
TYPE Technology and Code
PUBLISHED 07 December 2022
DOI 10.3389/fspas.2022.1023163

OPEN ACCESS

EDITED BY

K.-Michael Aye,
Freie Universität Berlin, Germany

REVIEWED BY

Reinaldo Roberto Rosa,
National Institute of Space Research (INPE),
Brazil
Carl-Fredrik Enell,
European Incoherent Scatter Scientific
Association, Sweden

*CORRESPONDENCE

Lei Cai,
lei.cai@oulu.fi

SPECIALTY SECTION

This article was submitted to Space
Physics, a section of the journal Frontiers
in Astronomy and Space Sciences

RECEIVED 19 August 2022
ACCEPTED 14 November 2022
PUBLISHED 07 December 2022

CITATION

Cai L, Aikio A, Kullen A, Deng Y, Zhang Y,

Zhang S-R, Virtanen I and Vanhamäki H

(2022), GeospaceLAB: Python package for

managing and visualizing data in space

physics.

Front. Astron. Space Sci. 9:1023163.

doi: 10.3389/fspas.2022.1023163

COPYRIGHT

© 2022 Cai, Aikio, Kullen, Deng, Zhang,
Zhang, Virtanen and Vanhamäki. This is an
open-access article distributed under the
terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that
the original publication in this journal is
cited, in accordance with accepted
academic practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

GeospaceLAB: Python package
for managing and visualizing
data in space physics

Lei Cai1*, Anita Aikio1, Anita Kullen2, Yue Deng3,
Yongliang Zhang4, Shun-Rong Zhang5, Ilkka Virtanen1 and
Heikki Vanhamäki1

1Space Physics and Astronomy, University of Oulu, Oulu, Finland, 2Space Plasma Physics, KTH Royal
Institute of Technology, Stockholm, Sweden, 3Department of Physics, University of Texas at
Arlington, Arlington, TX, United States, 4The Johns Hopkins University Applied Physics Laboratory,
Laurel, MD, United States, 5Haystack Observatory, Massachusetts Institute of Technology, Westford,
MA, United States

In the space physics community, processing and combining observational

and modeling data from various sources is a demanding task because they

often have different formats and use different coordinate systems. The

Python package GeospaceLAB has been developed to provide a unified,

standardized framework to process data. The package is composed of six core

modules, including DataHub as the data manager, Visualization for generating

publication quality figures, Express for higher-level interfaces of DataHub and

Visualization, SpaceCoordinateSystem for coordinate system transformations,

Toolbox for various utilities, and Configuration for preferences. The core

modules form a standardized framework for downloading, storing, post-

processing and visualizing data in space physics. The object-oriented design

makes the core modules of GeospaceLAB easy to modify and extend. So far,

GeospaceLAB can process more than twenty kinds of data products from

nine databases, and the number will increase in the future. The data sources

include, e.g., measurements by EISCAT incoherent scatter radars, DMSP,

SWARM, and Grace satellites, OMNI solar wind data, and GITM simulations. In

addition, the package provides an interface for the users to add their own data

products. Hence, researchers can easily collect, combine, and view multiple

kinds of data for their work usingGeospaceLAB. Combining data fromdifferent

sources will lead to a better understanding of the physics of the studied

phenomena andmay lead to new discoveries. GeospaceLAB is an open source

software, which is hosted onGitHub.Wewelcome everyone in the community

to contribute to its future development.

KEYWORDS

Python, data management, space physics, space weather, aurora, solar wind, magnetosphere-

ionosphere-thermosphere coupling

Frontiers in Astronomy and Space Sciences 01 frontiersin.org

https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org/journals/astronomy-and-space-sciences#editorial-board
https://doi.org/10.3389/fspas.2022.1023163
https://crossmark.crossref.org/dialog/?doi=10.3389/fspas.2022.1023163&domain=pdf&date_stamp=2021-10-15
https://doi.org/10.3389/fspas.2022.1023163
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fspas.2022.1023163/full
https://www.frontiersin.org/articles/10.3389/fspas.2022.1023163/full
https://www.frontiersin.org/articles/10.3389/fspas.2022.1023163/full
https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org/journals/astronomy-and-space-sciences#articles


Cai et al. 10.3389/fspas.2022.1023163

1 Introduction

A space physics research project is typically based on several
kinds of measured and/or modeling data. Those data are often
provided by different institutes or research groups. The data
providers prepare and store their data in various file formats,
such as ASCII, CSV, CDF, NetCDF, and HDF5. Even when using
the same file format, different data can be documented with
different data structures. The diversity of the data formats and
data sources adds an unnecessary complexity to the data analysis
in a research project. It often takes a lot of time for a researcher
to collect and manage the data before the data are processed for a
further analysis and interpretation. To improve the productivity
in space physics research, we develop the Python package
GeospaceLAB. We aim to establish a standardized process for
data access, management, and visualization that connects the
data provider and the space physics researchers. Using our
package, researchers can promote their research in a quick
manner and focus more on the data interpretation and research
results.

Python has become the fastest-growing programming
language in scientific research during the last 2 decades. The
language is powerful, intuitive to learn, and easy to use.
GeospaceLAB takes advantage of the programming language
Python and its built-in and external open-source packages. In
GeospaceLAB, we mainly adapt object-oriented programming
(OOP) to construct the core modules. OOP is a programming
paradigm that wraps associated properties and behaviors into
individual objects (e.g., Luciano, 2015). For example, an object
could represent a car with properties like a brand, model, and
production year and behaviors such as starting, driving back
and forth, as well as braking. Different cars have different
properties and behaviors. With OOP, we build the core modules
of GeospaceLAB from standard working classes. The use of
OOP improves the code’s reusability and quality. OOP also
makes the package more extensible and lowers the maintenance
costs. In addition to OOP, GeospaceLAB provides a collection of
functions as utilities to support the development of the package.
The classes and utility functions in the package are open for both
developers and users.

The various Python packages make it possible to accomplish
multiple tasks using Python alone, instead of using different
programming languages or software. The development of
GeospaceLAB is dependent on a number of open-source
packages/scripts (so called dependencies). For example,
GeospaceLAB utilizes the dependencies such as Requests1,
Beautiful Soup 42 and Ftplib3 for pulling the data from

1 https://github.com/psf/requests.

2 https://www.crummy.com/software/BeautifulSoup/bs4/doc/.

3 https://docs.python.org/3/library/ftplib.html.

online sources, Pathlib4 for managing local file system,
Re, NetCDF45, and H5Py6 for file input or output (I/O),
NumPy (Harris et al., 2020) for manipulating data arrays,
SciPy (Virtanen et al., 2020) for scientific computing, and
Matplotlib (Hunter, 2007; Caswell et al., 2022) and Cartopy
(Met Office, 2010 - 2015) for data visualization and mapping.
In Figure 1 those dependencies are listed separately for each of
the GeospaceLAB core modules.

In the space physics community, many Python packages
have been developed during the last decade for data
access and analysis (e.g., Burrell et al., 2018, for a recent
review). GeospaceLAB uses several useful packages for
building the core modules, including CDFLIB7 for the
reading/writing Computable Document Format (CDF)
files, MadrigalWeb8 and SuperMAG Client for accessing
Madrigal and SuperMAG databases, respectively, SSCWS9

for satellite orbit tracking, AACGMV210 (Shepherd, 2014),
GEOPACK11 (Tsyganenko et al., 2021), and APEXPY12

(Richmond, 1995; Emmert et al., 2010) for coordinate system
transformation.

Thanks to the existing packages, GeospaceLAB can complete
multiple tasks that are required for a scientific data analysis.
GeospaceLAB integrates the needed functionality of the
dependencies, such that the users do not need to have a detailed
knowledge of all dependencies. However, some knowledge about
Python basics and the packages such as Numpy, SciPy, and
Matplotlib will help the users to understand the data structure
and workflows in the package.

In this paper, we present the current public release (v0.5.2)
of GeospaceLAB. We introduce the design of GeospaceLAB’s
core modules and their functionality in Section 2. We present
a few possible applications of the package in space physics
research in Section 3. The current status, issues and future
plans are described in Section 4. This paper is not intended
to provide a detailed documentation of the package, but is
rather intended to give an overview of the functionality and
design. A full documentation of the package can be found
online13.

4 https://docs.python.org/3/library/pathlib.html.

5 https://github.com/Unidata/netcdf4-python.

6 https://www.h5py.org/.

7 https://github.com/MAVENSDC/cdflib.

8 http://cedar.openmadrigal.org/docs/name/rr_python.html.

9 https://sscweb.gsfc.nasa.gov/WebServices/REST/py/sscws/sscws.html.

10 https://github.com/aburrell/aacgmv2.

11 https://github.com/tsssss/geopack.

12 https://github.com/aburrell/apexpy.

13 https://geospacelab.readthedocs.io/en/latest/.

Frontiers in Astronomy and Space Sciences 02 frontiersin.org

https://doi.org/10.3389/fspas.2022.1023163
https://github.com/psf/requests
https://www.crummy.com/software/BeautifulSoup/bs4/doc/
https://docs.python.org/3/library/ftplib.html
https://docs.python.org/3/library/pathlib.html
https://github.com/Unidata/netcdf4-python
https://www.h5py.org/
https://github.com/MAVENSDC/cdflib
http://cedar.openmadrigal.org/docs/name/rr_python.html
https://sscweb.gsfc.nasa.gov/WebServices/REST/py/sscws/sscws.html
https://github.com/aburrell/aacgmv2
https://github.com/tsssss/geopack
https://github.com/aburrell/apexpy
https://geospacelab.readthedocs.io/en/latest/
https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org/journals/astronomy-and-space-sciences#articles


Cai et al. 10.3389/fspas.2022.1023163

FIGURE 1
A UML component diagram showing the core modules of GeospaceLAB and their interdependence.

