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The Sun constantly releases radiation and plasma into the heliosphere.

Sporadically, the Sun launches solar eruptions such as flares and coronal

mass ejections (CMEs). CMEs carry away a huge amount of mass and

magnetic flux with them. An Earth-directed CME can cause serious

consequences to the human system. It can destroy power grids/

pipelines, satellites, and communications. Therefore, accurately

monitoring and predicting CMEs is important to minimize damages to

the human system. In this study we propose an ensemble learning

approach, named CMETNet, for predicting the arrival time of CMEs from

the Sun to the Earth. We collect and integrate eruptive events from two solar

cycles, #23 and #24, from 1996 to 2021 with a total of 363 geoeffective

CMEs. The data used for making predictions include CME features, solar

wind parameters and CME images obtained from the SOHO/LASCO

C2 coronagraph. Our ensemble learning framework comprises

regression algorithms for numerical data analysis and a convolutional

neural network for image processing. Experimental results show that

CMETNet performs better than existing machine learning methods

reported in the literature, with a Pearson product-moment correlation

coefficient of 0.83 and a mean absolute error of 9.75 h.
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1 Introduction

The launch of the Solar and Heliospheric Observatory (SOHO) mission by the

European Space Agency (ESA) and NASA has given scientists opportunities to capture

full pictures of coronal mass ejections (CMEs; Gopalswamy, 2016). CMEs are the most

violent and energetic phenomena that occur within our Solar System (Schwenn et al.,
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2005; Maloney et al., 2010; Maloney, 2012). They are billows of

the Sun-based plasma alongside electromagnetic radiation

ejected out of the solar photosphere in eruptions of energy

that proliferate in the interplanetary environment. CMEs have

three particular highlights specifically: A center which is thick, a

front edge which is quite remarkable and a pocket which has low

electron density. The coronagraph images usually reveal the

bright dense edges of the CMEs (Gopalswamy et al., 2009).

Figure 1 shows the time evolution of a CME occurring on

10 April 2001 as seen by SOHO.

CMEs are often accompanied with solar flares (Priest and

Forbes, 2002; Daglis et al., 2004; Chen et al., 2019; Liu et al.,

2019; Jiao et al., 2020; Wang et al., 2020; Abduallah et al., 2021;

Sun et al., 2022), though the relationship between CMEs and

flares is still under active investigation (Yashiro and

Gopalswamy, 2008; Kawabata et al., 2018; Liu et al., 2020a;

Raheem et al., 2021). Everyday magnetically active regions on

the surface of the Sun undergo various changes to cause

CMEs, which in turn travel in the interplanetary

environment sometimes causing shock waves within and

are an important factor for space weather forecasting and

other related studies. Any examination in regards to the Sun-

based peculiarities, including yet not restricted to these

shocks, CMEs and flares, generally requires information

connected with the magnetic field of the Sun, their

association with one another and the encompassing

interplanetary medium. Thus, it is important to show and

comprehend the complex magnetic field and its variety

regarding time and space. The solar activity encompasses

critical elements in the space weather studies. These studies

play significant roles for managing satellite tasks, space

instrument arrangement and their maintenance as well as

climate expectation procedures on Earth. In addition, CMEs

are sources of various space weather effects in the near-Earth

environment, such as geomagnetic storms. A significant CME

can lead to a large-scale, long-term economic and societal

catastrophe. Showstack (2013) discussed the potential risks

from space weather. The author pointed out that if a

FIGURE 1
Time evolution of a CME, which occurred on 10 April 2001. Images were taken from https://soho.nascom.nasa.gov.
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geomagnetic storm similar to the Carrington event hit Earth

nowadays, it could put up to 40 million Americans at risk of

power outages that could last from days to months with

tremendous social and economic impacts.

To mitigate the damages that may be caused by CMEs, a large

number of methods have been developed to predict the arrival

time of CMEs (Zhao and Dryer, 2014; Camporeale, 2019;

Vourlidas et al., 2019). Among them, two categories of

methods, namely physics-based and machine learning-based,

are commonly used. The WSA-ENLIL + Cone (WEC) model

(Odstrcil et al., 2004; Riley et al., 2018) is a popular physics-based

method for predicting the arrival time of CMEs (Riley et al.,

2018). The WEC model has been implemented and used by

several organizations including the Space Weather Prediction

Center (SWPC) at the National Oceanic and Atmospheric

Administration (NOAA) and the Community Coordinated

Modeling Center (CCMC) at the NASA Goddard Space Flight

Center (GSFC). The WEC model is built by utilizing parameters

derived from CME propagation including CME speed, density,

location, and propagation direction.

