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Two algorithms set for automatic detection of bow shock (BS) and

magnetopause (MP) boundaries at Saturn using in situ magnetic field and

plasma data acquired by the Cassini spacecraft are presented. Traditional

threshold-based andmodern deep learning algorithms were investigated for

the task of boundary detection. Sections of Cassini’s orbits were pre-

selected based on empirical BS and MP boundary models, and from

outlier detection in magnetic field data using an autoencoder neural

network. The threshold method was applied to pre-selected magnetic

field and plasma data independently to compute parameters to which a

threshold was applied to determine the presence of a boundary. The deep

learning method used a type of convolutional neural network (CNN) called

ResNet on images of magnetic field time series data and electron energy-

time spectrograms to classify the presence of boundaries. 2012 data were

held out of the training data to test and compare the algorithms on unseen

data. The comparison showed that the CNN method applied to plasma data

outperformed the threshold method. A final multiclass CNN classifier trained

on plasma data obtained F1 scores of 92.1% ± 1.4% for BS crossings and

84.7% ± 1.9% for MP crossings on a corrected test dataset (from use of a

bootstrap method). Reliable automated detection of boundary crossings

could enable future spacecraft experiments like the PEP instrument on the

upcoming JUICE spacecraft mission to dynamically adapt the best observing

mode based on rapid classification of the boundary crossings as soon as it

appears, thus yielding higher quality data and improved potential for

scientific discovery.
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1 Introduction

Cassini was the first spacecraft to orbit around Saturn’s near-

space environment. The mission lasted 13 years (2004–2017)

producing the first large-scale in situ dataset at Saturn, returning

a total of 635 GB of scientific data (NASA Jet Propulsion

Laboratory, 2017). The high spatio-temporal resolution data

of the planet and its space environment could be leveraged by

data science techniques, including machine learning, to aid the

study of outer planets physics.

An ongoing challenge in the study of planetary boundaries

like the bow shock (BS) and magnetopause (MP) is their manual

identification in big multi-instrument datasets from space

missions. From a data analysis perspective, automation of this

activity would improve reproducibility, discovery potential in

existing unlabelled data, and reusability in existing and future

planetary missions. “Human-in-the-loop” scientists combined

with partial automation would speed up data selection by orders

of magnitude as most data would be pre-classified to a good level

of accuracy, whilst only correcting a manageable number of

misclassifications would be needed. Automation would facilitate

larger crossing lists to be compiled and could also have

implications for the future development of onboard data-

processing protocols in the pre-downlink stage. From a

fundamental perspective, a more complete boundary survey

provides an invaluable dataset with which to understand the

boundary structures, like the distribution of radial distances, local

times, and latitudes at which the boundaries are detected, under

different phases of the solar cycle throughout the mission

lifetime. This offers a wealth of information about the

interface between the planet and the solar wind.

In recent years, there have been multiple studies on the

application of machine learning techniques, including deep

learning, to automate the process of selecting or detecting

plasma regions or boundaries from spacecraft data, many of

which focus on space missions of the Earth, with a few for other

planets such as Saturn. Recent studies which used Earth space

mission data include: Automating the detection of the Earth’s

bow shock (BS) and magnetopause (MP) using gradient boosted

decision trees (Nguyen et al., 2019), automating the burst data

selection process onboard the MMS spacecraft using a Long-

Short Term Memory (LSTM) Recurrent Neural Network (RNN)

model (Argall et al., 2020), automating the classification of

plasma regions in near-Earth space using a time series

convolutional model on engineered features from MMS data

(Breuillard et al., 2020), automating region identification inMMS

data using support-vector-machines in the density and

temperature (n-T) space (da Silva et al., 2020), automatically

classifying plasma regions using convolutional neural networks

on three-dimensional ion energy spectra produced by DIS sensor

onboard MMS (Olshevsky et al., 2021), and predicting plasma

regimes and thermal electron density from WHISPER spectra

onboard Cluster II using neural networks Gilet et al. (2021).

Recent studies which used Saturn space mission data include a

threshold-based detection of boundary crossings at Saturn from

Cassini’s plasma spectrometer data using a transition detection

score (Daigavane et al., 2022), and automatic plasma region

classification using an RNN model on Cassini time-series data

(Yeakel et al., 2022).

Despite the recent interest in using machine learning models

to tackle the problem of automating such pattern recognition

tasks in spacecraft data, more traditional methods such as using

thresholds of different engineered parameters have been used to

identify potential plasma boundaries such as in Case and Wild

(2013) in which they compared MP modelled positions and in

situ Cluster data. However, each space mission provides its

unique challenges.

This study aims to develop and compare traditional

threshold and deep learning techniques to automate the

detection of the bow shock and magnetopause boundary

crossings at Saturn using data from the Cassini spacecraft.

The potential to apply such techniques to other planetary

boundary studies is also discussed.

1.1 Deep learning models

The following section gives a brief introduction to the deep

learning models used in this study for context. Neural networks

are powerful function approximators. A feed-forward deep

neural network contains two or more layers of neurons.

Mathematically, each layer applies a linear operation to its

input according to z = WX + b, where W and b are the

weights and biases (i.e., learned parameters) of that layer, and

X is the input. The output z is then “activated” by an activation

function. The activation is a non-linear function, such as the

Rectified Linear Unit (ReLU) f(z) = max (0, z), applied to the

output of a layer to introduce non-linearity. In short, a fully

connected neural network performs the following operations:

“weight times input, add a bias, activate”. A trained neural

network with learned parameters represents the best function

approximation which defines the mapping y = f (x; W, b)

(Goodfellow et al., 2016).

1.1.1 Autoencoder

The autoencoder (AE) is an unsupervised learning neural

network architecture trained to reconstruct the input as close as

possible from a compressed latent space (i.e., the network learns

to map an inputX to an outputX). This dimensionality reduction

capability of an AE has been demonstrated by Hinton and

Salakhutdinov (2006). The AE architecture contains two parts,

an encoder (gϕ) and a decoder (fθ). The encoder block takes an

input (e.g., an image or sequential data) and compresses it to a

latent vector z, then the decoder block learns to reconstruct the
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input from the compressed representation. The training of the

AE neural network involves using backpropagation (i.e., chain

rule) to minimise the following loss function

LAE θ,ϕ, x( ) � ∑
n

xn − fθ gϕ xn( )( )2( , (1)

with respect to the network parameters (θ, ϕ) to output a

reconstructed data sample as close as possible to the original

input x ≈ fθ(gϕ(x)). The loss function in Eq. 1 is the sum of the

squared error between the input and output. For sequential data,

the encoder and decoder blocks utilise a long short-termmemory

(LSTM) recurrent neural network, which is adept at learning

longer-term dependencies in time-series data due to their

“memory cell” function. For more details, refer to Sak et al.