2 Software design

The modular design is applied in the development
of GeospaceLAB. The package is composed of six core
modules, including DataHub (geospacelab.datahub),
Visualization (geospacelab.visualization), Express
(geospacelab.express), SpaceCoordinateSystem
(geospacelab.cs), Toolbox (geospacelab.toolbox),
and Configuration (geospacelab.config). Figure 2
shows the component diagram generated in Unified Modeling
Language (UML) (Engels et al., 2000) for the six core modules.
The diagram describes briefly the structure of the package and
the relationship among the core modules. DataHub is the data
manager in GeospaceLAB. This module is used to control the
workflow when processing data and to manage the data and its
properties from various data sources. Visualization controls the
plotting process for the data managed by DataHub. As shown in
Figure 1, users should first create a DataHub or Dashboard
object for the research project. In case of a DataHub object,
users can dock/add one or more dataset objects. A dataset object
is a collection of variables which are loaded from data files.
The dataset object also controls the procedure of downloading,

storing, loading, and post-processing of a specific data product.
Users can make publication-quality plots using the Dashboard
object. Express contains several high-level interfaces based on
DataHub and Visualization. With the high-level interfaces,
users can directly obtain data and view quicklook plots from
a specific data source. SpaceCoordinateSystem manages the
coordinate transformation to commonly used space coordinate
systems. Toolbox is a library of functions that supports other
modules in GeospaceLAB. Both SpaceCoordinateSystem and
Toolbox support the workflows in DataHub, Visualization,
and Express. Finally, Configuration manages the preferences
and global parameters used in the package. In the following
subsections, we will introduce the core modules in more
detail.

2.1 DataHub as the data manager
(geospacelab.datahub)

DataHub is the most essential module in the package. The
module is composed of several base classes and their subclasses.
Figure 2 shows the main structure of the modules DataHub,

Frontiers in Astronomy and Space Sciences 03 frontiersin.org

https://doi.org/10.3389/fspas.2022.1023163
https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org/journals/astronomy-and-space-sciences#articles


Cai et al. 10.3389/fspas.2022.1023163

FIGURE 2
A UML class diagram that describes the main structure of the three core modules DataHub (blue color shades), Visualization (orange), and
Express (yellow) in GeospaceLAB.

Visualization, and Express in a UML class diagram. The classes
included in the module DataHub are marked by blue shades.
Each class is illustrated with three compartments: the upper
compartment shows the name of the class, the middle contains
the attributes, and the lower contains the methods owned by the
class. Note that the attributes and methods of a class are not fully
listed in figure. A full description can be found in the online
documentation.

In the family of DataHub classes, DataHub (with the
same name as the module), Dataset, and Variable are the
three core classes. The class DataHub is the top-level manager
that governs the global properties and behavior of a project
and the dataset objects that are included. The class Dataset
is the middle-level manager that controls the workflow for a
specific data product and manages the data variables in that data
product. The class Variable is the base-level manager that

Frontiers in Astronomy and Space Sciences 04 frontiersin.org

https://doi.org/10.3389/fspas.2022.1023163
https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org/journals/astronomy-and-space-sciences#articles


Cai et al. 10.3389/fspas.2022.1023163

Listing 1. An example code with comments for retrieving OMNI data from

1200UT on 16 March 2015 to 1200 UT on 19 March 2015. The data array of

the interplanetarymagnetic field (IMF) Bx component is printed in the final.

manages a specific data variable and its own properties in a data
product. A DataHub object can be compared with the core
module of a modular space station. It can dock or add one or
more Dataset objects like a space station core module docks
different types of modules. Each Dataset object owns multiple
Variable objects, just like various devices in a space station
module.

Listing 1 shows a code example with comments to help
users to understand the basic workflow in using a DataHub
object. The code retrieves OMNI data using five steps by 1)
importing the required module, 2) setting the time bounds
(dt_fr and dt_to), 3) creating a DataHub object (assigned
to dh), 4) docking the OMNI dataset with several inputs
(assigned to ds_omni), and 5) getting a variable from the
docked dataset (assigned to B_x) and extracting the data array
from B_x.value. Only a few inputs (keyword arguments) are
required in steps 3 and 4. The OMNI dataset object ds_omni is
responsible for the query and retrieval of theOMNIdata product.
The OMNI data will be downloaded automatically, if the data
files do not exist in the local directory of a user’s computer. The
above five steps are the standard procedures for users to obtain
the data from one or more data sources. The code is simple,
benefiting from the functionality of the three core classes and
their inheritances.

2.1.1 Variable
To demonstrate the framework of the data management in

DataHub, first we introduce the core class Variable which
is the base-level manager. In space physics, a variable from
observations or simulations is often expressed or recorded by a
numeric array with associated properties.The variable properties
include the name, unit, description, dependencies, and errors.
The class Variable provides a data model to record both data
array and commonproperties for a physical quantity.Meanwhile,
additional properties can be added flexibly when needed.

The most commonly used attributes of a Variable object
have been listed in Figure 2, including value, ndim, error,
name, label, data_type, group, unit, unit_label,
depends, and visual. The attribute value is used to
record a data array in the format numpy.ndarray. A data
array may have one or more dimensions. The attribute ndim
returns the number of dimensions. The attributes name, unit,
data_type, group record the basic properties of a variable
as described in the attribute names. The attributes label and
unit_label usually have the form of a Python raw string for
the text rendering with mathematics expression. They are useful
when shown with the plots.

Frequently, themeasurement/calculation errors are provided
with the data array in space sciences.The attributeerror is used
to record these error values. The attribute can be assigned with
either the numpy.ndarray object or a string (Python str

object). In case of the string, the string value points to the error
variable stored in the associated dataset object.

Any data arrays in space sciences should depend on one or
more support data along a specific axis. The support data usually
indicates the time, spatial position or any quantity indirectly
connected to the measurement/calculation. For example, the
Variable object B_x in Listing 1 is assigned by an 1-
dimensional (1-D) array of the IMF Bx component with
associated properties. The array depends on the universal time
(UT) along the axis-0 (0 denotes the first dimensional axis, 1
the second, and 2 the third hereafter). Sometimes, a variable
may have multiple dependencies along one axis. For instance,
the electron density measured from a low-earth-orbit (LEO)
satellite is a 1-D time-series variable, which depends on UT,
geographic latitude and longitude, and geomagnetic latitude and
longitude along the axis-0. The attribute dependsmanages the
dependencies of the variable inmultiple dimensions andmultiple
dependencies along one dimensional axis. A Variable object
uses the methods set_depend () and get_depend ()

to set up and obtain the dependencies, respectively. Similar as
error, the values of dependencies in depends can be assigned
with a numpy.ndarray object or a string. In case of a string,
the string value points to the supporting variable stored in the
associated dataset object.

In case that a visualization is needed, the attribute visual
will be assigned with a Visual object (see also Figure 2). Note
that by default, the DataHub object sets its attribute visual with
the value of “off”, meaning that the Visual objects will
not be assigned to all variables. The class Visual manages the
visualization properties for a variable with two compositions:
VisualAxis and PlotConfig. A VisualAxis object
controls data and options along a specific axis when plotting.
Hence, one Visual object may have multiple VisualAxis
objects, which are assigned to the Visual attribute axis.
In addition, one Visual object owns one PlotConfig

object, which controls the plotting type and the corresponding
configuration.

Frontiers in Astronomy and Space Sciences 05 frontiersin.org

https://doi.org/10.3389/fspas.2022.1023163
https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org/journals/astronomy-and-space-sciences#articles


Cai et al. 10.3389/fspas.2022.1023163

FIGURE 3
A flowchart showing the main process of downloading, storing, and loading data managed by a DataSourced object.

In practice, it is not necessary to set all the attributes when
creating or using a Variable object. For a sourced dataset
(see Section 2.1.2.1), the attributes have been assigned as default
properties for a specific variable in the data product. On the other
hand, the various attributes ofVariable andVisual let users
or developers customize asmuch as possible if the default settings
do not suit their needs. The method config () is used to set
themultiple attributes that have been included in the classes, and
add_attr () to add additional attributes if needed. The same
methods are also used for the Dataset objects as described
next.

2.1.2 Dataset
The class Dataset is the middle-level manager in the

module DataHub. It manages a collection of data variables
and the global attributes in a data product. A Dataset

object is a Python dictionary-like (dict) object, in which
the keys are the variable name in the type of str, and the
values are the correspond Variable objects. The Dataset
object owns several basic attributes, such as name for the
name of the dataset, kind for the type of the dataset (see also
DatasetSourced andDatasetUser below),dt_fr for
the starting time, dt_to for the stopping time, and visual

for determining if the Visual objects are appended to the

Variable objects. The Dataset also owns a series of methods,
such as add_variable () for adding a Variable object,
label () for automatically generating an identical label,
config () andadd_attr for configuring the attributes, and
register_method () for adding an external method to the
Dataset object.

The class Dataset has been extended into two subclasses
(inheritances): DatasetSourced and DatasetUser. The
inheritance means that the subclass owns the attributes and
methods of its parent class. At the same time, the subclass has its
private methods, which cannot be accessed by the parent class.
The use of the inheritance is convenient for users and developers
to reuse, extend, or tomodify the attributes and behaviours in the
parent class.