In the category of machine learning methods, Liu et al. (2018)

employed a support vector regression (SVR) algorithm to

estimate the arrival time of 182 geoeffective CMEs from

1996 to 2015. For each CME, the authors considered related

solar wind parameters and CME features obtained from the CME

Catalog of the Large Angle and Spectrometric Coronagraph

(LASCO) on board SOHO. Wang et al. (2019) designed a

convolutional neural network to predict CME arrival time.

The authors considered observed images of 223 geoeffective

CMEs from 1997 to 2017 where the images were collected

from SOHO/LASCO. There were totally 1,122 images with

1–10 images per CME.

In this study, we focus on using machine learning to

predict CME transit time, which is the time the body of a

CME spends traveling in interplanetary space from the Sun to

the Earth. The arrival time can be calculated by adding the

transit time to the onset time of the CME. We collect and

integrate eruptive events from two solar cycles, #23 and #24,

from 1996 to 2021 with a total of 363 geoeffective CMEs. The

data used for making predictions include CME features, solar

wind parameters and CME images obtained from the SOHO/

LASCO C2 coronagraph. Our approach, named CMETNet, is

based on an ensemble learning framework, which comprises

regression algorithms for numeral/tabular data analysis and a

convolutional neural network for image processing.

Experimental results demonstrate the good performance of

CMETNet, with a Pearson product-moment correlation

coefficient of 0.83 and a mean absolute error of 9.75 h.

The rest of this paper is organized as follows. Section 2

describes the data used in this study. Section 3 depicts CMETNet

and explains how it works. Section 4 presents experimental

results. Section 5 concludes the paper and points out some

directions for future research.

2 Data

2.1 Data sources

Following Liu et al. (2018), we adopted four CME lists: 1) the

Richardson and Cane (RC) list (Richardson and Cane, 2010)

available at http://www.srl.caltech.edu/ACE/ASC/DATA/level3/

icmetable2.htm, 2) the full halo CME list maintained by the

University of Science and Technology of China (USTC) (Shen

et al., 2014) and available at http://space.ustc.edu.cn/dreams/

fhcmes/index.php, 3) the George Mason University (GMU)

CME/ICME list (Hess and Zhang, 2017) available at http://

solar.gmu.edu/heliophysics/index.php/GMU_CME/ICME_List,

and 4) the CME Scoreboard maintained by NASA’s Community

Coordinated Modeling Center (CCMC) and available at https://

kauai.ccmc.gsfc.nasa.gov/CMEscoreboard/.

We combined and cleaned the CMEs in the four lists based

on the procedures described in Liu et al. (2018). We then

combined these CMEs from the four lists with those in the

catalog presented in Paouris and Mavromichalaki (2017). This

process resulted in a set of 363 CMEs from 1996 to 2021. For each

of the 363 CMEs, we collected 12 related CME features and solar

wind parameters. In addition, for each CME, we downloaded its

images from the SOHO/LASCO C2 coronagraph available at

https://www.swpc.noaa.gov/products/lasco-coronagraph, as

done in Wang et al. (2019). Below, we describe our data

integration process in detail.

2.2 Data integration

For each CME list (RC, USTC, GMU, CCMC), we wrote a

tracker with Python to automatically gather the onset/

appearance times and arrival times of the CMEs in the list.

FIGURE 2
Annual counts of the CMEs considered in this study. These
CMEs occurred between August 1996 and May 2021. Solar cycle
23 (1996–2008) has more CMEs than solar cycle 24 (2008–late
2019).
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Then, we combined the CMEs in the four lists into a single

dataset, removed duplicates and scanned the dataset for events

that occurred within the same hour. For the events that occurred

within the same hour, we kept only one event among them. Based

on the criteria described in Liu et al. (2018), we ended up with

216, 24, 38, and 113 CMEs from the RC, USTC, GMU and

CCMC lists respectively. For each collected CME, we kept a

record of two parameters: the onset/appearance time of the CME

and the arrival time of the CME. In addition to the four CME lists

(RC, USTC, GMU, CCMC), we considered the catalog presented

in Paouris and Mavromichalaki (2017), which contained

266 CME events. We combined these 266 events with the 216,

24, 38, and 113 CMEs from the RC, USTC, GMU and CCMC lists

respectively, and kept only one event among those that occurred

within the same hour in our dataset.

