 + ε2

√ − 1�����
1 + ε2

√ + 1
≈ ε2/4≪ 1 (19)

is called the polymeric function. In the limit r → ∞ one has

G r( ) → 1 − 2GM
c2r

1 − ε2( ), F r( ) → 1 − 2GM
c2r

, (20)

whereM ≡ M(1 + P)2 is the ADMmass (i.e. the mass measured

as r → ∞). The function H(r) in Eq. 17 is not r2 (as in the

Schwarzschild case) but
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H r( ) � r2 + a2o
r2

0 R ≡
������
r2 + a2o

r2

√
. (21)

Here R is the physical radial coordinate, in the sense that the

circumference function is 2πR. As r decreases from infinity to

zero, R first decreases from infinity to a minimum value of
���
2a0

√
at r � ��

a0
√

and then increases again to infinity. In particular, the

value of R associated with the outer event horizon is

RS′ �

�����������������
2GM
c2

( )2

+ aoc2

2GM
( )2

√√
. (22)

This corresponds to Eq. 13 if β = aoc
2/G. The important

physical implication of Eq. 21 is that central singularity of the

Schwarzschild solution is replaced with another asymptotic

region, so the collapsing matter bounces and the black hole

becomes part of a wormhole. The fact that a purely geometrical

condition in LQG implies the quadratic version of the GUP

suggests some deep connection between general relativity and

quantum theory. The duality between the two asympotic spaces

also suggests a link between elementary particles with M ≪ MP

and black holes with M ≫ MP (Modesto and Premont-Schwarz,

2009), which is clearly relevant to the theme of this paper.

The temperature implied by the black hole’s surface gravity is

T∝
GM

R′2
S

∝ M−1 M≫MP( )
M3 M≪MP( ).{ (23)

However, if one calculates the temperature using the GUP

expression for Δp, one obtains

kT ≈

ηZc3

2GM
1 − β2

8
MP

M
( )4[ ] M≫MP( )

ηMc2

β
1 − 2

β2
M

MP
( )4[ ] M≪MP( ).

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩ (24)

This is similar to Eq. 11 but inconsistent with Eq. 23 in the

sub-Planckian regime. The source of the discrepancy is that there

are two asymptotic spaces—one on each side of the wormhole

throat—and the temperature is different in these. Observer only

detect radiation from the horizon on their side of the throat, so

the inner horizon with respect to r =∞ corresponds to the outer

horizon with respect to r = 0 (Carr et al., 2011). For

M<
���
β/2

√
MP, T ∝ M3 in our space and T ∝ M in the other

space, which explains the predictions of Eqs 23, 24. For���
β/2

√
MP <M<P−2 ���

β/2
√

MP, T ∝ M−1 in our space and T ∝
M in the other space. ForM>P−2 ���

β/2
√

MP, T∝M−1 in our space

and T ∝ M−3 in the other space.

4 Carr-Mureika-Nicolini approach

This section describes a particular interpretation of the linear

version of the BHUP correspondence, described in my work with

Mureika and Nicolini (Carr et al., 2016), in which the Arnowitt-

Deser-Misner (ADM) mass is taken to be

MADM � M 1 + β

2
M2

P

M2
( ). (25)

This is equivalent to Eq. 3 and we noted a possible connection

with the energy-dependent metric in the “gravity’s rainbow”

proposal (Magueijo and Smolin, 2004) and with the QFT

renormalization of mass in the presence of stochastic metric

fluctuations (Camacho, 2003). Putting Z = c = 1, the

Schwarzschild radius for the modified metric is

RS′ � 2MADM

M2
P

≈ 2M/M2
P M≫MP( )

β/M M≪MP( ){ (26)

and the temperature is kT � M2
P/(8πMADM), corresponding to

Eq. 11. This is not the only black hole metric allowed by the GUP.

This is illustrated by the discussion of LQG in Sec. 3 but there

could be other relevant solutions in GR itself. However, Eq. 25

gives the simplest such solution.