(2014).

The motivation for the use of an AE was that boundary

crossings usually contain turbulent magnetic fields on the

magnetosheath side, whilst the majority of the intervals in the

magnetosphere and solar wind contain smoother magnetic field

profiles. It is expected that the AE would reconstruct the

magnetosheath fields worst, compared to magnetospheric or

solar wind fields. Thus, this feature could be leveraged to

identify potential regions of crossings between distinct plasma

regions.

1.1.2 Residual convolutional neural
network (ResNet)

A plain Convolutional Neural Network (CNN) is typically

used in a supervised learning setting like image classification.

Convolution involves sliding a ‘kernel’ over an image to extract

certain ‘features’ from the image to identify the class to which it

belongs. Each layer in a CNN extracts a different level of features

of the input image based on the kernel parameters. Eventually,

the input image becomes a latent vector of a single dimension

(similar to the output of the encoder part of the autoencoder

1.1.1). This latent vector is finally passed through a fully

connected neural network in order to output a classification.

In traditional image classification, these ‘kernels’ are hand-

engineered. However, CNN automatically learns features in

the image through gradient-based learning (LeCun et al.,

1999) using backpropagation (i.e., chain rule) to minimise the

following loss function

L y, trueclass( ) � Wtrue class −log exp ytrue class( )∑j exp yj( )⎛⎝ ⎞⎠ (2)

with respect to the parameters of the kernels, where y is the

output vector from the final layer of the network with

dependence on network parameters, whose length is the same

as the number of classes in the classification problem, trueclass

specifies the index of the element in y corresponding to the true

class, and Wtrue class is the weight of the true class. These class

weights are particularly useful when the dataset contains a strong

class imbalance such that bigger weights could be applied to

minority classes to improve their classification performance. This

loss function is called the cross entropy loss which combines the

negative log function with the softmax function (the arguments

inside the log). To minimise this loss, the network parameters are

adjusted based on the gradients such that the element of y which

corresponds to the true class becomes larger. In other words, the

smallest loss is achieved when the numerator in Eq. 2 is largest

(i.e., the network predicts the true class with a high probability),

whilst the biggest loss is seen when the numerator is smallest

(i.e., the network predicts the true class with a low probability).

Deeper neural networks (i.e., more layers of neurons) can

generally perform more complex mappings due to more tunable

parameters. However, very deep neural networks are difficult to

train due to the vanishing gradient problem in which gradients of

the loss function with respect to the network parameters are close

to zero and the network cannot minimise the loss function

further (Goodfellow et al., 2016). The ResNet architecture

developed by He et al. (2016) overcomes this by introducing

‘skipped connections’ which allowed successful training of deep

neural networks. ‘Skipped’ connections are where the activation

from one layer is directly added to another layer deeper in the

network, as shown in Figure 1. This allows a deep neural network

to continue tuning the parameters of the network to minimise the

loss function and improve its classification performance.

Mathematically, the skip-connections of a residual block are

combined with L2-regularisation (i.e., a penalty term to

minimise the values of the learnable parameters) and ReLU

activation function, to allow for zero weights and biases for

the extra (potentially redundant) layer of neurons in the network

leading to zero contribution from this added layer, thus giving

the residual block the ability to learn the identity function easily.

FIGURE 1
A residual learning block as illustrated in He et al. (2016). In
this schematic, there are two convolutional layers acting on the
input (x) followed by an element-wise summation operation with x
via the ‘skipped’ connection.
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That is to say, the activated output of the added layer is the same

as the activated output of some previous layer connected by the

skipped connection. Therefore, deeper networks with residual

blocks do not hinder the learning ability of the overall network

compared to shallower networks because it is easy for the residual

block to produce the same output as prior to adding the extra

layers.

The motivation for using the CNN for boundary detection

came from how the existing catalogue of crossings was created.

The data were manually surveyed by human eyes looking for

characteristic features of BS andMP as described in Section 2.2.1.

This bodes well for automation with computer vision models due

to the visual distinctive features seen in the plots of the data.

2 Materials and methods

The life-cycle for this project consisted of four main stages: 1)

Scoping, where the project goal is defined. 2) Data, where the data

source is defined, the pre-processing steps are established, the

features and labels for the events of interest are defined, and a

baseline performance is established (e.g., human-level

performance for boundary classification). 3) Modelling, where

the data is modelled with different algorithms and performing

error analysis to understand areas of improvement both with the

models’ parameters and also the data itself, 4) Deployment,

where the system is used on new data and is monitored and

maintained to ensure proper functioning. The algorithm

implementations were done in Python and the deep learning

models were built using the PyTorch framework (Paszke et al.,

2019).

2.1 Scoping

The task of boundary detection can be broadly framed as a

classification problem. Therefore, the scope of this project is to

build an automated system that, given an interval of magnetic

field and plasma data, outputs a list of candidate times

corresponding to bow shock (BS) and magnetopause (MP)

crossings.

2.2 Data

For this study, magnetic field and particle data from Cassini

were used to detect BS and MP crossings. These measurements

were obtained by the following two instruments on board

Cassini: The dual-technique magnetometer (MAG)

(Dougherty et al., 2004), and the electron spectrometer (ELS)

part of the CAPS (Cassini Plasma Spectrometer) instrument

(Young et al., 2004). MAG provided the magnetic field

measurements from which 1-min averaged data were used.

The coordinate system was Kronocentric solar magnetospheric

(KSM), where X points from the centre of Saturn to the Sun, Y

points in the direction Ω × X (where Ω is Saturn’s rotational/

magnetic dipole axis), and Z completes the right-handed

coordinate system. Moments derived from 8-s averaged

distributions in the ELS data provide electron density and

temperature. The ELS instrument has eight anodes which

sweep through 63 bins covering an energy range of

0.6 eV–28.25 keV in 2 s. The ELS is able to detect electron

density as low as ~ 103 m−3 (Young et al., 2005). The field of

view of each anode is 20° × 5° (thus 160° × 5° for all eight anodes).

An actuator rotates the anodes back and forth covering ~ 2π sr of

solid angle. The coverage may be increased if the spacecraft is

rolling. For this study, we used anode 5 for all electron

measurements as it has relatively large pitch angle coverage

(angle of electron velocity relative to the local magnetic field)

throughout an actuation cycle, compared to other anodes.

Cassini provided 13 years of data from 2004 to 2017. The

latest catalogue of crossings at Saturn produced by Jackman et al.

(2019) consisted of 2,118 MP crossings and 1,243 BS crossings,

both of which were recorded as single timestamps, and were

identified mainly using 1-min MAG data, but validated with

CAPS electron data when available.