This data integration process resulted in 363 geoeffective

CMEs. Figure 2 shows the number of CMEs in each year. Solar

cycle 23 (1996–2008) has 240 CMEs while solar cycle 24

(2008–late 2019) has 118 CMEs. (There are 5 CMEs between

late 2019 and 2021, totaling 363 CMEs between 1996 and

2021 considered in the study.) In solar cycle 23, year 2001 has

the most CMEs with 41 CMEs in this year. In solar cycle 24, year

2014 has the most CMEs with 21 CMEs in this year. Years 2007,

2008, 2009, and 2019 have the fewest CMEs with only one CME

in each of the 4 years. It is worth mentioning that the CME peak

times (i.e., 2001 in solar cycle 23 and 2014 in solar cycle 24) are

consistent with the sunspot peak times in the two solar cycles

(Raheem et al., 2021). Figure 3 shows the distribution of CME

transit times for the 363 events in our dataset. For the 363 CME

events, the smallest transit time is 18 h while the largest transit

time is 138 h.

For each event in our dataset, we obtained its five features

from the SOHO LASCO CME Catalog available at https://cdaw.

gsfc.nasa.gov/CME_list/index.html and maintained by the

Coordinated Data Analysis Workshops (CDAW) Data Center

at NASA (Gopalswamy et al., 2009). The five CME features

include angular width, main position angle (MPA), linear speed,

2nd-order speed at final height, and mass. Specifically, for each

event in our dataset, by using its onset/appearance time as the

key, we retrieved its five features from the LASCO CME Catalog

and merged the features with the arrival time of the event in our

dataset. For an event E in the dataset whose onset/appearance

time does not match the onset/appearance time of any CME in

the LASCO CME Catalog, we selected the five features of the

temporally closest matching event in the LASCO CME Catalog

that occurred within 1 h of E and assigned the five features to E.

In the LASCO CME Catalog, a feature F might have a missing

value, and themissing value was carried over into our dataset. We

employed a data imputation technique by calculating the mean of

the available values for the feature F in our dataset and used the

mean to represent the missing value.

To obtain the solar wind parameters of each event in our

dataset, we followed the approach described in Liu et al. (2018)

and used the hourly average data extracted from NASA’s

OMNIWeb at https://omniweb.gsfc.nasa.gov/. We considered

seven solar wind parameters: Bx, Bz, alpha to proton ratio,

flow longitude, plasma pressure, flow speed, and proton

temperature. For each event E in our dataset, we used E’s

onset/appearance time t as the key, retrieved the solar wind

parameter values at timestamp t + 6 (with hourly average

resolution) from OMNIWeb, and assigned the retrieved solar

wind parameter values to the event E.

In addition to the five CME features and seven solar wind

parameters, we downloaded each event’s FITS images from the

SOHO/LASCO C2 coronagraph. We were not able to locate the

FITS images for 9 out of the 363 events. (For these 9 events, we

only considered their CME features and solar wind parameters

when training and testing our CMETNet framework.) We

followed the approach described in Wang et al. (2019) to

match each event in our dataset with the corresponding

FITS files in LASCO. Specifically, for each event in our

dataset, we downloaded FITS files during the period that is

between 10 min before the onset/appearance time of the event

and up to 2 h after the event. The Astropy Python package

(Astropy Collaboration et al., 2013) was used to read each FITS

file and produce a CME image as a 2-dimensional (2D) array.

Image sizes in our dataset are: 1,024 × 1,024 pixels, 512 ×

512 pixels, or 256 × 256 pixels. For consistency, we reduced the

size of all images to 256 × 256 pixels. Images with low quality

were discarded. In this way, we obtained a total of 2,281 images

with 0–17 images per event.

Finally, we obtained the transit time for a CME event by

calculating the difference in hours between the onset/appearance

time of the event and the arrival time of the event. For the

363 geoeffective CMEs in our dataset, their transit time ranges

from 18 h to approximately 5 days (Figure 3). In other words, the

traveling of the CMEs in space from the Sun to the Earth takes

between 18 h and approximately 5 days after their first

appearance in LASCO.