2.1.2.1 Managing a sourced dataset
The subclass DatasetSourced is designed to manage

the data from a specific data source (so called sourced dataset)
that have been included in the package. Besides the attributes
of Dataset, DatasetSourced has its own attributes for
identifying the properties of the specific data source, e.g.,
database, facility, instrument, and product. It
also owns particular methods for managing the procedures of
downloading, storing, and loading data, such as load_data

Frontiers in Astronomy and Space Sciences 06 frontiersin.org

https://doi.org/10.3389/fspas.2022.1023163
https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org/journals/astronomy-and-space-sciences#articles


Cai et al. 10.3389/fspas.2022.1023163

(), download_data (), and search_data_files ()

(see also Figure 2).
In DataHub, each sourced dataset has a corresponding

subclass of DatasetSourced. As shown in Figure 2, the
class OMNIDataset inherits from DatasetSourced

with the assigned attributes database = “CDAWeb”

and facility = “OMNI”. Similarly, EISCATDataset,
DMSPSSUSIDataset and many other subclasses have been
developed for the sourced datasets. Each subclass uses the
attributes and methods of DatasetSourced as the abstracts
and has its own functionality.

Figure 3 shows the main process of querying, downloading,
storing, and loading data by a DatasetSourced or its
subclass object. The DatasetSourced object provides three
modes to load a sourced dataset: “AUTO”, “dialog”,
and “assigned”. One of the values is assigned to the
DatasetSourced attribute load_mode (see also Figure 2).
For the mode “AUTO”, the DatasetSourced object try to
finish the entire process shown in Figure 3 automatically. First,
it searches the associated data files that have been stored in
the local directories. This procedure is managed by the method
search_data_files (). The method provides a solution
to collect all data files within the time bound between dt_fr

and dt_to by identifying the string patterns in the file names.
The rules for the string patterns are usually defined in the specific
dataset class. As a result, the data arrays that are finally loaded
in the dataset are independent of how many segmented files
are included. If the associated data files are not found in the
local directory, a downloading procedure will be activated. The
downloading procedure is implemented by a Downloader

class appended to DatasetSourced. The Downloader

object will search the requested files in the online database. If
the files exist, the object will download the files to the local
directory/database. Again, themethodsearch_data_files
() will be called to collect those downloaded files and activate
the loading procedure. Similar as the downloading procedure,
the loading procedure is implemented by a Loader class
appended to DataSourced. The Loader object will load
data and metadata from the local files and pass them to the
DatasetSourced object. The DatasetSourced object
will first add the queried variable objects and assign the default
attributes to those objects. Then the DatasetSourced object
will assign the data arrays and associated metadata to the
corresponding variable objects. Finally, several post-processing
procedures may be done according to the input options, such as
a time filter for clipping the data within the time bound, adding
additional support data, making coordinate transformation, and
controlling the data quality.

In GeospaceLAB, we aim to accomplish automatic
downloading for most of the sourced datasets from online
databases. For example, the package Requests is used for
grabbing data from Hypertext Transfer Protocol (HTTP) web

service, Ftplib for File Transfer Protocol (FTP) server, and
several specialized packages/scripts provided by individual
data services (e.g., MadrigalWeb and SuperMAG Client). We
developed a family of Downloader classes to communicate
with different online databases. Those sourced datasets with the
same downloading mechanism can share one Downloader

class. Alternatively, only a minor modification is applied by
subclassing the parent Downloader class.

A similar arrangement for the Downloader classes is also
applied for the family of Loader classes. So far, we have
developed the Loader classes for loading data files with several
kinds of formats, such as ASCII, CDF, NetCDF, HDF5, and
binary files. Again, those Loader classes are highly reusable or
extendable for various sourced datasets.

In case that the sourced dataset is not downloadable or only
the local data files are available, users can utilize the loading
modes “dialog” and “assigned’ to select the local data
files. When “dialog’ is set, a dialog box will be activated.
For the “assigned’ mode, users can assign the full paths
of the data files to the attribute data_file_paths of the
DatasetSourced object.

So far, GeospaceLAB (current version: v0.5.2) supports more
than twenty kinds of sourced datasets from nine databases.
Table 1 lists those datasets with the associated properties. Most
of the datasets can manage the procedure of automatically
downloading (“Downloadable” is True). For a few datasets that
are not downloadable, the users can download the data manually
from the online services, e.g., the SuperDARN electric potential
map data in the ASCII format and the AMEPRE Field-aligned
current maps in the NetCDF format, or request from the data
provider, e.g., the GITM model results from the research group
at University of Texas, at Arlington (UTA). The data in all the
listed datasets are be collected continuously within the input
time bound. Even if the data is stored in separate files, the
associated DatasetSourced object can detect and collect all
associated data files automatically. Several datasets own their
high-level dashboards for directly visualizing the data. Those
dashboards are importable from the core module Express (see
Section 2.3).

2.1.2.2 Managing a user-defined dataset
In addition to DatasetSourced, the subclass

DatasetUser of Dataset is designed for a user-defined
dataset that has not yet been supported by GeospaceLAB. With
DatasetUser, users can add data that they have downloaded
and loaded using their own scripts.Users can also build a subclass
of DatasetUser to customize the attributes and methods. A
DataHub object has the method add_dataset () to add a
DatasetUser object. As a result, a user-defined dataset can
be processed together with other datasets. This is useful when
users want to use the functionality of GeospaceLAB to visualize
or analyze the data that has not been supported by the package.

Frontiers in Astronomy and Space Sciences 07 frontiersin.org

https://doi.org/10.3389/fspas.2022.1023163
https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org/journals/astronomy-and-space-sciences#articles


Cai et al. 10.3389/fspas.2022.1023163

T
A
B
LE

1
A
lis
t
o
f
d
at
a
so

u
rc
es

th
at

h
av

e
b
ee

n
in
cl
u
d
ed

in
G
eo

sp
ac

eL
A
B
(C

u
rr
en

t
ve

rs
io
n
:v

0
.5
.2
).

D
at
ab

as
e

Fa
ci
lit
y,
in
st
ru
m
en
t&

pr
od

uc
t

Fi
le
fo
rm

at
D
ow

nl
oa
da

bl
e

Ex
pr
es
s

N
ot
es

&
re
fe
re
nc
e

C
D
AW

eb
O
M

N
I

C
D
F

Tr
ue

O
M

N
ID

as
hb

oa
rd

Pa
pi

ta
sh

vi
li
an

d
K
in

g 
(2

02
0)

W
D
C

D
st

A
SC

II
(I
A
G
A

20
02

)
Tr

ue
O
M

N
ID

as
hb

oa
rd

W
or

ld
D
at
a
C
en

te
rf

or
G
eo

m
ag

ne
tis

m
,K

yo
to

A
SY

,S
YM

A
SC

II
(I
A
G
A

20
02

)
Tr

ue
A
E

A
SC

II
(I
A
G
A

20
02

)
Tr

ue

G
FZ

Kp
,A

p
A
SC

II
Tr

ue
O
M

N
ID

as
hb

oa
rd

M
at
zk

a 
et
 a
l. 
(2

02
1)

an
d
Ya

m
az

ak
i e

t a
l. 
(2

02
2)

H
p

A
SC

II
Tr

ue
—

Su
ns

po
tn

um
be

r/
F1

0.
7

A
SC

II
Tr

ue
—

M
ad

rig
al

EI
SC

AT
H

D
F5

-E
IS

C
AT

,H
D
F5

-M
ar

dr
ig
al

Tr
ue

EI
SC

AT
D
as

hb
oa

rd
EI

SC
AT

in
co

he
re

nt
sc

at
te
rr

ad
ar

(I
SR

)m
ea

su
re

m
en

ts
M

ill
st
on

e
H
ill

IS
R

H
D
F5

Tr
ue

M
ill

st
on

eH
ill

D
as

hb
oa

rd
M

ill
st
on

e
H
ill

IS
R

D
M

SP
-e

H
D
F5

Tr
ue

D
M

ST
SD

as
hb

oa
rd

D
M

SP
SS

Jd
at
a

D
M

SP
-s
1

H
D
F5

Tr
ue

D
M

SP
TS

D
as

hb
oa

rd
D
M

SP
SS

M
&

SS
IE

S
D
M

SP
-s
4

H
D
F5

Tr
ue

D
M

SP
TS

D
as

hb
oa

rd
D
M

SP
SS

IE
S

G
N
SS

-T
EC

M
A
P

H
D
F5

Tr
ue

—
G
N
SS

TE
C

m
ap

s

JH
U
A
PL

D
M

SP
-S

SU
SI

-E
D
R_

AU
R

N
et
C
D
F

Tr
ue

D
M

SP
SS

U
SI

D
as

hb
oa

rd
Pa

xt
on

 e
t a

l. 
(2

00
2)

,J
H

U
A
PL

/, 
20

22
D
M

SP
-S

SU
SI

-S
D
RD

IS
K

N
et
C
D
F

Tr
ue

—
A
M

PE
RE

-F
itt

ed
N
et
C
D
F

Fa
lse

A
M

EP
RE

D
as

hb
oa

rd
A
nd

er
so

n 
et
 a
l. 
(2

00
2)

an
d
W

at
er

s e
t a

l. 
(2

00
1)

Su
pe

rD
A
RN

Po
te
nt

ia
lm

ap
A
SC

II
Fa

lse
—

G
re

en
w
al
d 
et
 a
l. 
(1

98
5)

ES
A-

EO
SW

A
RM

-E
FI

-L
P_

H
M

N
et
C
D
F

Tr
ue

—
Sw

ar
m

Pr
od

uc
tD

at
a
H
an

db
oo

k
SW

A
RM

-E
FI

-T
C
T0

2
N
et
C
D
F

Tr
ue

—

TU
D
el
ft

SW
A
RM

-D
N
S_

PO
D

A
SC

II
Tr

ue
—

D
oo

rn
bo

s, 
(2

01
2)

,S
ie
m

es
 e
t a

l. 
(2

01
6)

,M
ar

ch
 e
t a

l. 
(2

02
1)

,a
nd

va
n 

de
n 

IJ
ss
el
 e
t a

l. 
(2

02
0)

SW
A
RM

-D
N
S_

A
C
C

N
et
C
D
F

Tr
ue

—
G
RA

C
E-

D
N
S_

A
C
C

N
et
C
D
F

Tr
ue

—
G
O

C
E-

W
IN

D
_A

C
C

N
et
C
D
F

Tr
ue

—
C
H
A
M

P-
W

IN
D
_A

C
C

N
et
C
D
F

Tr
ue

—
C
H
A
M

P-
D
N
S_

A
C
C

N
et
C
D
F

Tr
ue

—

U
TA

rli
ng

to
n

G
IT

M
-2

D
A
LL

bi
na

ry
,s

av
-I
D
L

Fa
lse

—
G
IT

M
te
am

at
U
.T

ex
as

A
rli

ng
to

n,
D
en

g
an

d
Ri

dl
ey

 (2
01

4)
G
IT

M
-3

D
A
LL

bi
na

ry
,s

av
-I
D
L

Fa
lse

—

Frontiers in Astronomy and Space Sciences 08 frontiersin.org

https://doi.org/10.3389/fspas.2022.1023163
https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org/journals/astronomy-and-space-sciences#articles


Cai et al. 10.3389/fspas.2022.1023163

An example code14 on how to add a user-defined dataset to a
DataHub or Dashboard object can be found in the GitHub
repository.