2.2.1 BS and MP crossing features
For the creation of the boundary crossing list, a range of

visual characteristics can be seen in the MAG and CAPS datasets.

Bow shock (BS) crossings have the most distinct features in

both MAG and CAPS data. It involves transitioning between

solar wind (SW) on one side and magnetosheath (SH) on the

other. The SW exhibits a quiet, low-magnitude interplanetary

magnetic field (IMF) and relatively cold electrons (≤ 10 eV). In

contrast, the magnetosheath exhibits turbulent, enhanced IMF

with typical field fluctuations such as mirror mode compressions

(Joy et al., 2006) (which are often excited under sheath-like

conditions) and heated ion and electron energy spectra (≤ 100

eV). A spacecraft moving from SW into SH will often measure a

clear increase in magnetic field strength, typically accompanied

by a magnetic ‘overshoot’ (Achilleos et al., 2006). In occasional

cases where the magnetic features were unclear for a BS crossing

(e.g., a rapid pair of BS crossings occurred around 2012-04-01 03:

00:001), CAPS data would typically display a sharp change in

both density and temperature of the plasma at BS crossings, see

Figure 2 for examples. Sulaiman et al. (2016) have shown that the

magnetic overshoot is strongly correlated with the Alfvén Mach

Number (MA) which depends on upstream field strength and

solar wind dynamic pressure. The authors also point out that

Saturn has the largest range of MA due to the highly variable

upstream conditions, which could explain the large variety of BS

crossing appearances in the data.

Magnetopause (MP) crossings can be identified by both a

change in the nature of fluctuations and the direction of the

magnetic field, such as those found on the Earth [e.g., Phan et al.
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FIGURE 2
Example bow shock crossings (marked by vertical blue dotted lines). The panels are: (A) Electron energy-time spectrogramof differential energy
flux (DEF) from CAPS/ELS anode 5. (B,C) Electron temperature and number density derived from ELS anode 5. (D) The magnitude and KSM
components of the magnetic field, with bow shock crossings marked by vertical blue dotted lines. Spacecraft ephemeris data are given below the
x-axis of the plots. Note that the derived electron moments within the solar wind are invalid so should not be considered.

FIGURE 3
Example magnetopause crossings (marked by vertical red dotted lines). The panels are: (A) Electron energy-time spectrogram of differential
energy flux (DEF) from CAPS/ELS anode 5. (B,C) Electron temperature and number density derived from ELS anode 5. (D) The magnitude and KSM
components of the magnetic field, with bow shock crossings marked by vertical blue dotted lines. Spacecraft ephemeris data are given below the
x-axis of the plots.
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(2013); Phan et al. (2014)], and similar features are observed at

Saturn. For inbound MP crossings, the field typically changes

from the more turbulent fluctuations in the magnetosheath to the

steadier field in the magnetosphere, accompanied by a rotation of

the field to a southward (magnetospheric) orientation, and

increased field strength. However, there may be cases where

magnetosheath fields may not be turbulent (with a small

standard deviation) such as during the MP encounters

between 2005-08-15 12:00:00 to 2005-08-15 20:00:00

(Supplementary Figure S1). Furthermore, MP crossings with

low magnetic shears (small change in field orientation across

the MP) as found by Masters et al. (2012) may also be ambiguous

using MAG data alone. In such cases, CAPS data would generally

show a change from the steady electron energy spectra of the

magnetosheath (higher density, lower temperature electrons) to

the more variable magnetospheric populations (lower density,

higher-temperature electrons), see Figure 3 for examples.

Typical speeds of Saturn’s magnetopause are of order

100 km/s (Masters et al., 2011), which is of the same order as

the estimated speed of Saturn’s bow shock (Achilleos et al., 2006).

For typical MP crossings of duration between 5-min to 10-min,

this gives a thickness of roughly 0.5 to 1 RS (Saturn radii), or

equivalent to ~ 25 to ~ 50 magnetosheath proton gyroradii

(based on typical E = 100 eV, B = 1 nT), which is of the same

order as the estimated MP thickness of ~ 10 thermal proton

gyroradii at Earth (e.g., Le and Russell 1994). Typical

magnetosheath electrons (E = 100 eV, B = 1 nT) have a

gyroradius of rge ≈ 30 km which is more than three orders of

magnitude smaller than the typical width of theMP current layer.

Given a boundary that is much thicker than typical electron

gyroradii, and that the MP is closed (i.e., no magnetic

connectivity between magnetosheath and magnetosphere),

electrons are usually unable to cross the MP boundary but

instead flow tailward (downstream towards Saturn nightside)

along the magnetosheath field lines. Thus, the MP current sheet

separates well the magnetosheath electrons and magnetospheric

thermal electrons at energies close to the modal energy. Despite

this natural separation of electron populations by the MP

boundary, test particle simulations by Kim and Lee (2014)

have shown that higher energy electrons from the Earth’s

outer radiation belt can escape through a closed MP into the

magnetosheath via gradient drift. They showed that the weaker

the B-gradient, the higher the energy of electrons is required to

escape into the magnetosheath: E.g., for a magnetic field gradient

scale length of ~ 17 RE along the magnetopause, the minimum

kinetic energy for loss is ~ 3 MeV. The large variety of MP

crossings is likely due to the different plasma processes and

evolving structures which may occur at the MP boundary such as

electron heating associated with magnetic reconnection

(McAndrews et al., 2008; Cheng et al., 2021), Kelvin-

Helmholtz vortices, (Masters et al., 2010), plasma depletion

layers (Masters et al., 2014) and low-latitude boundary layers

(Masters et al., 2011).

2.2.2 Data preprocessing
The preprocessing pipeline provides a systematic way to

process large spacecraft datasets for data-driven modelling.

The first part of data-preprocessing involved reducing the

search scope for BS and MP boundary crossings. Sections of

Cassini’s orbits were pre-selected based on the conservative

estimates of the minimum and maximum standoff distances

for the BS and MP boundaries (i.e., distance from the centre of

Saturn to the subsolar point of the MP or BS). These standoff

distances were found by fitting empirical models for BS (Went

et al., 2011) and MP (Pilkington et al., 2015) surfaces to pass

through Cassini’s positions. Note that the polar flattening and

dawn-dusk asymmetry coefficients from the Pilkington model

were not used here (i.e., the assumed MP surface was axis-

symmetric). The same fitting was done to the catalogue of

crossings. From this result, the minimum and maximum nose

standoff distances used for MP were 13 and 43 RS respectively,

and the shock standoff distances were 16 and 51 RS respectively.