FIGURE 3
Distribution of the transit times of the CMEs considered in this
study. For the CMEs, the smallest transit time is 18 h while the
largest transit time is 138 h.
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3 Methods

3.1 Overview

We adopt an ensemble learning approach to predicting CME

transit time. This approach uses a set of machine learning models

whose individual predictions are combined to make a final

prediction (Dietterich, 2000). An ensemble method is often

more accurate than the individual machine learning models

that form the ensemble method (Dietterich, 2000). There are

several techniques for constructing an ensemble. In this work, we

use bootstrap aggregation, or bagging for short, originally

proposed by Breiman (1996), which works as follows:

1) Randomly select N training samples with replacement from a

given training set with M samples.

2) Repeat step (1) to generate L training subsets, N1, N2, . . . , NL,

where L is the number of learners forming the ensemble

method. Notice that the same sample may appear multiple

times in the training subsets.

3) Each learner out of the L learners is trained individually and

separately by one of the training subsets, N1, N2, . . ., NL, with

no two learners being trained by the same training subset.

4) Each trained learner makes a prediction on a given test

sample. The ensemble method produces a final prediction

on the test sample through a combination method, which

usually works by taking the average of the L predictions made

by the L trained learners.

Our ensemble learning framework, named CMETNet and

illustrated in Figure 4, comprises five base learners: 1) A support

vector regression (SVR) algorithm (Cortes and Vapnik, 1995), 2)

a random forest (RF) algorithm (Breiman, 2001), 3) a Gaussian

process (GP) algorithm (Yuan et al., 2008), 4) an XGBoost (XGB)

algorithm (Chen and Guestrin, 2016), and 5) a convolutional

neural network (CNN) (LeCun et al., 1999). The first four

learners are regression algorithms used for analyzing the

numeral/tabular data related to the CME features and solar

wind parameters considered in the study. These four

regression algorithms are commonly used in heliophysics and

space weather research (Liu et al., 2017; Gruet et al., 2018;

Inceoglu et al., 2018; Tang et al., 2021; Abduallah et al., 2022).

The fifth learner is a CNN model used for CME image

processing. Below, we describe the five base learners and the

ensemble method that combines the learners.

3.2 Base learners

Our SVR model is taken from the Sklearn library in Python

(Pedregosa et al., 2011). We performed parameter tuning to find

the optimal hyperparameters of the SVR model by utilizing the

GridSearchCV function in Sklearn. We used the Radial Basis

Function (RBF) kernel and set the kernel cache size to 200. Our

RF algorithm operates by constructing multiple decision trees

during training and outputting the mean of the predictions made

by the multiple trees during testing. We implemented the RF

model using Sklearn and optimized the model parameters by

utilizing Sklearn’s RandomizedSearchCV function. The number

of trees was set to 800 and the number of attributes used to split a

node in a tree was set to the square root of the total number of

attributes (which is 12 including the five CME features and seven

solar wind parameters used in the study). GP is a non-parametric

model that performs data regression using the prior of a Gaussian

process. It is a probabilistic approach that provides a level of

confidence for the predicted outcome (Görtler et al., 2019). We

implemented the GP model using Sklearn with two kernels:

Whitekernel and RBF. A noise of 0.5 was used as a parameter

FIGURE 4
Illustration of our CMETNet framework. The framework consists of fivemachine learning-based regressionmodels: SVR, RF, GP, XGB and CNN.
For a CME event E, the first four models (SVR, RF, GP, XGB) accept E’s CME features and solar wind parameters as input while the fifth model (CNN)
accepts E’s CME images as input. The five regression models are followed by an ensemble method, which combines the results from the fivemodels
and produces the predicted transit time of E.
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FIGURE 5
Illustration of the CNNmodel in CMETNet where the CNNmodel is used to predict the CME transit time for an input CME LASCO C2 image. (A)
Overall architecture of the CNNmodel. The model starts with a 2D convolutional layer with 64 filters of size 11 × 11 and 1 stride, followed by a Leaky
Rectified Linear Unit (LeakyReLU) layer. The output of the LeakyReLU layer is then sent to five convolutional blocks. The output featuremap of the last
convolutional block is sent to two dense layers with 1,024 neurons and 1 neuron, respectively. Finally, the model outputs the predicted CME
transit time by using a linear activation function. (B) Detailed configuration of a convolutional block. The convolutional block contains a 2D
convolutional layer with F filters where F = 64, 128, 128, 256, 256 respectively and S strides where S = 2, 1, 2, 1, 2 respectively and the filter size K = 11 ×
11. The 2D convolutional layer is followed by a batch normalization layer, which is followed by a LeakyReLU layer.
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for the Whitekernel. XGB is a scalable tree boosting system. We