2.1.3 DataHub
The class DataHub is at the top-level in the three core

classes. A DataHub object owns the attributes such as dt_fr,
dt_to, and visual as the global settings. Those attributes
are passed to the datasets being added. The DataHub object
uses the method dock () to add a DatasetSourced object
(as shown in List 1), or the method add_dataset () to
add a DatasetUser object. For the method dock (), the
required keyword arguments can be checked by the DataHub
method list_sourced_datasets () or by the online
documentation.

In summary, the module DataHub provides a framework
of managing data from measurements or simulations. The
module manages not only the data arrays but also the associated
properties. The functionality of the core classes makes it easy
to integrate multiple data products with different dependencies
and properties in one project. Also based on DataHub, the
following modules Visualization and Express can implement a
quick integration ofmultiple data in one figure, which helps users
to view space physics events in different aspects.

2.2 Visualization
(geospacelab.visualization)

2.2.1 Base classes and inheritances
With the module Visualization we aim to make publication-

quality figures using data and metadata provided from
DataHub. Currently, the module supports generating
static plots by wrapping the matplotlib objects. The
module is composed of three base classes (FigureBase,
DashboardBase, and PanelBase) and a series of
subclasses (see the classes marked by orange shades in
Figure 2). The class FigureBase is the top level container
for all plotting elements. The class is an inheritance of
matplotlib.figure.Figure. Thus, the same attributes
and methods used in matplotlib.figure.Figure can
be set and get from FigureBase. FigureBase contains
the method add_dashboard (), so that users can add one
or more dashboards (defined below) to the figure object. In
addition, users can add watermarks on the figure if needed.

The class DashboardBase is the second level container.
A dashboard is composed of one or more panels. The method
set_layout () of a DashboardBase object is used to set

14 https://github.com/JouleCai/geospacelab/blob/master/examples/
demo_user_defined_dataset.py.

FIGURE 4
A schematic diagram as an example of a figure with a complex
layout.

the dashboard’s position in a figure and to arrange the panels
by rows and columns. DashboardBase owns the methods
such as add_text () and add_title () to add text to the
dashboard coordinates.

The class PanelBase is the base level container. The
class wraps matplotlib.axes.Axes and adds additional
functionality. A PanelBase object has one major ax for
plotting. Several supporting axes can be added by the method
add_axes () for making the colorbar, legend box, and
other purposes. Like DashboardBase, PanelBase owns
the methods such as add_text (), add_label (), and
add_title () to add text in a panel coordinate instead of a
dashboard coordinate.

From DashboardBase and PanelBase, a series of
dashboards and panels have been developed (see also Figure 2).
First, the class Dashboard inherits from both DataHub

and DashboardBase. Hence, a Dashboard object can
be used as a data manager (DataHub object) to add various
datasets. Meanwhile, the class contains all functions from
DashboardBase. Second, the module Visualization is
currently focusing on two kinds of data: time-series data and
geospatial data. Hence, two groups of dashboard and panel
classes have been developed for making the time-series and
geospatial mapping plots, respectively.

Using those classes, we can build a figure with multiple
dashboards and panels for viewing various data simultaneously.
Figure 4 shows a schematic diagram as an example of
a figure with a complex layout. The figure is equivalent
to a FigureBase object. It contains three dashboards
(Dashboard objects). The position of each dashboard is

Frontiers in Astronomy and Space Sciences 09 frontiersin.org

https://doi.org/10.3389/fspas.2022.1023163
https://github.com/JouleCai/geospacelab/blob/master/examples/demo_user_defined_dataset.py
https://github.com/JouleCai/geospacelab/blob/master/examples/demo_user_defined_dataset.py
https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org/journals/astronomy-and-space-sciences#articles


Cai et al. 10.3389/fspas.2022.1023163

controlled by the Dashboard method set_layout ().
On the top, there is one geospatial dashboard (GeoDashboard
object) with two geospatial panels (GeoPanel objects). On the
bottom there are two time-series dashboards (TSDashboard
objects) on the left and right sides, respectively. Each
time-series dashboard contains several time-series panels
(TSPanel objects). Using GeospaceLAB, users can create
such figures with complex layouts in a simple and quick
way.

2.2.2 Visualizing time-series data
In space physics, most of the observational and simulation

data depends on time. Even an image or a map is typically
associated with a time. To view the time-series data,
we have developed the subclass TSDashboard from
Dashboard. Due to the inheritance, TSDashboard can
also be used as a data manager (DataHub) to dock/add
datasets.

The code in Listing 2 creates a TSDashboard object,
which is used to retrieve and view OMNI data and additional
geomagnetic indices instead of using the DataHub object as
shown in Listing 1. The TSDashboard object generates a
dashboardwithmultiple panels to show the time-series plots.The
panel layouts, including the number of panels and the variables
that will be plotted in one panel, are configured by calling
the method set_layout () with the keyword argument
panel_layouts.The plotting types, such as 1-D lines, points,
error bars, and 2-D surfaces will be automatically detected,
when the method draw () is called. Then the corresponding
dashboard will be generated. For a sourced dataset, the plot
property of a 1-D or a 2-D time-series variable have been preset.
Hence, users only need to set the panel layouts by one-line
command to make a free arrangement of panels and plots.

Figure 5 shows four time-series dashboards (a–d)
corresponding to the code in Listing 2. Only the keyword
argument panel_layouts is assigned with four different
values, respectively. The assigned value is a nested Python
list. The length of the outermost list indicates the number
of time-series panels that will be shown in a dashboard. The
element of the outermost list is a sub-list. Within the sub-list,
the Variable objects that are included will be plotted in that
panel. This one-line setting make it easy to add or remove panels
and plots.

Additional functionalities of TSDashboard with
TSPanel are listed as follows:

• Automatically adjust the time ticks and tick labels according
to the time bounds assigned to dt_fr and dt_to.
• Support common 1-D and 2-D plot types like in
matplotlib, including line plots, scatters, bars,
pcolormesh, and image.
• Extend and customize plot types by registering new plotting

function to the class TSDashboard.

Listing 2. A code example for obtaining and visualizing OMNI and

geomagnetic index data from three sourced datasets. The dashboard

generated by this code is shown in Figure 5D.

• Detect and show the time gaps for regularly measured
data, e.g., the blanks between some data points shown in
Figure 5D top panel.
• Provide several marking tools, such as vertical lines across

panels, horizontal bars, and rectangular shadings. The
marking tools are often used to indicate interesting time
periods for a event analysis, as shown in Figure 5D.
• Support to generate multiple lines of tick labels that indicate

different support data, respectively. For example, this option
is useful for viewing the satellite data depending not only on
UT but also on geospatial locations simultaneously (see also
Figure 9 bottom).

2.2.3 Visualizing geospatial data
Based on Dashboard, the subclass GeoDashboard is

used for viewing the geospatial data. A GeoDashboard

object uses the method set_layout () to arrange the
GeoPanels (GeoPanel objects) in multiple rows and columns.
The class GeoPanel inherits from PanelBase and wraps

Frontiers in Astronomy and Space Sciences 10 frontiersin.org

https://doi.org/10.3389/fspas.2022.1023163
https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org/journals/astronomy-and-space-sciences#articles


Cai et al. 10.3389/fspas.2022.1023163

FIGURE 5
An example of using the keyword argument panel_layouts to set the panel layouts in a time-series dashboard. The keyword value determine
the panel layout of a dashboard as shown in panels (A–D). In panel (D), from top to bottom are the IMF Bx, By and Bz components, the solar
wind speed, the solar wind dynamic pressure, and Kp and SYM-H indices during the 2015 St. Patrick’s Day storm. The dashed vertical lines,
shadings, top bars indicate the three phases of the storm, including the initial phase (or SSC), main phase (MP), and recovery phase (RP)15.

the “GeoAxes” of the package cartopy. As a result, users can
make most types of map projections in cartopy by adding the
GeoPanel object to the GeoDashboard object.

Themap projections in cartopy use the geographic (GEO)
coordinate system. However, in many space physics studies,
especially when examining the magnetosphere-ionosphere-
thermosphere (M-I-T) coupling, a geomagnetic coordinate
system is used, because the geomagnetic field plays an important
role in governing the dynamics and electrodynamics in the M-
I-T system. To solve the mapping projections in a geomagnetic
coordinate system, a subclass ofGeoPanel has been developed,
so called PolarMapPanel.