These values were used to select orbital segments which captured

all of the crossings in the catalogue. This produced a list of

intervals with a cumulative total time of 4,178,770 min (~

8 years) out of the 13-year mission.

To further reduce the search space, the second preprocessing

part used an autoencoder (AE) for unsupervised outlier

detection. The input magnetic field vector values were scaled

to between 0 and 1 for the purpose of training the neural network.

The scaling is given by:

Xscaled � X −min X( )
max X( ) −min X( ) (3)

where X is the quantity of interest such as the magnetic field,

min and max are the minimum and maximum of the quantity

respectively, over the pre-selected intervals of data. The

autoencoder algorithm has been used in other space physics

applications such as finding anomalies in electron distribution

functions (Bakrania et al., 2020). Since the data were sequential,

the layers of the AE consisted of long short-term memory

(LSTM) units (Sak et al., 2014). The dataset included windows

of magnetic field data constructed from the pre-selected orbital

segments from the first part of data-preprocessing. The sequence

length for each window was 60 min at 1-min resolution, and the

stride was set to 30 min. After removing the windows which

contained missing data or ‘NaN’, the resulting shape of the

dataset was (125553, 60, 4) where 125,553 was the total

number of windows of magnetic field data, 60 was the

sequence length, and 4 represented Bx, By, Bz and |B| (i.e., the

three field components in KSM coordinates and the field

magnitude).

After training the network with the adam optimiser (Kingma

and Ba, 2015) (which is suited for optimising systems with lots of

parameters like neural networks), it was found that the AE was

able to reconstruct the smooth persistent changes of each

magnetic field component, however not the local smaller scale
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fluctuations. Field profiles containing rapid, large-amplitude

fluctuations, or field rotations in one or more components,

tended to have higher reconstruction loss. By calculating the

median loss value for the entire dataset of 60-min intervals, it was

used as a threshold to accept or reject each interval for potential

boundary crossings. Figure 4 shows the reconstruction loss for

the pre-selected intervals in 2016. Generally, it was found that

intervals with high loss values were mostly associated with

magnetosheath regions as expected, but also associated with

most BS and MP crossings. In contrast, pure magnetospheric

and solar wind intervals have relatively smoother field profiles

and thus lower loss values.

The result of this step reduced the search space by 49% whilst

retaining 97% of crossings in the latest catalogue (Jackman et al.,

2019). For comparison, standard scaling (zero mean and unit

variance) was applied to the same dataset to select windows of

magnetic field profiles which had at least a single field component

with a Z-score greater than three (i.e., three standard deviations

from the mean of the 60-min interval). This method of filtering

reduced the amount of data to search by 38% whilst only

retaining 80% of crossings in the catalogue. This indicated

that the LSTM AE method could offer more flexibility

regarding outlier detection of sequential data.

2.2.3 Train, validation and test dataset
Figure 5 compares the BS and MP crossings between 2004 to

2012 and 2013 to 2016. It is apparent that many of the

2013–2016 crossings had much higher planetary latitudes than

those between 2004–2012. This was due to increasingly higher

inclination orbits towards the end of the mission, allowing

Cassini to sample the magnetosphere at much higher

latitudes. Around 80% of the crossings in the catalogue were

found before the CAPS instrument was turned off, and 20% after

it was switched off (between 2012-06-02 to the end of the mission

in September 2017). It is crucial for learning algorithms to have

consistent labels to train from because a noisy mapping between

input data and output labels may lead to poor convergence

towards the true underlying function. For traditional

programmatic algorithms where rules are hard-coded, it is

equally important to have a reliable ground truth dataset for

evaluating the performance of the algorithmic detections.

The decision was thus made to train on data between

2004–2011 whilst the first half of the 2012 data were used for

testing the algorithms, as validation with CAPS data was

expected to produce more consistent crossing labels. For the

remainder of the data, between 2012–06 to 2016-08, where

crossings did not have CAPS data for validation, a MAG-only

detection model was used.

For the CNN model, initially, the scope was simplified to a

binary classification problem: Does the input interval contain a

crossing or not? It was later modified to perform multiclass

classification with classes ‘notCrossing’, ‘BS’, and ‘MP’. The

CAPS and MAG data were prepared according to the

following procedure. A list of 2-h time intervals with 30-min

strides was produced. The magnetic field plot images had a fixed

y-scale ranging from −10 nT to 10 nT. The CAPS-ELS

spectrogram images had a fixed y-scale ranging from 0.6 eV to

28.25 keV in logarithmic scale consisting of the 63 energy bins of

the CAPS ELS instrument. An illustration of both types of images

is shown in Figure 8. This provided a dataset of 73,623 images of

MAG and CAPS-ELS plots in total between the years 2004–2012.

The class distribution for these images were: 66,513 (90%)

FIGURE 4
LSTM autoencoder network predictions for test magnetic field timeseries data in 2016. (A) True region labels based boundary crossing list. The
labels SH, SP, SW are magnetosheath, magnetosphere and solar wind, respectively. (B) Magnetic field profile reconstruction loss.
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notCrossing, 4,994 (7%) MP and 2,116 (3%) BS. This strong class

imbalance was addressed by using class weights during model

training as described in the cross entropy loss function (Eq. 2).

The years used for training and validating the CNN were

2004–2011 with an 80:20 split respectively. A stratified

splitting was used in which the data were shuffled to ensure

that the class ratios were preserved in both the train and

validation dataset. A histogram of the time intervals between

consecutive crossings and a distribution of crossing epochs (on

the Cassini mission timeline) for both the train and validation

dataset are included in the Supplementary Material

(Supplementary Figures S3, S4). For the test dataset, the

remaining 2012 data with CAPS available were used. The

nature of time-series data means that the train and test data

should not be shuffled together. From a physical point of view,

the equinox (2012) structure of Saturn’s current sheet and

magnetosphere is quite distinct from that of distantly pre-

equinox times (e.g., summer solstice). Hence an algorithm

which performs effectively under this constraint would

certainly be expected to perform just as well, if not better

when applied to test cases drawn from the pre-equinox

mission epoch. Using the results from the autoencoder data-

preprocessing stage, the 2-h intervals from the training dataset

were discarded if the corresponding interval of magnetic fields

could be recreated with better than median reconstruction loss

(i.e., a lower loss value) as they would likely not contain a

crossing. This reduced the number of training images to 37,057.

To derive the final list of crossings, the start time of the first

positive detection and the end time of the last positive detection

was extracted from continuous positive detections of the 2-h

windows. This ensured that the interval contained the crossing of

interest. A single timestamp of the crossing could be estimated by

taking the centre of the interval, but precise timings would still

need to be extracted manually. In terms of spacecraft position,

this interval is usually short enough that it appears as a single

point in a typical spatial plot. However, this method of producing

a final list of crossing times depended on the assumption that

individual crossings were separated by a sufficient time such that

consecutive 30-min strides would not continuously yield positive

detections allowing the chain of positive detections to be broken,

but this was not always the case.