implemented our XGB model by utilizing the XGBoost package

presented in Chen and Guestrin (2016). The XGBRegressor class

was imported into our CMETNet framework from the XGBoost

package with default parameters.

Figure 5 illustrates the architecture of our CNN model. This

model is used to predict the CME transit time for an input

CMELASCO C2 image. The model starts with a 2D

convolutional layer with 64 filters of size 11 × 11 and 1 stride,

followed by a Leaky Rectified Linear Unit (LeakyReLU) layer. The

output of the LeakyReLU layer is then sent to five convolutional

blocks. Each convolutional block contains a 2D convolutional layer

with F filters where F = 64, 128, 128, 256, 256 respectively and S

strides where S = 2, 1, 2, 1, 2 respectively and the filter size K = 11 ×

11. The 2D convolutional layer is followed by a batch

normalization layer, which is followed by a LeakyReLU layer.

The output feature map of the last convolutional block is sent to

two dense layers with 1,024 neurons and 1 neuron, respectively.

Finally, the model outputs the transit time by using a linear

activation function. The regression loss function used by the

CNN model is the mean absolute error (MAE) loss function

(Berk, 1992). In training the CNN model, we adopt the

adaptive moment estimation (Adam) optimizer (Goodfellow

et al., 2016) to find the optimal parameters/weights of the

model. Please note that the CNN model predicts the transit

time from a single CME image as illustrated in Figure 5. On

the other hand, our CMETNet framework takes all the images

associated with a CME event, processing and combining the

multiple transit times predicted by the CNN model in

CMETNet using our ensemble learning method as illustrated in

Figure 4 to produce the final, predicted transit time of the CME

event. Section 3.3 below details the ensemble learning method.

3.3 Ensemble learning

We adapt the original bagging method described in Section

3.1 into the CMETNet framework. Let Tr denote the training set

and let Tt denote the test set. Our dataset contains both

numerical/tabular data including CME features and solar wind

parameters, which are handled by the regression algorithms, and

CME images, which are handled by the CNNmodel. We describe

the training procedures for the regression algorithms and the

CNN model separately.

FIGURE 6
Results of the ablation tests for assessing the components (SVR, RF, GP, XGB, CNN) of CMETNet where COMB is the ensemblemodel of SVR, RF,
GP and XGB. (A) Pearson product-moment correlation coefficients (PPMCCs) of the tested models. (B) Mean absolute errors (MAEs) of the tested
models. CMETNet achieves the best performance among all the tested models.
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For the regression algorithms, we execute the following steps

during training.

1) Randomly select 200 training samples with replacement from

Tr. Each sample corresponds to a CME event.

2) Repeat step (1) to generate four different training subsets, N1,

N2, N3, N4. Note that the same sample may appear multiple

times in the training subsets. We also obtain four

corresponding validation sets V1, V2, V3, V4 where Vi =

Tr − Ni, 1 ≤ i ≤ 4. Each sample in a validation set also

corresponds to a CME event.

3) Each of the base learners/regression algorithms, SVR, RF, GP,

XGB, is trained individually and separately by one of the

training subsets, N1, N2, N3, N4, with no two learners being

trained by the same training subset. Each trained learner

predicts the transit time of each sample taken from the

corresponding validation set. The prediction accuracy on

the corresponding validation set is measured by the mean

absolute error (MAE) (Berk, 1992).

4) Repeat steps (1) to (3) 100 times to find, for each base learner,

the best training subset/model that yields the highest

prediction accuracy on the corresponding validation set.

Save the best model for each of the four base learners.

Since the four base learners SVR, RF, GP, XGB work on

numerical/tabular data only, the data used in the steps (1) to (4)

above for the four base learners are the CME features and solar

wind parameters associated with each sample/CME event.