Using PolarMapPanel, users can project the 1-D or
2-D geospatial data on the polar map in three view styles:

15 Source code: https://github.com/JouleCai/geospacelab/blob/master/
examples/manuscript_example_2_%20omni.py.

1) polar projection with the geographic latitude/longitude
(GLON-fixed), 2) polar projection with geographic latitude
and local solar time (LST-fixed), and 3) polar projection with
geomagnetic latitude and magnetic local time (MLT-fixed).
The polar projection is based on the stereographic projection
method. The class PolarMapPanel supports mapping in
several geomagnetic coordinate systems, such as Altitude
Adjusted Corrected Geogmagnetic Coordinates (AACGM),
Magnetic Apex Coordinates (APEX), and Quasi-Dipole
coordinates (QD) (see also Laundal and Richmond, 2017).
The coordinate transformations are supported by the module
SpaceCoordinateSystem.

Figure 6 shows an example of the GNSS TEC maps in the
three view types at 0620 UT on 17 March 2015 during the St.
Patrick’s Day storm. The coastlines, grid lines and labels can
optionally be added in all three views, which helps users to
identify and pinpoint interesting structures and their locations
in the polar maps (see the discussion in Section 3.2).

Frontiers in Astronomy and Space Sciences 11 frontiersin.org

https://doi.org/10.3389/fspas.2022.1023163
https://github.com/JouleCai/geospacelab/blob/master/examples/manuscript_example_2_%20omni.py
https://github.com/JouleCai/geospacelab/blob/master/examples/manuscript_example_2_%20omni.py
https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org/journals/astronomy-and-space-sciences#articles


Cai et al. 10.3389/fspas.2022.1023163

FIGURE 6
An example of the polar maps showing the GNSS/TEC in the northern hemisphere at 0620 UT on 17 March 2015 during the SSC of the 2015 St.
Patrick’s Day storm in three view modes: left—fixed at the geographic longitude of 0°, middle—fixed at the solar local time (SLT) of 0 o’clock,
and right—fixed at 0 MLT in the APEX coordinate system16.

In summary, a PolarMapPanel can be used to:

• Show polar maps in three view styles: GLON-fixed, LST-
fixed, and MLT-fixed.
• Utilize optional geomagnetic coordinate systems, so far

AACGM, APEX, and QD are included.
• Add coastlines in either a geographic or a geomagnetic

coordinate system.
• Add latitude and longitude grid lines and their labels.
• Support basic 1-D or 2-D plots provided by matplotlib

and cartopy.
• Overlay satellite trajectories with time ticks and tick labels

(see nine top).
• Overlay satellite cross-track vectors along the satellite

trajectory (see nine top).
• Mark ground-based sites on the polar map (see nine top).
• Re-sample or re-grid data for proper mapping.

In addition to PolarMapPanel, other subclasses of
GeoPanel are currently under development. Several more
types of map projections will be added for both global and
regional mapping in the future.

2.3 Express (geospacelab.express)

The module Express contains a number of high-
level dashboards developed from TSDashboard or
GeoDashboard. Those dashboard classes are shown
in Figure 2 with yellow shades. A set of classes inherit

16 Source code: https://github.com/JouleCai/geospacelab/blob/master/
examples/manuscript_example_4_GNSS.py.

from TSDashboard, including EISCATDashboard,
MHODashboard,OMNIDashboard, andDMSPDashboard.
The class names have indicated the purposes. They are used
for viewing time-series plots for the variables from specific
datasets (EISCAT, Millstone Hill Observatory, OMNI, DMSP,
respectively). Users only need a few input to get the data and
make a quicklook figure.

The code in Listing 3 is used to generate a quicklook
dashboard for the ionospheric parameters measured by the
Millstone Hill incoherent scatter radars during the 2015 St.
Patrick’s Day storm from 12 UT on 17 March 2015 to 12
UT on 19 March 2015. By importing the high-level dashboard
MillStoneHillISRDashboard, only a few lines of code
can generate a quicklook dashboard. The output dashboard is
shown in Figure 7A. The dashboard contains five panels. From
top to bottom are altitude versus UT variations for 1) electron
density, 2) electron temperature, 3) ion temperature, 4) line-of-
sight ion velocity, as well as 5) the radar parameters.

The dashboards in Express are also used to add
customized functionality for a specific dataset. For
example, the dashboards like EISCATDashboard and
MillstoneHillDashboard provide methods to check the
beamdirections of a radar antenna. In case of a steerable antenna,
the radar experiment is often made with a multi-beam scanning
mode. To check and select beams, several particular methods
have been developed. As shown in Figure 7B, the dashboard
shows five panels in the same format as on the left, but with
the selected beam with az = 0° and el = 45°. To generate this
quicklook dashboard, users only need to uncomment the line
with dashboard.select_beams () in the code in List 3.

In addition, Figure 7B shows the ionospheric parameters as
a function of the AACGM MLAT instead of the altitude along
the y-axis. The configuration is implemented by making a minor
modification of the attributes in the Visual object appended to
the corresponding Variable object.

Frontiers in Astronomy and Space Sciences 12 frontiersin.org

https://doi.org/10.3389/fspas.2022.1023163
https://github.com/JouleCai/geospacelab/blob/master/examples/manuscript_example_4_GNSS.py
https://github.com/JouleCai/geospacelab/blob/master/examples/manuscript_example_4_GNSS.py
https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org/journals/astronomy-and-space-sciences#articles


Cai et al. 10.3389/fspas.2022.1023163

FIGURE 7
An example of two quicklook figures generated from MillstonHillDashboard in Express, which shows the Millstone Hill incoherent scatter
radar measurements during the 2015 St. Patrick’s Day storm. (A): Measurements from the steerable antenna MISA with multiple scanning beams.
(B): Measurements from the same radar, but only one beam selected with the az = 0° (azimuth angle) and el = 45° (elevation angle)17.

Listing3. Acodeexample forgeneratingaquicklookdashboardofMill Stone

Hill measurements during the 2015 St. Patrick's Day storm from 12UT on 17

March 2015 to 12 UT on 19March 2015.

2.4 SpaceCoordinateSystem
(geospacelab.cs)

In space physics research, establishing a proper coordinate
system and frame of reference helps us to simplify a
given problem and to better understand the underlying

physical processes. A variety of coordinate systems and
frame of references exists which are widely used (see the
reviews by Hapgood (1992), Laundal and Richmond (2017);
Shi et al. (2019)). Several python packages have been developed
for coordinate system transformations, e.g., AACGMV2,
APEXPY,GEOPACK, and IGRF (Michael, 2021).Those packages
are widely used, however, the functions from different packages
are called in different ways and the outputs have different data
structures. The module SpaceCoordinateSystem aims to provide
a unified interface for the coordinate transformation among
different coordinate systems. The module wraps those popular
packages and develops coordinate system classes based on two
base classes: SpaceCSBase and CoordinateBase.

Figure 8 shows the UML class diagram of the module
SpaceCoordinateSystem. The base class CoordinateBase

manages a collection of coordinates in a specific coordinate
system. SpaceCSBase abstracts the functions for the
coordinate transformation. A SpaceCSBase object
represents a coordinate system, which is appended with
one CoordinateBase object recording the coordinate
data.

17 Source code: https://github.com/JouleCai/geospacelab/blob/master/
examples/manuscript_example_3_%20isr.py.

Frontiers in Astronomy and Space Sciences 13 frontiersin.org

https://doi.org/10.3389/fspas.2022.1023163
https://github.com/JouleCai/geospacelab/blob/master/examples/manuscript_example_3_%20isr.py
https://github.com/JouleCai/geospacelab/blob/master/examples/manuscript_example_3_%20isr.py
https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org/journals/astronomy-and-space-sciences#articles


Cai et al. 10.3389/fspas.2022.1023163

FIGURE 8
A UML class diagram that describes the main structure of the module SpaceCoordinateSystem in the same format as in Figure 2. The classes
marked by * are under development.

Based on those two classes, two groups of classes
have been developed: one group for spherical coordinate
systems and the other for Cartesian coordinate systems.
So far, the classes for spherical coordinate systems include
GEOSpherical, LENUSpherical, AACGM, and APEX.
The classes for Cartesian coordinate systems include GEOC,
LENUCartesian, GSECartesian, and GSMCartesian.
The name LENU refers to the local east-north-upward
coordinate system fixed at the Earth’s surface. Those classes use
unified commands to achieve the coordinate transformation. For
example

cs_LENUC = cs_LENUS.to_cartesian ()

cs_GEO = cs_LENUC.to_GEO ()

where the arguments cs_LENUC, cs_LENUS and cs_GEO
are the objects of LENUCartesian, LENUSpherical, and
GEOSpherical, respectively. The coordinate transformations
are completed by calling the functions with the same structure.
The coordinate data stored in those objects also have the same
data structure.

The module SpaceCoordinateSystem supports the modules
such as DataHub, Visualization, and Express in case a coordinate
transformation is needed. On the other hand, users can use the
functionality provided by SpaceCoordinateSystem for their own

codes. For this purpose, an example code19 is provided in the
GitHub repository.

2.5 Toolbox (geospacelab.toolbox)

Themodule Toolbox is built mainly with a function-oriented
design. The module is composed of several sub-modules. Each
sub-module contains a series of functions. Figure 1 lists four
commonly used sub-modules in Toolbox, including:

• PythonBasic: provides the utility functions associated with
the basic data types in Python, such as numerical number,
list, str, and dict.
• Logging : provides a customized logging system for tracking

the events that occur when the package runs.
• NumpyArray: provides the utility functions associated with
numpy arrays.

19 https://github.com/JouleCai/geospacelab/blob/master/examples/
demo_cs_transform.py.