The black hole luminosity in this model is L � ξ−1M−2
ADM

where ξ ~ tP/M3
P, so the mass loss rate decreases when M falls

belowMP and the black hole never evaporates completely. There

are two values of M for which the evaporation time (τ ~ M/L) is

comparable to the age of the Universe (t0 ~ 1017s). One is super-

Planckian, Mp ~ (t0/ξ)1/3 ~ 1015g, this being the standard

expression for the mass of a PBH evaporating at the present

epoch. The other is sub-Planckian,M** ~ β2 (tP/t0)MP ~ 10−65β2 g,

although the mass cannot actually reach this value at the present

epoch because the black hole is cooler than the CMB temperature

for M < MCMB ~ 10−36β g. This leads to effectively stable relics of

this mass.

It is interesting to consider observational constraints on

the parameter β and these are discussed in Carr et al. (2022).

Within the GUP context, these only arise in the microscopic

domain and a variety of mechanical oscillator experiments

imply α < 4 × 104 (Pikovski et al., 2012; Bushev et al., 2019). A

similar bound arises from the AURIGA gravitational bar

detector (Marin et al., 2014). Since β = 2/α, both bounds

corresponding to a lower limit β > 10–4. Within the context of

the BHUP correspondence, there are also constraints in the

macroscopic domain from measuring the gravitational force

between 100 mg masses with mm separation (Westphal et al.,

2021) and these imply β < 106. Clearly these limits still allow

a wide range of values for β. One might also constrain β by

observations on astrophysical scales but in this domain the

effects of the Extended Uncertainty Principle, in which

Δx Δp ~ 1 + (δx)2 rather than 1 + (δp)2, becomes more

relevant (Mureika, 2019).

Recently we have extended this work, together with Heather

Mentzer, to charged and rotating black holes (Carr et al., 2020),

since this is clearly relevant to elementary particles. The standard

Reissner-Nordström (RN) already exhibits features of the GUP-
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modified Schwarzschild solution. This is because the RN metric

has an outer (+) and inner (-) horizon at

r± � M

M2
P

1 ±

����������
1 − αeM

2
Pn

2

M2

√⎛⎝ ⎞⎠ ≈

2M

M2
P

1 − γM2
P

M2( ) +( )

2γ
M

1 + γM2
P

M2( ) −( )

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(27)

where ne is the black hole charge, γ ≡ αen
2/4 with αe ≈ 1/137 being

the electric fine structure constant, and the last expression applies

for a black hole which is far from extremal (M≫
��
αe

√
nMP). The

form of the outer and inner horizons for different values of n are

shown by the upper and lower parts of the solid curves in

Figure 3, respectively. There are two asymptotic behaviors: the

outer horizon correponds to Eq. 2 but with a negative value of β;

the inner horizon resembles the Compton expression and it

asymptotes to the Compton wavelength itself for n = 16, this

being the integer part of
����
2/αe

√
.

For each n, the two horizons merge on the line r = GM (lower

dotted curve) at the minimum value ofM. This corresponds to a

sequence of “extremal” solutions (shown by the dots in Figure 3)

with a spectrum of masses
��
αe

√
nMP. For given n, there are no

solutions with M less than this since these would correspond to

naked singularities. In particular, n could be at most the integer

part of 1/
��
αe

√
(i.e. 11) for a Planck-mass black hole. As in the

GUP case, the temperature of the RN solution reaches a

maximum and then goes to zero as M tends to the limiting

value
��
αe

√
nMP. Onemight want to associate elementary particles

only with extremal solutions (since they are stable) but these

states all have masses in the range (0.1–1)MP, which is too large.

Also even extremal black holes may discharge through the

Schwinger mechanism (Schwinger, 1951).

The (standard) Compton line intersects the outer black hole

horizon, as required if one wants a smooth connection between

particles and black holes, at the mass

M � MP�������
2 − αen2

√ ≈
MP���������

2 − n2/137√ . (28)

(This is also termed the self-completeness condition (Isi et al.,

2013).) For n = 0, the intersect is MP/
�
2

√
but it increases with n

and tends to MP as n →
���
137

√
(middle curve). This implies a

constraint n ≤ 11 on the charge of a self-complete RN black hole.