Separately, we train the CNN model in a slightly different

way. Here, each sample corresponds to a CME image rather than

a CME event. A CME event may have multiple images, all of

which have the same CME transit time. Thus, we label these

multiple CME images/samples with the same CME transit time.

We then execute the following steps during training.

1) Randomly select 10% of the samples/CME images in the

training set Tr and assign the selected samples into the

validation set V.

2) Use the remaining 90% training samples in Tr along with the

10% validation samples in V to train our CNN model. The

validation set V is used to find the optimal parameters and

hyperparameters to get the best CNN model.

FIGURE 7
Results of the ablation tests for assessing seven cases (FWI, FW, FI, WI, F, W, I) where FWI represents the combination of CME features, solar wind
parameters and CME images, FW represents the combination of CME features and solar wind parameters, FI represents the combination of CME
features andCME images, WI represents the combination of solar wind parameters andCME images, F represents the CME features, W represents the
solar wind parameters, and I represents the CME images. (A) Pearson product-moment correlation coefficients (PPMCCs) of the tested cases.
(B) Mean absolute errors (MAEs) of the tested cases. FWI yields the best performance among all the tested cases.
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After the training is completed, we obtain the best SVR, RF,

GP, XGB, CNN models. During testing, we predict the transit

time of each test CME event E in the test set Tt based on the

following two cases.

• E does not have CME images. In this case, E only has

numerical/tabular data including CME features and solar

wind parameters. Then the predicted transit time for E is

the median of the transit times predicted by the four

regression models SVR, RF, GP, XGB respectively based

on E’s CME features and solar wind parameters.

• E has CME images, CME features and solar wind

parameters. Without loss of generality, we assume E has

k CME images. Then, for each CME image, we use the

CNN model to predict the transit time t1 of the image. In

addition, we obtain four transit times t2, t3, t4, t5 predicted

by the four regression models SVR, RF, GP, XGB

respectively based on E’s CME features and solar wind

parameters. We take the median of the five predicted

transit times t1, t2, t3, t4, t5. E has k CME images, so we

obtain k medians. Finally, we take the median of the k

medians, which is E’s predicted transit time produced by

our ensemble method (CMETNet).

4 Experiments and results

4.1 Experimental setup and evaluation
metrics

The CME Scoreboard maintained by NASA’s Community

Coordinated Modeling Center (CCMC) was launched in 2013.

Our dataset contains 363 CMEs that occurred between 1996 and

2021. To compare the predictions produced by our CMETNet

and those on the CME Scoreboard, we conducted a 9-fold cross

validation experiment as follows. In each run, data in a year

between 2013 and 2021 were used as test data, and all the other

data together were used as training data. There are 9 years

between 2013 and 2021, and hence we had 9 runs/folds. In

each run, the test set and training set were disjoint. The

prediction accuracy in each run was calculated and the mean

and standard deviation over the 9 runs were plotted.

FIGURE 8
Performance comparison of six methods for CME arrival time prediction. CMETNet is the ensemble learning framework proposed in this paper.
SVR and PCNN are previously published machine learning methods. WECNOAA, SIDC, and WECGSFC are physics-based models presented on
NASA’s CCMC CME Scoreboard. (A) Pearson product-moment correlation coefficients (PPMCCs) of the six methods. (B) Mean absolute errors
(MAEs) of the six methods. CMETNet outperforms the other five methods in terms of both PPMCC and MAE.
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We adopt two evaluation metrics to quantify the

performance of a predictive model. The first metric is the

mean absolute error (MAE; Berk, 1992), defined as:

MAE � 1
N

∑
N

i�1
yi − ŷi

∣∣∣∣
∣∣∣∣ (1)

Here N denotes the number of CMEs in a test set, and yi (ŷi,

respectively) denotes the actual (predicted, respectively) transit

time of a test CME. With this metric, we calculate the average of

absolute errors between the actual transit times and predicted

transit times for the CMEs in the test set. The smaller the MAE is,

the more accurate the predictive model is and the better

performance the model has (Liu et al., 2020b).