Frontiers in Astronomy and Space Sciences 14 frontiersin.org

https://doi.org/10.3389/fspas.2022.1023163
https://github.com/JouleCai/geospacelab/blob/master/examples/demo_cs_transform.py
https://github.com/JouleCai/geospacelab/blob/master/examples/demo_cs_transform.py
https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org/journals/astronomy-and-space-sciences#articles


Cai et al. 10.3389/fspas.2022.1023163

• Datetime: provides the utilitarian functions for the date
and time, including convert time between different formats
(such as unix_time, datetime, and MATLAB datenum) and
supplementary functions for datetime.

2.6 Configuration (geospacelab.config)

Themodule configuration contains the classPreferences
tomanage the global settings in the package. Users can customize
the global settings either temporally or permanently, based on
the method set_user_config () of Preferences. For
example, a basic configuration is needed,when theGeospaceLAB
package is imported for the first time after installation. The
configuration is to set the default root directory that stores the
data downloaded by the sourced dataset classes. In addition,
when accessing the Madrigal online database, it will ask for
inputs of the user’s full name, email, and affiliation as cookies.The
module Configuration alsomanages the cookies, so that users do
not need to input those cookies every time when accessing the
Madrigal database.

A configuration file in the toml format is used to
record the users’ default settings. The file can be found
at “ [USER_HOME_DIRECTORY]/.geospacelab/config.toml”.
Users can modify the default settings recorded in the file. The
new settings will be automatically loaded when the package is
imported the next time.

In the current version (v0.5.2), the Preferences object is
used only to set several key parameters. However, with increasing
functionality of the package, users may need to control more
global settings for the modules and functions. For this purpose,
the class Preferences provides a frame to configure the
global settings and it can be easily extended in future.

3 Applications

The coremodules make GeospaceLAB suitable for managing
and visualizing various data sets in space physics. Users can
directly use the sourced datasets listed in Table 1 for their
research projects. The number of the sourced datasets will
increase in the future.

Currently, the sourced datasets include data from ground-
based measurements (e.g., EISCAT, Millstone Hill incoherent
scatter radars and SuperDARN), satellite measurements (e.g.,
DMSP, SWARM, and Grace), simulations (GITM), and various
solar and geomagnetic activity indices (e.g., F10.7, Kp, Ap,
Dst, ASY/SYM, and AE). Those datasets are typically used in
magnetosphere-ionosphere-thermosphere coupling studies. A
few examples are given in the following subsection. These are
chosen to illustrate the capabilities of GeospaceLAB, but do not
aim at a detailed scientific analysis of the events.

3.1 Space weather events

Users can search and study space weather events by
combining solar wind and geomagnetic activity index data in
a dashboard. For example, Figure 5D (see also Section 2.1.2.1)
shows a space weather event during the St. Patrick’s Day in
2015. This famous St. Patrick’s Day storm has been studied in
a number of papers (e.g., Astafyeva et al., 2015; Wu et al., 2016;
Zhang et al., 2017, and references therein). Figure 5D, shows
an interplanetary coronal mass ejection (ICME) arriving at the
Earth’s magnetospause at about 0445 UT on 17 March 2015,
which is associated with an enhanced magnetic field strength
in the top panel, a sudden increase in the solar wind velocity
(second panel) and an enhancement in the dynamic pressure
(third panel). The interaction between the ICME and the Earth’s
magnetosphere causes a strong geomagnetic storm. The SYM-
H index shown in the bottom panel can be used to identify the
storm phases. The sudden storm commencement (SSC) (also
referred as the initial phase) is the time period with positive
SYM-H (in this case between 0445 and 0640 UT on 17 March
2015) the main phase (MP) starts when the SYM-H index turns
negative (in this case at 0640 UT) and the main phase ends and
the recovery phase (RP) begins, when the SYM-H index has
reached its minimum value (in this case at 2250 UT). Finally,
when the SYM-H index recovers, the recovery phase ends (in
this case at 1800 UT on 18 March 2015). Users can easily mark
the storm phases using the marking methods provided by the
class TSDashboard, including vertical lines, shadings, and
topbars.

3.2 Global view of the key parameters in
the ionosphere-thermosphere system

GeospaceLAB contains classes such asGeoDashboard and
GeoPanel for visualizing geospatial data. To understand the
physics behind ionospheric features, it is often necessary to study
2D-maps in geomagnetic rather than geographic coordinates,
as the ionospheric coupling with the solar wind is guided
by the geomagnetic field. A geographic view is on the other
hand often necessary, e.g., to be able to examine whether a
ground-based station is located in the proximity of an interesting
ionospheric feature. However, online datasets often provide data
only in geographic coordinates. The class PolarMapPanel
inheriting from GeoPanel can be used for mapping 1-D or 2-
D data in a polar map with either geographic or geomagnetic
coordinates.

Figure 6 (discussed in Section 2.2.3), shows the global
distribution of the total electron content (TEC) derived from the
GNSSnetwork at 0620UTduring the SSCof the 2015 St. Patrick’s
Day storm. With the help of the global maps, the researchers
can identify both large- and meso-scale structures in a 2-D

Frontiers in Astronomy and Space Sciences 15 frontiersin.org

https://doi.org/10.3389/fspas.2022.1023163
https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org/journals/astronomy-and-space-sciences#articles


Cai et al. 10.3389/fspas.2022.1023163

FIGURE 9
Measurements from the DMSP and SWARM satellites around 1256 UT on 17 March 2015. Top-left: DMSP/SSUSI EDR-AUR auroral image in the
LBHS band overlaid with both DMSP (white) and SWARM-A/C (magenta) trajectories, top-right: DMSP/SSUSI EDR-DISK image in the same
format as the top-left, bottom-left: DMSP SSIES, SSJ, and SSM measurements along the trajectory shown in top panels, and bottom-right:
SWARM A and C measurements of electron density, electron temperature, and cross-track and ram velocities along the trajectory shown in the
top panels. This figure shows a complex layout corresponding to Figure 4.18

TEC map. For example, the maps show the typical large-scale
distribution of the TEC fromdayside to the nightside due to solar
radiation. In addition, a mid-latitude trough is seen over North
America, extending from the evening sector to the post mid-
night sector. Using GeospaceLAB, it is also feasible to overlay
additional layers on the top of the TEC maps for a comparison
across multiple types of data, e.g., a contour plot of the electric
potential measured by SuperDARN or cross-track vectors along
a satellite trajectory.

18 Source code: https://github.com/JouleCai/geospacelab/blob/master/
examples/manuscript_example_5_dmsp_swarm.py.

3.3 Regional or local responses

The sourced datasets include local measurements
from an individual ground-based instrument or in situ
measurements along a satellite trajectory. To view the local
ionospheric/thermospheric responses, the TSDashboard and
TSPanel described in Section 2.2.2 are often used.

As shown in Figure 7, the Millstone Hill incoherent radar
measured several basic plasma parameters in the ionosphere
during the MP and RP of the 2015 St. Patrick’s Day storm.
The measurements show a strong enhancement of the electron
density in the F-region at around 1800 UT on 17 March 2015
during the MP. This enhancement is identical and associated
with the storm-enhanced density (SED) in the mid-latitude
ionosphere (Zhang et al., 2017).

Frontiers in Astronomy and Space Sciences 16 frontiersin.org

https://doi.org/10.3389/fspas.2022.1023163
https://github.com/JouleCai/geospacelab/blob/master/examples/manuscript_example_5_dmsp_swarm.py
https://github.com/JouleCai/geospacelab/blob/master/examples/manuscript_example_5_dmsp_swarm.py
https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org/journals/astronomy-and-space-sciences#articles


Cai et al. 10.3389/fspas.2022.1023163

The two dashboards shown in Figure 7 are generated by
the high-level dashboard object in the module Express for a
quicklook view. Again, users can make more customized plots
by using the lower-level TSDashboard class.

3.4 Conjugate satellite observations

The module Visualization gives the flexibility to arrange
multiple dashboards and panels in one figure (see e.g., Figure 4),
and to combine conjugate satellite observations and integrate
these in a single figure.

Figure 9 shows an event with near-simultaneous
measurements from theDMSP and SWARMA/C satellites above
the northern auroral oval. The layout of the figure corresponds
to that shown in Figure 4. On the top is the geospatial dashboard
composed of two polar maps. The polar maps show the DMSP
SSUSI auroral images in the LBHS wavelength band, overlaid
with the trajectories of the two satellites and the cross-track
velocities measured by the DMSP F18 satellite. In addition,
two EISCAT incoherent scatter radar sites in Tromsø and on
Svalbard, Norway are marked with black triangles on the maps.

This example shows an interesting event of a large-
scale transpolar arc (TPA) (Kullen, 2012; Hosokawa et al., 2020)
appearing in the middle of the polar cap during the main phase
of the 2015 St. Patrick’s Day storm. Both, the DMSP F18 and
the SWARM A/C satellite crossed the northern hemisphere from
the duskside to the dawnside almost at the same time. The two
satellites measured the ionospheric parameters of the TPA at two
locations: DMSP F18 was close to the dayside tip of the TPA and
SWARM A/C across the main part of the TPA.

The in situ measurements of the DMSP F18 satellite are
shown in the time-series dashboard on the bottom-left side,
and the Swarm A/C measurements are shown on the bottom-
right side. On the bottom, time tick labels are shown with
the corresponding geospatial information, including GEO/LAT,
GEO/LON, AACGM/LAT, and AACGM/MLT. The additional
labels help us to identify the location of the key features shown in
the time-series dashboards and make it easier to compare those
with the auroral structures shown in the geo-dashboard on the
topside of the figure. The entire figure including image, time
series plots and all labels was produced with the visualization
module. Among other details, the time series reveals that the
TPA lies on sunward plasma flow (top panel at 1554 UT in
DMSP time-series plots and top panel at 1551 UT in SWARM
time-series plots).The bottom panel of the DMSPmeasurements
shows that the TPA is populated by plasma sheet ions, hinting on
a source region on closed magnetic field lines (Kullen, 2012).