The Compton line still intersects the inner horizon for���
137

√
< n<

���
274

√
, but these solutions penetrate the r < RP region.

One can extend this model to the GUP-modified RN

solutions by replacing M with MADM given by Eq. 25.

Providing n<
�����
2β/αe

√
for fixed β, the outer horizon behaves as

in the GUP-Schwarzschild case, with a continuous transition

between the gravitational (rCS ∝ M) and Compton (rCS ∝ M−1)

scaling. Also, r+ has a minimum and r− has a maximum at

M � Mcrit ≡
���
β/2√

MP, r± �
��
2β

√
±

��������
2β − n2αe

√[ ]RP. (29)

This is indicated by the curves on the left of Figure 4. In

principle, the particle-like black holes can have arbitrarily low mass

in this case. However, it is unclear that these solutions are candidates

for stable particles since none of them are extremal, this possibility

arising only in the limit nmax � �����
2β/αe

√
. For larger values of n, the

form of the solutions changes, as indicated by the curves on the right

of Figure 4. These represent super-Planckian black holes on the right

(similar to the standard RN case with an extremal solution at the

smallest value of M) and sub-Planckian particles on the left, with a

mass gap in between. Equivalently, for a given value of n, there is a

critical value of β = n2αe/2 below which the solutions bifurcate and

become separated by a mass gap.

The Kerr metric exhibits similar behaviour but there is a

critical spin (nZ) rather than a critical charge. The extremal case

corresponds to the spectrum of masses
�
n

√
MP, while the self-

completeness condition corresponds to

M � MP

�����
1 + n2

2

√
. (30)

This allows all values of n, whereas n could not exceed [1/ ��
αe

√ ] �
11 in the RN case. In the GUP Kerr case, an expression similar to

Eq. 29 still applies and there is a change in the form of the

solutions for n > 2β.

FIGURE 3
The solid curves show the outer and inner horizons for a
standard RN black hole with n = 5, 11, 16 (left to right). For each n,
the horizons meet at the extremal mass on the line r � M/M2

P

(green dotted) and are bounded from above by the
Schwarzschild radius rS � 2M/M2

P (black dotted line). The Compton
curve is shown by the dashed line and the inner horizon
asymptotes to this for n = 16. Solutions with 11 < n < 16 penetrate
the sub-Planckian RN regime. From Carr et al. (2020).
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5 Higher-dimensional black holes

The black hole boundary in Figure 1 assumes there are

three spatial dimensions but many theories suggest that the

dimensionality could increase on small scales. Although the

extra dimensions are often assumed to be compactified on the

Planck length, there are also models in which they are much

larger. For example, the model of Arkani-Hamed et al. (1998)

has n extra spatial dimensions, all compactified on the same

scale RE. If we assume that the standard expression for the

Compton wavelength (RC ∝M−1) still applies, then the masses

with Compton and Schwarzschild scales RE are

ME ≡
Z

cRE
≃ MP

RP

RE
, ME′ ≡

c2RE

G
≃ MP

RE

RP
. (31)

For R < RE, the gravitational potential generated by a mass

M is

Vgrav � GDM

R1+n , (32)

where GD is the higher-dimensional gravitational constant and

D = 4 + n is the total number of spacetime dimensions. For R >
RE, one recovers the usual form, Vgrav = GM/R with G � GD/Rn

E.

Thus the effective gravitational constants at large and small scales

are different.

Eq. 32 implies that the usual expression for the Schwarzschild

radius no longer applies for masses belowME′ . If the black hole is
assumed to be spherically symmetric in the higher-dimensional

space, one has (Kanti, 2016)

RS ≃ RE
M

ME′
( )1/ n+1( )

. (33)

Therefore the slope of the black hole boundary in Figure 1

becomes shallower for M<ME′ , as indicated in Figure 5A.

The intersect with the Compton line then becomes

RP′ ≃ R2
PR

n
E( )1/ 2+n( )

, MP′ ≃ M2
PM

n
E( )1/ 2+n( )

, (34)

so MP′ ≪MP and RP′ ≫RP for RE ≫ RP.