2.3 Modelling

The next step in the pipeline was the modelling part in which

algorithms were designed to perform the BS and MP

classification in order to re-discover the catalogue of crossings.

Two different types of models were implemented to detect

and classify boundary crossings. The performance of traditional

threshold andmodern deep learning techniques was compared to

show the strengths and weaknesses of each (Section 3.1).

2.3.1 Threshold method
The threshold method was motivated by a similar use case

to automate magnetopause detections at Earth (Case and

Wild, 2013). Figure 6 (left) shows the magnetic field data

with four field parameters for thresholding (bottom two

panels). On the right, CAPS electron data is shown with

four parameters based on density and temperature

moments for thresholding (bottom two panels). MAG and

CAPS parameter values were computed using two sliding

FIGURE 5
The positions of BS andMP crossings as observed by Cassini. (A) 2004–2012 was when CAPS data were largely available, and the orbits covered
all of pre-equinox, equinox and 2 years of the solsticemission. (B) 2013–2016was when only MAG data were available, which covered the remaining
part of the solstice mission.
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windows of length 30-min with a fixed gap of 8 min in between

(shown by the red squares in Figure 6).

A positive detection occurs when a fixed threshold is

exceeded in all the parameters. To find the most suitable

parameter thresholds which maximise the number of true

crossings being discovered (recall) whilst also maximising

the number of true positives (precision), Bayesian

optimisation was used to ‘train’ the threshold model to

maximise the F1 score over all the training data

(2004–2011). The F1 score is defined as

F1 � 2
1/P + 1/R

. (4)

It is a harmonic mean of precision and recall, meaning the

F1 score is more sensitive to smaller values of precision (P) or

recall (R). Precision, which measures how accurate are the

predictions, is given by

P � TP

TP + FP
, (5)

i.e., the fraction of positive predictions (TP + FP) that is actually

true (TP). Recall, which measures how good the model finds all

the positives, is given by

R � TP

TP + FN
, (6)

i.e., the fraction of positive instances (TP + FN) that is correctly

predicted (TP). Here, TP, FP, and TN represent true positive,

false positive and true negative. The Bayesian optimisation

routine was implemented using the Botorch package in

Python Balandat et al. (2020). The outline of the procedure is

as follows:

1. The initial sampling set is the initial guess of parameter values

to be optimised. For this study, the thresholds of the magnetic

field and electron parameters were the parameters to guess.

2. Black-box problem evaluation is performed by looping

through the dataset using this set of parameter thresholds

and the desired target metric is evaluated.

3. A Gaussian process (GP) would predict what the target metric

would be for other input parameter thresholds.

4. Evaluate the acquisition function to decide what input

parameters to test next. This process uses a Monte-Carlo

sampler. For example, to minimise some metric, the lower

confidence bound acquisition function a(x) = f(x) − κσ(x) can

be used where κ is a hyperparameter of the optimisation

problem, f(x) is the mean of the GP, σ is the standard deviation

at input x.

5. The next point to evaluate the target will be at argminx (a(x)).

i.e., the parameter thresholds which would decrease (or

increase) the target function (depending on the goal of the

optimisation).

FIGURE 6
(A) of both subplots show themagnetic field components andmagnitude. (B)of both subplots show the standard deviation of themagnetic field
magnitude. thresh-mag (left): Threshold method to detect boundary crossings using four magnetic field parameters: B standard deviation in SH [(C)
black line], the ratio of B standard deviation between SH and SP [(C) red line], North-south/radial component of B in SP [(D) black line], and the ratio of
Bz or Br between SP and SH [(D) red line]. thresh-caps (right): Threshold method to detect boundary crossings using four density and
temperature parameters: log electron density in SH [(D) black line], the ratio of density between SH and SP [(D) red line], log temperature in SP [(E)
black line], and the ratio of temperature between SP and SH [(E) red line]. For both methods, threshold values were acquired using Bayesian
optimisation.
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6. Iterate until convergence, that is when the target function no

longer improves for a consecutive number of iterations.

Typically, 100 loops of optimisation were found to work well.

The classification between BS and MP is further determined

from the windowed statistics of each interval. A big drawback of

using the threshold method with magnetic field data was the

existence of a significant number of MP crossings with low

magnetic shear (Masters et al., 2012) meaning that there may

not be a sufficient ratio in Bzr,SP/Bzr,SH. Despite the use of four

criteria in the ‘thresh-mag’ method, the precision remains low

(i.e., large number of false positives).

2.3.2 ResNet18: Convolutional neural network
The convolutional neural network (CNN) method for

boundary classification was motivated by how the existing

catalogue of crossings was created. The data were manually

surveyed by human eyes looking for characteristic features of

BS and MP as described in Section 2.2.1. This bodes well for

attempting automation with computer vision models. The model

architecture consisted of two parts: a feature learning network

and a classification network. The ResNet18 was used for the first

part with 18 convolutional layers, followed by a fully connected

neural network with two layers for the second part. More details

of the model architecture can be found in Section 1.3 of the

Supplementary Material. The number of training epochs was set

to 30 but generally it was found that training curves plateaued

around 10 epochs.

Figure 7 shows an input image of the CAPS electron energy

spectrogram passed through the CNN giving output ‘crossing’ or

‘notCrossing’. Similar to how the four parameters (or features)

for the threshold method were created based on input MAG or

CAPS time-series, a CNN automatically finds discriminative

features from the input image by training with the ground

truth labels for each plot.

Both the threshold and CNN models would accomplish the

task of automation in principle because they were designed to

look for patterns commonly found in BS and MP crossings. A

natural question to ask is: why did the algorithm produce a

particular output? Can the model outputs be explained?

2.3.3 Model explainability
For the threshold method, it was obvious why a prediction

was made based on the values of the four parameter thresholds

which discriminate a crossing from a non-crossing.

For CNN, the Grad-CAM technique (Selvaraju et al., 2020)

was used to visually explain the neural network’s output. This

technique overlays a heatmap on top of an image of interest to

indicate pixel regions which are most discriminative for the

output class. The values which make up the heatmap are a

linear combination of the activation function value in each

channel in the last layer, weighted by the gradient of the loss

with respect to the parameters in the last convolutional layer.

Figure 8 shows an example of Grad-CAM applied to MAG

and CAPS plots using the implementation by Gildenblat. (2021).