The two polar maps in Figure 9 show the same auroral
structures, however, the appearances are slightly different. The
left side shows SSUSI EDR-AUR data and the right side
shows SSUSI SDR-DISK data. Both data products are listed in

Table 1. The SDR-DISK image is a lower-level data product
and the daylight dilution of the image has not been removed.
The key issue in the two maps is that the EDR-AUR image
on the left is slightly tilted counter-clockwise with respect
to the satellite trajectory. The SDR-DISK image position is
normal, parallel to the satellite trajectory as expected. The
difference is plausibly caused by using a different version of
the AACGM model by the data provider and GeospaceLAB.
The SDR-DISK product provides image grids in the geographic
coordinate system. The geographic coordinates are transformed
to the AACGM coordinates by GeospaceLAB when the SDR-
DISK image is mapped. However, the EDR-AUR product
only includes the AACGM coordinates for the image grids.
GeospaceLAB uses that AACGM grids directly to map the
image. Since the former mapping with the SDR-DISK data
is consistent with the mapping of the satellite trajectory, for
which the coordinates are also transformed from the geographic
coordinates by the module SpaceCoordinateSystem, we suggest
that the version of AACGM model used by the SSUSI Team
may be different from the AACGMV2 python package used in
GeospaceLAB.

4 Current status and future

The GeospaceLAB project was started in 2021. The initial
establishment was based on the proprietary MATLAB and
Python libraries used in the authors’ own research works
(e.g. Cai et al., 2021). After one and a half years of systematic
development, GeospaceLAB has become stable for most of
the modules and functions. The package is open-sourced
with the BSD-3-Clause license and available in a GitHub
repository (JouleCai/geospacelab version v0.5.2). The package
is also uploaded to PyPI and can be easily installed via
“pip”.

4.1 Issues and solutions

The development of GeospaceLAB is ongoing. The main
structures of the coremodules in the package arewell established.
Still, there are several known issues regarding the package itself,
the package dependencies, and the data sources that would
benefit from improvement or expansion. These are listed below:

• So far, the package has been developed with focus on the
demands by the authors. It does not yet cover several data
products, specifically data from the Earth’s magnetosphere
or heliosphere.

Due to the well-designed core framework, it is feasible to
include more datasets in DataHub, add more plotting routines

Frontiers in Astronomy and Space Sciences 17 frontiersin.org

https://doi.org/10.3389/fspas.2022.1023163
https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org/journals/astronomy-and-space-sciences#articles


Cai et al. 10.3389/fspas.2022.1023163

in Visualization, and expand SpaceCoordinateSystem with more
coordinate system transformation methods. To do so, additional
workflows and maintenance are required. Hence, we would
like to invite contributors to join this project by submitting
new data products and adding new functionalities. Guidelines
for advanced users and developers are available in the online
documentation20.

• The first priority for GeospaceLAB is to include high-level
data products from data providers. The term “high-level
data” means that the data product is calibrated, qualified, or
can be directly used in research studies.However, issueswith
the datamay still occur. For example, themapping difference
between two kinds of DMSP SSUSI products is discussed
in Section 3.4. We highly recommend that users should
always familiarize themselves with the data definitions,
formats, and usage policy from the data providers. The
DatasetSourced object in GeospaceLAB has the
attributes, such asdatabase,facility, andproduct,
which record the URL and notes of data usage for individual
data products. The users can extract the information and
contact the principal investigators of the data product if
needed.
• The package is compatible with most of the dependent

packages. However, sometimes users have reported that the
packageAACGMV2 returns errors when it is imported from
GeospaceLAB. This happened mainly when a user used a
specific integrated development environment (IDE), such as
“PyCharm” or “VS. Code”.The issue can be solved, if the IDE
“Spyder” is used. However, a more general solution should
be implemented in future.We have reported this issue to the
GitHub repository of AACGMV2.
• The package has mostly been tested in the operating

systems (OS) of Ubuntu and macOS. Its compatibility with
the Windows OS and other Linux distributions is not
guaranteed.

We thank the users who have contributed to the
GeospaceLAB project by pointing out open issues and providing
feedback on GitHub. The activities have helped to improve the
performance of the package.

4.2 Proposed features

Since the core modules of GeospaceLAB are easily
extendable, many new features can be added to them in future
releases. The next major release will be version 1.0, scheduled for

20 https://geospacelab.readthedocs.io/en/latest/dev/guidance.html.

the end of 2022. In version 1.0, the package will become more
stable, and will include the following features:

• Extension of the sourced datasets with several commonly
used data products in the community.
• A well-structured online documentation.
• Support of several new plotting styles in the Visualization

module for the 1-D or 2-D data.
• Support of more coordinate system transformations in the

module SpaceCoordinateSystem.
• Enhanced testing of the package to make it more robust

using the Python package PyTest.

5 Summary

GeospaceLAB is an easy-to-use, extendable Python package
for managing and visualizing observational and modeling data
that is used in the space physics community. The package has
been applied to research topics regarding the study of M-I-T
coupling in the authors’ research groups. So far, the package has
been downloaded fromGitHub or PyPI with cumulative number
of more than 28,000 times. In each released version, the number
of users has been more than 50 (See also the online statistics21).

GeospaceLAB bridges data providers and scientists. It
provides systematic solutions in data management, visualization,
and space coordinate transformation.

• GeospaceLAB can be used as a data manager for various
observational and modeling data in space physics. The data
products can be obtained from external providers, e.g., an
online database, or from the users’ local database. For online
data, GeospaceLAB aims to achieve automatic downloading,
storing, and loading of data.
• GeospaceLAB can also generate high-qualify publication-

ready figures. With specialized functions and tools, the
package is particularly suitable for viewing time-series and
geospatial data in space physics. Users can easily combine
multiple kinds of data and integrate them into one figure.
• GeospaceLAB provides a simple, unified interface for

transforming from one space coordinate system to
another. Currently, it can be used to switch between the
geographic (GEO), geocentric (GEOC), AACGM, APEX,
QD, and local east-north-upward (LENU) coordinate
systems. More transformations will be added in the
future.
• The functionality of GeospaceLAB described in previous

sections makes it possible to advance quickly with the
data analysis itself. Since a Variable object stores

21 https://pepy.tech/project/geospacelab.

Frontiers in Astronomy and Space Sciences 18 frontiersin.org

https://doi.org/10.3389/fspas.2022.1023163
https://geospacelab.readthedocs.io/en/latest/dev/guidance.html
https://pepy.tech/project/geospacelab
https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org/journals/astronomy-and-space-sciences#articles


Cai et al. 10.3389/fspas.2022.1023163

the data in the form of NumPy array, GeospaceLAB is
compatible with most popular packages in data analysis,
such as NumPy, SciPy, and Pandas. In addition, the data
arrays collected by GeospaceLAB are independent of file
segments. That could potentially be used for analyzing
big data in collaboration with other popular Python
libraries.

Since the framework in the core modules is well structured,
the package is highly extendable for multiple purposes in space
research. We invite members of the community to contribute
to GeospaceLAB, by using the package for their research,
reporting issues, proposing new functions, and joining its further
development.

Data availability statement

The original contributions presented in the study
are included in the article/supplementary material,
further inquiries can be directed to the corresponding
author.

Author contributions

LC is the principal developer of the GeospaceLAB package
and wrote the manuscript. AA is the principal investigator of
LC’s postdoc project and suggested the functionality of the
package. AK and YD were the supervisors for LC’s former
projects and provided comments on the package development.
S-RZ commented on the usage of Millstone Hill ISR and GNSS
TEC data. YZ commented on the usage of DMSP SSUSI data. IV
and HV helped the development of the package. All co-authors
contributed to the discussions and provided editorial comments
on the manuscript.

Funding

The development of the GeospaceLAB package is supported
by the Kvantum Institute at University of Oulu. AK and LC
acknowledge postdoc grant DNR-155A/17 funded by Swedish
National Space Agency. YD was supported by AFOSR through
award FA9559-16-1-0364 and NASA grants 80NSSC20K0195,
80NSSC20K1786 and 80NSSC22K0061. S-RZ acknowledges
MURI grant ONR15-FOA-0011 and NSF grant AGS-2033787.
HV was supported by the Academy of Finland project 314664.
The authors acknowledge all the developers who developed
the dependencies used in GeospaceLAB. The authors also
acknowledge the data providers listed in Table 1 to support the
open access of data. Millstone Hill ISR observation, GNSS TEC
data processing, and Madrigal database system are provided to
the community by MIT under the US NSF grant AGS-1952737
support. We acknowledge use of NASA/GSFC’s Space Physics
Data Facility’s OMNIWeb (or CDAWeb or ftp) service, and
OMNI data.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those
of the authors and do not necessarily represent those of
their affiliated organizations, or those of the publisher,
the editors and the reviewers. Any product that may be
evaluated in this article, or claim that may be made by its
manufacturer, is not guaranteed or endorsed by the publisher.