In principle, the lowering of the Planck mass could permit

the possibility of TeV quantum gravity and the production of

small black holes at the Large Hadron Collider (LHC), with

their evaporation leaving a distinctive signature (Dimopoulos

and Landsberg, 2001; Anchordoqui et al., 2002; Giddings and

Thomas, 2002). If the accessible energy is Emax ≈ 10 TeV, then

the extra dimensions can be probed for

RE > 10−18+30/n cm ≃
1012 cm n � 1( )
10−3 cm n � 2( )
10−14 cm n � 7( ).

⎧⎪⎨⎪⎩ (35)

FIGURE 4
Outer (solid) and inner (dash-dot) horizon size for GUP-RN black hole with β = 2. Left: Outer (top) and inner (bottom) horizons for n = 10 (red),
n= 16 (blue) and n=23 (black). The dashed/dotted lines show the usual Schwarzschild/Compton scales. The inner horizon is nearly asymptotic to the
Comptonwavelength at largeM for n = 16. There is a discontinuity when n reaches 23, this being close to an extremal solution. Right: Outer (top) and
inner (bottom) horizons for n = 23 (black), n = 25 (blue) and n = 30 (black). The horizons in this case have amaximum value ofM on the left and a
minimum value on the right. There are no black holes between these values. From Carr et al. (2020).

Frontiers in Astronomy and Space Sciences frontiersin.org07

Carr 10.3389/fspas.2022.1008221

https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org
https://doi.org/10.3389/fspas.2022.1008221


Clearly, n = 1 is excluded on empirical grounds but n = 2 is possible.

One expects n = 7 in M-theory, so it is interesting that RE must be of

order a Fermi in this case. One could also consider a scenario with a

hierarchy of compactification scales, Ri = αi RP with α1 ≥ α2 ≥. . .. ≥
αn≥ 1, such that the dimensionality progressively increases as one goes

to smaller scales (Carr, 2013). This situation is represented in

Figure 5B. There is still no evidence for the extra dimensions

(ATLAS collaboration, 2016), which suggests that either they do

not exist or they have a compactification scaleREwhich is so small that

MP′ exceeds the energy attainable by the LHC

Another possible reason for the non-detection of accelerator

black holes is that the M dependence of RC is also affected by the

extra dimensions. Lake and myself have argued that the effective

Compton wavelength depends on the form of the (3 + n)-

dimensional wavefunction (Lake and Carr, 2019). If this is

spherically symmetric in all the dimensions, then one has RC ∝
M−1 (as usually assumed). However, if the wave function is pancaked

in the extra dimensions andmaximally asymmetric, then we find RC
∝ M−1/(1+n). This implies that the duality between the Compton

wavelength and the Schwarzschild radius persists in the higher

dimensional case but that there is no accelerator production of black

holes. Thus the constraint on RE given by Eq. 35 no longer applies.

This scenario is illustrated in Figure 5C for extra dimensions

compactified on a single length scale RE and in Figure 5D for a

hierarchy of length scales, when the extra dimensions help to

smooth the minimum. The latter case resembles the smooth

minimum in Figure 1, which suggests that higher dimensions

might themselves underlie the BHUP correspondence.

The above discussion of higher-dimensional black holes has

assumed that the simple power-law forms for RS and RC apply all

the way to their intersect at the (modified) Planck scale. However,

the BHUP correspondence suggests that they should be unified in

some way, which would smooth the minima in Figure 5. This

raises the issue of the form of the GUP and BHUP

correspondence in the higher-dimensional case. If the

Compton wavelength preserves its 3-dimensional form, one

might expect the generalized Compton wavelength to become

RC′ � Z

Mc
1 + M

MP′
( ) n+2( )/ n+1( )⎡⎢⎣ ⎤⎥⎦ R<RE( ), (36)

so that RC′ becomes RS′ at largeM. If duality between RS and RC is

preserved in the higher-dimensional case, one might expect

RC′ � Rp

MP

M
( )1/ 1+n( )

1 + M

MP′
( )2/ n+1( )⎡⎢⎣ ⎤⎥⎦ R<RE( ) (37)

However, the literature on this gives different results (Koppel

et al., 2017; Knipfer et al., 2019).