The red regions (or equivalently regions of concentrated contour

lines) highlight the most important parts of the image considered

by the final layer of the CNN. Experiments were performed using

Grad-CAM on a series of BS CAPS plots striding forward in time

in steps of 6 min. It was observed that for the different input

images, the red region tracked well where the discontinuity was,

which mimicked what human eyes would focus on for making

predictions. This was a good indication that the neural network

was focusing on the right features in the image to generate the

correct classification.

2.3.4 Error analysis
After training and evaluating the models, error analysis was

performed to understand where the algorithms were making

mistakes. One of the major problems found was the lack of label

FIGURE 7
Diagram showing how an input image of CAPS ELS energy spectrogram is passed through a CNNmodel and is classified as being a ‘crossing’ or
‘notCrossing’.
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consistency in the existing crossing list. An example was found in

a high latitudeMP crossing in the interval 2009-02-10 17:13:00 to

2009-02-10 19:13:00 (Supplementary Figure S2); the timestamp

for this event from independently derived, expert identified

catalogues by Pilkington et al. (2015) and Jackman et al.

(2019) were 1 hour apart. The Bayesian optimised MAG and

CAPS threshold methods predicted a crossing at around 18:

00 which was between the two human labels, whilst the CNN

model also predicted a crossing for this 2-h interval. Label

inconsistency is particularly detrimental to supervised learning

algorithms because its goal is to learn a mapping between the

input MAG or CAPS data (X) and output label (y). A noisy set of

labels would lead to a noisy mapping, thus low accuracy.

Attempts were made to clean up the labels by using a set of

clearer labelling instructions and also exclude samples which

were ambiguous from the training data as these could deteriorate

the performance of the final model.

2.3.5 Other potential automation techniques
Other techniques were explored using mathematical models

of the MP boundary to design a series of physical checks to

determine if the selected candidates were genuine BS, MP or

neither.

Assuming that MP crossings were oriented similar to those

predicted by an MP model [e.g., Kanani et al. (2010)], another

method that was thought to be a good physical check was the use

of minimum variance analysis (MVA) to determine the

orientation of Saturn’s MP surface at the time of each

crossing and compare it with the model normal. The angular

difference between them could be used to double check the

validity of the proposed crossing based on our physical

knowledge of the MP boundary. In this physical check, for

every candidate center crossing time, a series of window sizes

(6, 10, 14, 20, 30, 40, 60) in minutes were used to calculate the

MVA normal. An estimate of the smallest angle between the

MVA normal and the model normal was found, and similarly

between the MVA normal and the tangential discontinuity (TD)

normal could also be made (Sonnerup and Scheible, 1998).

Crossings could be discarded if they exceeded a certain

threshold of this angular difference. However, the orientation

of the normal was highly dependent on the identification of

intervals corresponding to the magnetopause current layer

(MPCL) where the field direction persistently changes. The

MPCL interval has to be done by eye currently and thus is

not yet possible to automate. Furthermore, there was a significant

number of cases where, even by eye, the identification of the

MPCL interval was ambiguous, especially in cases where there

was a low magnetic shear between the magnetospheric and

magnetosheath magnetic fields. This physical check was

discarded in the end as it did not offer any boost in the

performance compared with more simple checks (such as

using the magnetic field magnitude alone), whilst also

requiring more computational cost.

Another technique to check whether the selected candidates

were true MP crossings or not was to fit a magnetic pressure

model using the existing list of magnetopause crossings assuming

FIGURE 8
Grad-CAM applied to cnn-mag (A) and cnn-caps (B) images for the interval 2012-03-21 23:30:00 to 2012-03-22 01:30:00. The heatmap shows
regions which are most discriminative for the output class. For the MAG image (A), the red regions highlight the most important pixels for the target
class. For the CAPS image (B), the regions with more contour lines indicate the most important pixels for the target class. Both models highlight the
region with discontinuity as most important, which is what our eyes would focus on for deciding between crossing or not. The y-scale of the
MAG image ranges from -10 nT to 10 nT. The y-scale of the CAPS image ranges from 0.6 eV to 28.25 keV on a logarithmic scale consisting of the
63 energy bins of the CAPS ELS instrument. Both images show the same 2-h interval of Cassini data.
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a dipole approximation. Using the functional form of the

magnetopause given by (Pilkington et al., 2015) and applying

pressure balance at the MP boundary, a value of β could be

estimated for the candidate which can be compared with the

distribution of β values found for genuine MP crossings. It was

suspected that, due to the pressure balance nature of the MP

boundary, events which were not genuine should have a

predicted β which would be in the tail of the distribution for

genuine MP crossings. However, the opposite was found to be

true; many events which were not genuine crossings also had

typical β values, within 1 standard deviation of the mean log(β)

distribution from the Pilkington et al. (2015) MP crossing list.

Thus, this physical check was not used.

2.4 Deployment

The rapid inference time of the CNN model makes it a

suitable candidate for usage onboard the spacecraft. The

ResNet18 model has a size of 42.8 MB which is small

compared to the onboard storage of 2 Gb (gigabits) in the

form of dynamic random access memory (DRAM) on Cassini.

However, the actual inference times may differ depending on the

availability of hardware acceleration onboard the spacecraft.

Compression techniques such as pruning and quantization of

trained models could also be leveraged to significantly decrease

the overall resource requirements for deploying such networks

on mobile devices with limited resources (Berthelier et al., 2019).

Furthermore, as the model inputs are JPEG or PNG images of the

data plots, it requires minimal processing, unlike other detection

methods. After deployment, the performance of the system

would be continuously monitored by the human-in-the-loop

to ensure data drift or concept drift are not affecting the system.

Data drift occurs when the input distribution is changed relative

to the training data. This could be drastic changes to the

spacecraft orbit to monitor a different region of space which

changes the input data distribution. In this case, the model

should be retrained with the inclusion of the new data and

corresponding labels. Concept drift occurs when the mapping

between input and output changes. This could be due to changes

in the sensitivity of the instruments during the space mission,

such that the same phenomena now correspond to different

instrumental measurements. Therefore, human-in-the-loop is

still crucial to ensure the proper long-term functioning of the

automated system.

3 Results and discussion

The results of this study are reported using precision, recall

and F1 scores for corresponding models investigated. These

metrics are summarised in Table 1 for the threshold and

CNN models. The performance scores are relative to the

ground truth provided by Jackman et al. (2019) boundary

crossing list. However, these performance metrics may differ

upon further refinement of the crossing list. At the time of the

current study, it was found that the cnn-caps outperformed all

other methods based on the recall (88.7%) and F1-score (72.5%)

metrics.

3.1 Model comparison: Performance

The performance of the two methods was expected to be

different due to the difference in the locality with which features

were generated. The threshold method extracted features using

two 30-min windows with a fixed gap of 8 min whilst the CNN

method extracted features from a 2-h window.