References

Anderson, B., Takahashi, K., Kamei, T., Waters, C., and Toth, B. (2002).
Birkeland current system key parameters derived from Iridium observations:
Method and initial validation results. J. Geophys. Res. 107, 1079. SMP–11.
doi:10.1029/2001ja000080

Astafyeva, E., Zakharenkova, I., and Förster, M. (2015). Ionospheric response to
the 2015 St. Patrick’s day storm: A global multi-instrumental overview. J. Geophys.
Res. Space Phys. 120, 9023–9037. doi:10.1002/2015ja021629

Burrell, A. G., Halford, A., Klenzing, J., Stoneback, R., Morley, S. K., Annex,
A., et al. (2018). Snakes on a spaceship—an overview of Python in heliophysics.
J. Geophys. Res. Space Phys. 123, 10–384. doi:10.1029/2018ja025877

Cai, L., Kullen, A., Zhang, Y., Karlsson, T., and Vaivads, A. (2021). DMSP
observations of high-latitude dayside aurora (HiLDA). JGR. Space Phys. 126,
e2020JA028808. doi:10.1029/2020ja028808

Caswell, T. A., Droettboom, M., Lee, A., de Andrade, E. S.,
Hoffmann, T., Klymak, J., et al. (2022). Matplotlib/matplotlib: Rel: 3.5.
doi:10.5281/zenodo.6513224

[Dataset] Michael, (2021). space-physics/igrf: IGRF model.
doi:10.5281/zenodo.5560949

Deng, Y., and Ridley, A. J. (2014). The global ionosphere-thermosphere model
and the nonhydrostatic processes. Model. Ionosphere–Thermosphere Syst., 85–100.
doi:10.1002/9781118704417.ch8

Doornbos, E. (2012). Thermospheric density and wind determination from
satellite dynamics. Springer Science & Business Media.

Emmert, J., Richmond, A., and Drob, D. (2010). A computationally compact
representation of Magnetic-Apex and Quasi-Dipole coordinates with smooth base
vectors. J. Geophys. Res. 115. doi:10.1029/2010JA015326

Frontiers in Astronomy and Space Sciences 19 frontiersin.org

https://doi.org/10.3389/fspas.2022.1023163
https://doi.org/10.1029/2001ja000080
https://doi.org/10.1002/2015ja021629
https://doi.org/10.1029/2018ja025877
https://doi.org/10.1029/2020ja028808
https://doi.org/10.5281/zenodo.6513224
https://doi.org/10.5281/zenodo.5560949
https://doi.org/10.1002/9781118704417.ch8
https://doi.org/10.1029/2010JA015326
https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org/journals/astronomy-and-space-sciences#articles


Cai et al. 10.3389/fspas.2022.1023163

Engels, G., Heckel, R., and Sauer, S. (2000). “UML—A universal Modeling
Language?” in International conference on application and theory of petri nets
(Springer), 24–38.

Greenwald, R., Baker, K., Hutchins, R., and Hanuise, C. (1985). An HF phased-
array radar for studying small-scale structure in the high-latitude ionosphere.Radio
Sci. 20, 63–79. doi:10.1029/rs020i001p00063

Hapgood, M. (1992). Space physics coordinate transformations: A user guide.
Planet. Space Sci. 40, 711–717. doi:10.1016/0032-0633(92)90012-d

Harris, C. R., Millman, K. J., van der Walt, S. J., Gommers, R., Virtanen,
P., Cournapeau, D., et al. (2020). Array programming with NumPy. Nature 585,
357–362. doi:10.1038/s41586-020-2649-2

Hosokawa, K., Kullen, A., Milan, S., Reidy, J., Zou, Y., Frey, H. U., et al. (2020).
Aurora in the polar cap: A review. Space Sci. Rev. 216, 15–44. doi:10.1007/s11214-
020-0637-3

Hunter, J. D. (2007). Matplotlib: A 2D graphics environment. Comput. Sci. Eng.
9, 90–95. doi:10.1109/MCSE.2007.55

Jhuapl/, S. S. U. S. I. (2022). DMSP SSUSI data products. Available at: https://
ssusi.jhuapl.edu/(Accessed August 19, 2022).

Kullen, A. (2012). Transpolar arcs: Summary and recent results. Auror.
Phenomenology Magnetos. Process. Earth Other Planets, Geophys. Monogr. Ser 197,
69–80. doi:10.1029/2011GM001183

Laundal, K. M., and Richmond, A. D. (2017). Magnetic coordinate systems.
Space Sci. Rev. 206, 27–59. doi:10.1007/s11214-016-0275-y

Luciano, R. (2015). Fluent Python: Clear, concise, and effective programming.
Sebastopol, CA, United States: OŔeilly Media.

March, G., Van Den Ijssel, J., Siemes, C., Visser, P. N., Doornbos, E. N.,
and Pilinski, M. (2021). Gas-surface interactions modelling influence on satellite
aerodynamics and thermosphere mass density. J. Space Weather Space Clim. 11, 54.
doi:10.1051/swsc/2021035

Matzka, J., Stolle, C., Yamazaki, Y., Bronkalla, O., and Morschhauser,
A. (2021). The geomagnetic Kp index and derived indices of
geomagnetic activity. Space weather. 19, e2020SW002641. doi:10.1029/
2020sw002641

MetOffice (20102015). Cartopy: A cartographic python librarywith amatplotlib
interface. Exeter, Devon.

Papitashvili, N. E., and King, J. H. (2020). OMNI combined heliospheric
observations (COHO), merged magnetic field, plasma and ephemeris, definitive
hourly data. doi:10.48322/6ffx-3441

Paxton, L. J., Morrison, D., Zhang, Y., Kil, H., Wolven, B., Ogorzalek, B. S.,
et al. (2002). Validation of remote sensing products produced by the special sensor
ultraviolet scanning imager (SSUSI): A far uv-imaging spectrograph on dmsp f-
16. Opt. Spectrosc. Tech. remote Sens. Instrum. Atmos. space Res. IV 4485, 338–348.
doi:10.1117/12.454268

Richmond, A. (1995). Ionospheric electrodynamics using magnetic Apex
coordinates. J. Geomagn. Geoelec. 47, 191–212. doi:10.5636/jgg.47.191

Shepherd, S. (2014). Altitude-adjusted corrected geomagnetic coordinates:
Definition and functional approximations. J. Geophys. Res. Space Phys. 119,
7501–7521. doi:10.1002/2014ja020264

Shi, Q., Tian, A., Bai, S., Hasegawa, H., Degeling, A., Pu, Z., et al. (2019).
Dimensionality, coordinate system and reference frame for analysis of in-situ space
plasma and field data. Space Sci. Rev. 215, 35–54. doi:10.1007/s11214-019-0601-2

Siemes, C., de Teixeira da Encarnação, J., Doornbos, E., Van Den Ijssel, J.,
Kraus, J., Pereštỳ, R., et al. (2016). Swarm accelerometer data processing from raw
accelerations to thermospheric neutral densities. Earth Planets Space 68, 92–16.
doi:10.1186/s40623-016-0474-5

Tsyganenko, N., Andreeva, V., Kubyshkina, M., Sitnov, M., and Stephens, G.
(2021). Data-based modeling of the Earth’s magnetic field. Magnetos. Sol. Syst.,
617–635. doi:10.1002/9781119815624.ch39

van den Ijssel, J., Doornbos, E., Iorfida, E., March, G., Siemes, C., and
Montenbruck, O. (2020). Thermosphere densities derived from Swarm GPS
observations. Adv. Space Res. 65, 1758–1771. doi:10.1016/j.asr.2020.01.004

Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T.,
Cournapeau, D., et al. (2020). SciPy 1.0: Fundamental algorithms for scientific
computing in Python. Nat. Methods 17, 261–272. doi:10.1038/s41592-019-0686-2

Waters, C., Anderson, B., and Liou, K. (2001). Estimation of global field aligned
currents using the Iridium R© system magnetometer data. Geophys. Res. Lett. 28,
2165–2168. doi:10.1029/2000gl012725

Wu, C.-C., Liou, K., Lepping, R. P., Hutting, L., Plunkett, S., Howard, R. A., et al.
(2016). The first super geomagnetic storm of solar cycle 24:“The St. Patrick’s day
event (17 March 2015)”. Earth Planets Space 68, 151. doi:10.1186/s40623-016-0525-
y

Yamazaki, Y., Matzka, J., Stolle, C., Kervalishvili, G., Rauberg, J., Bronkalla,
O., et al. (2022). Geomagnetic activity index Hpo. Geophysical Research Letters.
e2022GL098860.

Zhang, S.-R., Zhang, Y., Wang, W., and Verkhoglyadova, O. P. (2017). Geospace
system responses to the St. Patrick’s Day storms in 2013 and 2015. JGR. Space Phys.
122, 6901–6906. doi:10.1002/2017ja024232

Frontiers in Astronomy and Space Sciences 20 frontiersin.org

https://doi.org/10.3389/fspas.2022.1023163
https://doi.org/10.1029/rs020i001p00063
https://doi.org/10.1016/0032-0633(92)90012-d
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1007/s11214-020-0637-3
https://doi.org/10.1007/s11214-020-0637-3
https://doi.org/10.1109/MCSE.2007.55
https://ssusi.jhuapl.edu/
https://ssusi.jhuapl.edu/
https://doi.org/10.1029/2011GM001183
https://doi.org/10.1007/s11214-016-0275-y
https://doi.org/10.1051/swsc/2021035
https://doi.org/10.1029/2020sw002641
https://doi.org/10.1029/2020sw002641
https://doi.org/10.48322/6ffx-3441
https://doi.org/10.1117/12.454268
https://doi.org/10.5636/jgg.47.191
https://doi.org/10.1002/2014ja020264
https://doi.org/10.1007/s11214-019-0601-2
https://doi.org/10.1186/s40623-016-0474-5
https://doi.org/10.1002/9781119815624.ch39
https://doi.org/10.1016/j.asr.2020.01.004
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1029/2000gl012725
https://doi.org/10.1186/s40623-016-0525-y
https://doi.org/10.1186/s40623-016-0525-y
https://doi.org/10.1002/2017ja024232
https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org/journals/astronomy-and-space-sciences#articles