FIGURE 5
Modification of the Schwarzschild line and Planck scales in the (M, R) diagram for extra compact dimensions associated with (A) a single length
scale or (B) a hierarchy of length scales (B) if the Compton scale preserves its usual form. (C) and (D) are the corresponding diagrams if the duality
between the Compton and Schwarzschild expressions is preservd. From Lake and Carr (2019).
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Finally, if we interpret the Compton wavelength as marking

the boundary in the (M, R) diagram below which pair-production

rates becomes significant, we might expect the presence of

compact extra dimensions to affect pair-production rates at

high energies. Specifically, pair-production above the energy

scale MEc
2 ≡ Zc/RE, should be enhanced relative to the 3-

dimensional case. Indeed, there is tentative evidence that this

is a generic feature of higher-dimensional theories (He, 1999;

Eboli et al., 2000).

6 Linking black holes and elementary
particles

The suggestion that there could be a fundamental link between

elementary particles and black holes goes back to the 1970s, when it

was motivated in the context of strong gravity theories (Sivaram and

Sinha, 1977). Various arguments supported this suggestion: 1) both

hadrons and Kerr-Newman black holes are characterised by three

parameters (M,J,Q); 2) both have a magnetic dipole moment and a

gyromagnetic ratio of two but no electric dipole moment; 3) Regge

trajectories and extreme Kerr solutions have the same relationship

between angular momentum and mass (J ~ M2); 4) when classical

black holes interact, their surface area can never decrease, which is

analogous to the increase in cross-sections found in hadron

collisions.

Of course, elementary particles cannot be black holes with

normal gravity, since their Compton wavelength is much larger

than their Schwarschild radius, as illustrated in Figure 1. The

early models therefore assumed that gravity becomes stronger by

a factor of GF/G ~ (MP/mp)2 ~ 1038 on the hadronic scale. This

requires the existence of a massive spin-2 meson and corresponds

to a short-range force. If the hadronic resonances are extremal

black holes, their mass and spin should satisfy GFm2
h � J,

corresponding to a Regge slope of (1Gev)−2, and they should

have a spectrum of masses Mn ~ n1/2 GeV (Oldershaw, 2010).

The current proposal—explored in more detail in work with

Mureika and Nicolini (Carr et al., 2022)—is prompted by the

Generalized Uncertainty Principle and the duality between the

Compton and Schwarzschild expressions under the

transformation M → M2
P/M, so the context is somewhat

different. Also elementary particles are regarded as sub-

Planckian black holes under normal gravity rather

conventional black holes under strong gravity However, there

is a link with strong gravity because the force between two

masses, while still obeying the inverse-square law, is much

enhanced for M<
��
β

√
MP.

Extending the BHUP correspondence to charged black holes

adds important insights. Although the Reissner-Nordstrom itself has

a nearly Planckian mass and therefore cannot represent an

elementary particle, adding a GUP term introduces sub-

Planckian solutions. This explains why the charge cannot exceed�����
2β/αe

√
≈ 1 for β ~ 10–2, as observed for elementary particles.

Similar considerations apply for spinning black holes. However,

these solutions only correspond to extremal black holes if themass is���
β/2

√
MP, which is too large for an elementary particle (given the

allowed range of β).

These considerations must be modified if there are extra

dimensions on small scales. Although there is some uncertainty

in the modifications to the GUP in this case, Figure 5 shows that

the extra dimensions themselves smooth the Compton-

Schwarzschild transition. Furthermore, the black hole mass

may be shifted down towards the hadron scale, the effective

strength of gravity being increased by the extra dimensions.

However, the higher-dimensional analysis has not yet been

extended to the charged and rotating black holes. Extra

dimensions may also play an important role in amalgamating

general relativity and quantum theory, with higher-dimensional

relativity permitting a classical-type interpretation of some

quantum anomalies.
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