The second evaluation metric is the Pearson product-

moment correlation coefficient (PPMCC; Pearson, 1895),

defined as:

PPMCC � E X − μX( ) Y − μY( )[ ]
σXσY

(2)

Here X and Y represent the actual transit times and predicted

transit times in the test set; μX and μY are the mean of X and Y,

respectively; σX and σY are the standard deviation of X and Y

respectively; and E (·) is the expectation. The value of the PPMCC

ranges from −1 to 1. A value of 1 means that there is a linear

equation relationship between X and Y, where Y increases as X

increases. A value of −1 means that all data points lie on a line for

which Y decreases as X increases. A value of zero means that

there is no linear correlation between the variables X and Y (Liu

et al., 2020a).

4.2 Ablation studies

In this subsection, we performed ablation tests to analyze and

evaluate the components of our CMETNet framework. We

considered five subunits from CMETNet: SVR, RF, GP, XGB

and CNN. In addition, we considered COMB, which was the

ensemble of SVR, RF, GP and XGB. That is, COMB was obtained

by removing CNN from CMETNet. Figure 6 presents the

PPMCC and MAE results of the seven methods: SVR, RF,

GP, XGB, CNN, COMB, and CMETNet. In the figure, each

colored bar represents the mean over the 9 runs and its associated

error bar represents the standard deviation divided by 3 (i.e., the

square root of the number of runs) (Iong et al., 2022). It can be

seen from Figure 6 that CMETNet achieves the best performance

among the seven methods. CMETNet yields better results than

COMB, indicating the importance of including the CNN model

in our framework. The results based on PPMCC and MAE are

consistent.

Each event E in our dataset has 5 CME features (denoted by

F), 7 solar wind parameters (denoted by W) and 0–17 CME

images (denoted by I). To evaluate the effectiveness of these

features, parameters and images, we performed an additional

experiment in which we considered the following seven cases:

• E contains all of the CME features, solar wind parameters

and CME images (denoted by FWI);

• E contains only the CME features and solar wind

parameters (denoted by FW);

• E contains only the CME features and CME images

(denoted by FI);

• E contains only the solar wind parameters and CME

images (denoted by WI);

• E contains only the CME features (denoted by F);

• E contains only the solar wind parameters (denoted byW);

• E contains only the CME images (denoted by I).

In each case, we applied CMETNet to the data at hand.

Notice that FWI is equivalent to CMETNet. In the FW case,

CMETNet amounts to the aforementioned COMB model. In the

I case, CMETNet amounts to the aforementioned CNN model.

Figure 7 presents the PPMCC and MAE results of the seven

cases. It can be seen from Figure 7 that FWI yields the most

accurate results with a PPMCC of 0.83 and an MAE of 9.75 h,

indicating that combining the three types of data (CME features,

solar wind parameters and CME images) together leads to the

best performance. When considering only two types of data

together, FI has the highest PPMCC of 0.80; on the other hand,

FW yields the best MAE of 10.32 h. When the three types of data

are used individually and separately, F yields the best results in

terms of both of the two evaluation metrics with a PPMCC of

0.78 and an MAE of 11.39 h. Thus, the CME features have higher

predictive power than the solar wind parameters and CME

images respectively.

4.3 Comparison with related methods

In this experiment, we compared CMETNet with previously

published machine learning methods for CME arrival time

prediction. Liu et al. (2018) developed an SVR-based method

by utilizing the CME features and solar wind parameters

considered here. Their method adopted the same SVR model

as the one in CMETNet. We represent their method simply as

SVR. Wang et al. (2019) developed a CNNmodel by utilizing the

CME images considered here. Their CNNmodel is different from

the CNN model used in CMETNet. We represent their CNN

model as PCNN (denoting the Previous CNN). It should be

pointed out that, although the features/parameters and images

used by SVR and PCNN respectively are the same as those used

by CMETNet, the datasets presented in this work are much larger

and more comprehensive than those presented in the previous

studies (Liu et al., 2018; Wang et al., 2019). As a consequence, the

prediction results reported here are not exactly the same as those

given in Liu et al. (2018) and Wang et al. (2019).
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In addition, we compared CMETNet with three physics-

based models, including 1) the WSA-ENLIL + Cone (WEC)

model (Odstrcil et al., 2004; Riley et al., 2018) implemented by

the Space Weather Prediction Center at the National Oceanic

and Atmospheric Administration (NOAA), denoted by

WECNOAA; 2) the model available at https://www.sidc.be/

developed by the Solar Influences Data Analysis Center

(SIDC) at the Royal Observatory of Belgium, denoted by

SIDC; and 3) the WSA-ENLIL + Cone (WEC) model

implemented by the Community Coordinated Modeling

Center (CCMC) at the NASA Goddard Space Flight Center

(GSFC), denoted by WECGSFC. These three physics-based

models are considered as the best physical models with most

accurate prediction results submitted to NASA’s CCMC CME

Scoreboard at https://kauai.ccmc.gsfc.nasa.gov/CMEscoreboard/

(Riley et al., 2018).