Considering the threshold method, when optimising for the

F1-score (Eq. 4) on a global scale (i.e., evaluating the performance

using all crossings from all years), the thresh-caps method

generally produced consistently better performance metrics

across the years 2004–2012 than thresh-mag as seen in

Figure 9. Further experimentation was done such as

ensembling the MAG and CAPS threshold features together.

This had the expected result of massively improved precision for

some years compared to the magnetic-field-only method,

exceeding the recall in all years (Figure 9C). The amount of

improvement varied across the different years of orbits, in some

cases doubling from 30% to 60% such as in the year 2009, whilst

other years the improvement was more modest from 60% to 62%

such as in the year 2005. However, the recall naturally dropped

significantly due to more criteria to satisfy to make a positive

detection, reducing the number of positive detections. Another

problem associated with this method was the fact that the

thresholds were picking up both BS and MP. This was not

unexpected as BS crossings typically have even larger values in

the parameters considered thus more easily satisfying the

thresholds set for MP crossings. There was no single way to

separate the two types of crossings using thresholds alone due to

the large variations of both types of crossings. There were

TABLE 1 Performance comparison for differentmodels. Precision (P) is
the % of predictions which are correct. Recall (R) is the % of
ground truth which are predicted correctly. F1-score is the harmonic
mean of precision and recall (Eq. 4). Note that the tolerance for
correct classification for ‘thresh-’ classifiers was set at ± 60 min
from the ground truth crossing times. The bold values represent
the model which achieved the best score for that specific metric.

Classifier Precision Recall F1-score

thresh-mag 48.9 60.1 53.9

thresh-caps 73.8 68.3 70.9

thresh-mag-caps 80.6 12.6 21.8

cnn-mag 59.3 75.6 66.5

cnn-caps 61.4 88.7 72.5
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attempts to further refine the classifications using the magnetic

field magnitude as it was one of the biggest differentiating factors

between BS and MP crossings. However, the issue was still the

sheer number of false positive detections that were retrieved

using the threshold method. This lead to poor precision when

considering the retrieval of a single class of crossing.

An experiment was conducted to optimise the F1-score for

different location sectors to investigate the dependence of the

threshold method on the crossing location. The sectors were

defined based on local time (DAWN 3 h–9 h, DAY 9 h–15 h,

DUSK 15 h–21 h) and absolute latitude (LOW 0°–30°, MID

30°–60°, and HIGH 60°–90°). The majority (92%) of the true

BS and MP crossings between 2004–2012 were in the LOW

latitude bins (across all local times), with a small percentage (8%)

in bins of DAYMID, DUSKMID and DUSKHI. For the years

2013–2016, 69% of true crossings were in the LOW latitude bins,

and the remaining 31% were distributed amongst the

DAWNMID, DAYMID, and DUSKMID bins.

By performing Bayesian optimisation for each bin, a set of

thresholds was obtained for each bin (Figure 10). It was found

that there was large variability in performance across different

years for each bin, which indicated that a threshold which does

well for 1 year may not be applicable for another. This is likely

due to changing conditions from the Sun, changing spacecraft

radial distance and other plasma processes which could change

the nature of the boundary crossings. For dusk crossings, the

magnetodisc plasma sheet could expand more due to solar wind

direction being the same as corotation flow, leading to less

turbulent conditions. Therefore, the ‘typical’ features of an MP

transition may not be as common. There could also be lots of

genuine partial crossings which are being picked up but that may

not be in the ground truth (i.e., large number of false positives),

lowering the precision (Eq. 5). Bins with fewer crossings were

found to perform better likely because the thresholds were over-

fitted to just capture those few crossings. Bins with more

crossings (e.g., in the LOW latitude bin) have lower

performance as the single set of optimised thresholds fails to

capture the variety of crossings observed at low latitudes.

When considering magnetic-field-only detections, the worst

performing local time sector was dusk, likely due to missed

partial crossings and or more false positives. It may also be

that the magnetic fields are more dynamic over timescales similar

to an MP crossing, leading to less well-defined transitions. The

lack of difference between either side of the transition is

particularly detrimental to the threshold method given that it

uses the ratios of quantities from two windows of data. The year

2007 was particularly problematic when trying to define

consistent crossing times. However, due to a large number of

detections, it was unfeasible to perform an error analysis of each

positive detection as was done for the CNN method.

Considering the CNN method, given that the cnn-caps

model outperformed other models in the binary classification

task, a multiclass cnn-caps model was then chosen to be trained

in order to classify 2-h intervals of electron spectrogram data as

‘BS’, ‘MP’ or ‘notCrossing’. The model performance on the

training and validation dataset was tested with 10-fold cross-

validation and was found to be consistent across all 10-folds for a

given model architecture. This implies that the model was not too

sensitive to the choice of samples in the training and validation

sets. The results are summarised in Supplementary Table S1 in

the Supplementary Material. The model variance, defined as the

difference between training and validation error, could be used to

indicate signs of over-fitting. The error is obtained from themean

cross entropy loss (Eq. 2) calculated during model training,

ranging from 0 to 1, with 0 being perfect classification. From

the cross-validation experiment, the average model variance was

low at around 0.10 ± 0.04. This result implies that the model was

not suffering from over-fitting to the training data. The model

with the lowest validation error from cross-validation was used to

evaluate the performance on the test dataset. To estimate

uncertainty in the test performance metrics, 1,000 bootstrap

samples of the test dataset with replacements were used

FIGURE 9
Comparison of performance for three threshold models. (A) thresh-caps. (B) thresh-mag. (C) thresh-ensemble. In the calculation of these
metrics, BS crossings were included in the ground truth dataset. All models were optimised based on the F1 score.
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(Kohavi, 1995). The histograms of precision, recall, and F1 for

each class are shown in Supplementary Figure S5 in the

Supplementary Material from which uncertainties were

estimated using the standard deviation (given the similarity to

Gaussian distributions). Through error analysis of

196 misclassified samples, it was revealed that 48.5% were MP

crossings, 26.5% were BS, 12.2% occurred in the magnetosheath,

11.7% occurred in the magnetosphere, 1.0% occurred in the solar

wind. There were 15 samples which had missing CAPS data

within the defined intervals whilst ground truth labels were

provided using MAG data. These were removed from the test

dataset which reduced the number of test samples from 3,032 to

3,017. Table 2 shows the performance of the multiclass cnn-caps

model when the test dataset was corrected to include previously

missed BS and MP crossings. The results indicate that the cnn-

caps model was able to detect ‘notCrossing’ class with high

precision and recall, BS crossings with very high precision but

slightly lower recall, and MP crossings with reasonable precision

and recall. The resulting F1 scores (Eq. 4) for the classes of

interest were 92.1% ± 1.4% and 84.7% ± 1.9% for BS and MP

crossings respectively.