Figure 8 presents the PPMCC and MAE results of the six

methods: SVR, PCNN, WECNOAA, SIDC, WECGSFC and

CMETNet. Overall, CMETNet yields the most accurate results

with a PPMCC of 0.83 and an MAE of 9.75 h. Among the three

physics-based methods, WECNOAA has the highest PPMCC of

0.79 while WECGSFC has the lowest MAE of 11.49 h. Both

CMETNet and the three physics-based methods perform better

than the previously published machine learning methods SVR

and PCNN (Liu et al., 2018; Wang et al., 2019).

Supplementary Table S1 in the Supplementary Material

further compares the performance of CMETNet and the three

physics-based methods. Each number in the table represents the

actual CME transit timeminus the predicted CME transit time. Thus,

a positive number means that the actual CME transit time is greater

than the predicted CME transit time while a negative number means

that the actual CME transit time is smaller than the predicted CME

transit time. For each CME, the boldfaced number with the smallest

absolute value represents the best prediction result among those

predicted by the four methods. The “−” symbol indicates that there is

no record for the corresponding method on NASA’s CCMC CME

Scoreboard. The results in Supplementary Table S1 are consistent

with those in Figure 8, showing CMETNet outperforms the three

physics-based methods.

5 Conclusion and future work

In this paper we presented an ensemble framework (CMETNet)

for predicting the arrival time of CME events. Each event contains

5 CME features (angular width, main position angle, linear speed,

2nd-order speed at final height, and mass), 7 solar wind parameters

(Bx, Bz, alpha to proton ratio, flow longitude, plasma pressure, flow

speed, and proton temperature) and 0–17 CME images. The

CMETNet framework is composed of five machine learning

models including support vector regression (SVR), random forest

(RF), Gaussian process (GP), XGBoost (XGB), and a convolutional

neural network (CNN). Our experimental results demonstrated that

CMETNet outperforms the individual machine learning models

with a PPMCCof 0.83 and anMAE of 9.75 h. Furthermore, using all

the CME features, solar wind parameters and CME images together

yields better performance than using part of them.

We then compared CMETNet with two previously published

machine learning methods (Liu et al., 2018; Wang et al., 2019)

and three physics-based methods (WECNOAA, SIDC, and

WECGSFC). These three physics-based methods are

considered as the best physical models with most accurate

prediction results submitted to NASA’s CCMC CME

Scoreboard. Our experimental results showed that both

CMETNet and the three physics-based methods produce more

accurate results than the two previously published machine

learning methods, with CMETNet achieving the best

performance among all the methods.

The success of CMETNet is attributed to the integration of

data frommultiple sources and combination of multiple machine

learning models. Nevertheless, accurately predicting CME arrival

time remains a challenging task as the MAE of CMETNet

(9.75 h) is still large, indicating there is much room to

improve. One possible way for improving the performance of

the predictive model is to combine machine learning with

physics-based methods as done in a recent study (Tiwari

et al., 2021). Dumbović et al. (2021) reviewed several physical

drag-based model (DBM) tools for predicting CME arrival time

and speed. In future work we plan to explore the combinations of

these DBM tools and different machine learning models for more

accurate CME arrival time prediction.

Another direction for future research is to develop an

operational near real-time CME arrival time prediction system

using machine learning. CME features and solar wind parameters

are not applicable here since they are not availabe in real time.

We plan to predict the transit times of CMEs, right after a CME

occurred and was caught on LASCO C2 images (https://www.

swpc.noaa.gov/products/lasco-coronagraph) or STEREO COR2

(https://stereo-ssc.nascom.nasa.gov/browse/), which can be

obtained within a few hours. This near real-time prediction

system will require new, advanced CNN models to learn

latent features or representations from the CME images. More

research is needed to develop such advanced CNN models.
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