The threshold method is intuitive for event detection but it

lacks the flexibility due to fixed thresholds to capture events

especially when the variety of crossings is large, even within the

same type of boundary, such as MP crossings. On the other hand,

neural network models have enough parameters to offer more

flexibility to find a wider range of events without over-fitting.

One of the major advantages of neural networkmodels is that

once the algorithm is trained, the inference speed is extremely

fast. For the sake of comparison, for the same 2-h interval, the

trained cnn-caps model performs inference on the order of 10 ms

on a laptop equipped with NVIDIA GeForce GTX 1650, whilst

the thresh-mag model takes the order of 1s to predict whether

there is a crossing, which is 100 times slower than the cnn-caps

method. Therefore, in an onboard data selection scenario, it is

advantageous to leverage the speed of neural networks in order to

perform the first level of data selection before fine-tuning with

other techniques such as manual inspection.

3.2 A new BS and MP crossings list for
saturn

The benefit of having an automated system is that it can be

used to scan through all the data without extra human effort. This

allows the discovery of new events which could have been missed

despite being obvious. For example, the interval between 2005-

07-28 14:00:00 and 2005-07-28 16:00:00 had a data gap in the

MAG data but was easily detected from CAPS data using cnn-

caps.

To this end, a new comprehensive list of BS andMP crossings

from Cassini have been identified with the help of the models

developed in this study, building on the lists found by Jackman

et al. (2019) and Pilkington et al. (2015). All new crossings added

were ensured to be consistent with previously identified crossing

FIGURE 10
The threshold values for MAG data (A) and CAPS data (B)were found from the Bayesian optimisation routine for each local time and latitude bin
containing mag and caps data. The final bin label ‘None’ indicates the thresholds found from the global optimisation with all crossings used.

TABLE 2 Performance metrics of the cnn-caps classifier after
correction of the labels in the previously misclassified samples.
The support columns indicate the number of samples for each class.
The uncertainty in each metric was estimated using the standard
deviation of 1,000 bootstrap samples of the corrected test dataset
evaluated using the same model.

Precision Recall F1-score Support

notCrossing 0.979 ± 0.002 0.991 ± 0.002 0.985 ± 0.002 2,624

BS 0.995 ± 0.004 0.857 ± 0.025 0.921 ± 0.014 195

MP 0.860 ± 0.023 0.834 ± 0.026 0.847 ± 0.019 198
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directions. For example, an inbound MP crossing must be

followed by an outbound MP crossing.

The new list contains 1349 BS crossings and 2539 MP

crossings, representing an 8% and 20% increase compared to

the original list with 1249 BS and 2124 MP, respectively.

The breakdown of the number of crossings across different years

of the mission from Saturn-Orbit-Insertion in July 2004 to when the

CAPS instrument was switched off in June 2012 is shown in Table 3.

Interesting case studies could be discovered by inspecting

through the positive detections. For example, Figure 11 shows a

‘crossing’ event recorded between 2012-05-14 05:00:00 and 2012-

05-14 07:00:00 picked up by the CNN method that was not

previously identified in any crossing list appeared to be a

candidate K-H vortex encounter. This event was situated on

TABLE 3 Breakdown of the number of bow shock (BS) and
magnetopause (MP) crossings in the new list of boundary
crossings between years 2004–2012.

Year BS MP

2004 51 29

2005 287 252

2006 12 108

2007 191 560

2008 54 303

2009 8 200

2010 58 411

2011 244 269

2012 180 194

FIGURE 11
A 2-h interval encompassing a potential K-H vortex encounter. The panels are as follows: (A) Electron energy-time spectrogram of differential
energy flux (DEF) fromCAPS/ELS anode 5. (B,C) Electron temperature and number density derived from ELS anode 5. (D,E) Energy-time spectrogram
of ion and electron intensity from LEMMS. (F) Themagnitude and KSM components of themagnetic field. Spacecraft trajectory information is shown
below the x-axis.
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the dusk flank near the equator. There was periodic sign change

in By and striking electron and ion energization signature similar

to that discussed in Masters et al. (2010).

In a future study, there is potential to turn the CNN classifier

into both a region and a boundary classifier, by altering the training

labels with six classes: SW, BS, SH, MP, SP and Other. The ‘Other’

class can be thought of as an ‘uncertainty’ class which should be

looked at by the ‘human-in-the-loop’, as well as the precise crossing

times for each BS andMP crossing classified. One could also explore

the possibilities of fine-tuning the classifier for boundary detection at

other planets. Since BS and MP crossings at different planets share

common magnetic field and plasma signatures (e.g., as described in

Section 2.2.1), at least visually, the weights of the ResNet18 portion

of the CNN classifier could be kept fixed, whilst the weights in the

classifier ‘head’ could be fine-tuned by training on a consistently

labelled crossings dataset for the planet of interest. This greatly

reduces the number of learned parameters in the neural network,

thus, significantly reduces the training time and the size of the

dataset required.

ML algorithms can help automate a manual process. However,

when the algorithm’s ability is not yet fully reliable, the degree of

automation falls short of fully automatic detection. Nevertheless,

having partial automation and keeping the human-in-the-loop can

still hugely accelerate the process of crossing identification.

4 Conclusion

The key points of this study can be summarised as follows:

1. Two methods for automating the detection of the bow shock

and magnetopause crossings in Cassini data were implemented

and compared: Threshold-based detection and convolutional

neural network (CNN) classifier. Based on 2012 test data and

the latest BS and MP catalogue at Saturn, the CNN approach

outperformed the threshold approach when considering CAPS

data. Cassini MAG and CAPS/ELS datasets were used as the

data source. However, themethods demonstrated would also be

applicable to other spacecraft missions with magnetic field and

plasma data.

2. It is possible to automate the detection of BS and MP crossings

using magnetic field data and/or electron energy spectrograms

as demonstrated with Cassini data at Saturn. However, it was

found that for both methods the electron-only data model

outperformed the magnetic-field-only model, for the period

where both instruments did not have missing data. Combining

both datasets lead to higher precision but lower recall as

expected. For discovering more crossings, ‘thresh-mag’ could

be used with higher thresholds to ensure a higher probability of

correct identification of typical BS or MP crossing events. The

ability to select specific types of events which exceed definitive

thresholds is an advantage of the threshold method, which is

not possible with the CNN model.

3. The ResNet18 CNN model is small (42.8 MB) and once

trained has fast inference times (of order 10 ms) which

makes it suitable for on-board spacecraft data selection or

performing large-scale boundary surveys in post-mission data

analysis.
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