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In this paper, we employ the direct discontinuous Galerkin (DDG) method

for the first time to extrapolate the coronal potential magnetic field (PF)

with the source surface (SS) and call the developed numerical model as the

DDG-PFSS solver. In this solver, the Laplace’s equation is solved by means

of the time-dependent method, i.e., introducing a pseudo-time term into the

Laplace’s equation and changing the boundary value problem into the initial-

boundary value problem. The steady-state solution of the initial-boundary

value problem is the solution of the Laplace’s equation to be solved. This

formulation facilitates the implementation of the DDG discretization. In order

to validate the DDG-PFSS solver, we test a problem with the exact solution,

which demonstrates the effectiveness and third-order accuracy of the solver.

Then we apply it to the extrapolation for the coronal potential magnetic field.

We use the integral GONG synoptic magnetogram of Carrington rotation (CR)

2060 as the boundary condition and achieve the global potential magnetic

field solution by the DDG-PFSS solver. The numerical results such as the

coronal holes and streamer belts derived from the DDG-PFSS solver are in

good agreement with those obtained from the spherical harmonic expansion

method. Also, based on the numerical magnetic field and Wang-Sheeley-

Arge model, the obtained solar wind speed is found to basically capture

the structures of the high- and low-speed streams observed at 1 AU. These

results suggest that the DDG-PFSS solver can be seen as a contribution to the

numerical methods for obtaining the global potential magnetic field solutions

of the solar corona.

KEYWORDS

direct discontinuous Galerkin method, potential magnetic field, solar corona, numerical solution

algorithm, pseudo-time derivative

1 Introduction

Potential field source surface (PFSS) model, proposed by Schatten, Wilcox, and
Ness (1969) and Altschuler and Newkirk (1969), is the most popular model for
reconstructing the potential solutions of the solar coronal magnetic field, which has
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the ability of forecasting the magnetic polarity and solar
wind speed near the Earth in operational applications (Arge
and Pizzo, 2000; Hakamada et al., 2002; Arge et al., 2003;
MacNeice, 2009; Norquist and Meeks, 2010). The PFSS model
starts with the synoptic magnetograms of the solar corona and
extrapolates the coronal magnetic field to the “source surface”,
i.e., a sphere with the particular height Rss. Usually, Rss is taken as
2.5Rs (Rs, the radius of the Sun) away from the photosphere, and
at this source surface, the magnetic field is assumed to be purely
radial. In a potential model, the common key assumption is that
there are no currents in the region 1Rs ≤ r ≤ Rss.Mathematically,
the problem of obtaining the current free solution is described
as follows: given the magnetogram data Br (θ,ϕ) at r = 1Rs, find
the scalar potential Φ so that

∇2Φ = 0, (1)

∂Φ
∂r
|
r=1Rs

= Br (θ,ϕ) , (2)

Φ|r=Rss
= 0. (3)

Here, θ ∈ [0,π] and ϕ ∈ [0,2π] are the colatitude and longitude
coordinates, respectively. After the solution of Eq. 1 is found, the
potential magnetic field solution is obtained as

B = ∇Φ,

which trivially satisfies both the divergence-free and the current-
free properties

∇ ⋅B = ∇ ⋅ (∇Φ) = 0, ∇ ×B = ∇× (∇Φ) = 0.

In order to obtain the potential magnetic field solutions,
one usually uses the spherical harmonic expansion method
(referred to as the SHE solver in this work) to solve the Laplace’s
Eq. 1 with boundary conditions (2) and (3). However, this
method is sensitive to the choice of the number of spherical
harmonics, because the mismatches between the number of
the harmonics and the resolution of the magnetogram can
give rise to the ring-like patterns, especially near the strong
magnetic field regions (Tóth, van der Holst, and Huang, 2011;
Nikolić and Trichtchenko, 2012; Caplan et al., 2021). Tomitigate
or completely avoid these ringing effect, a finite difference
iterative potential-field solver (FDIPS) has been developed
by Tóth, van der Holst, and Huang (2011) and applied to
solve PFSS. Encouraged by the first-order hyperbolic system
formulation proposed by Nishikawa (2007) in solving the
diffusion equation for fluid flow, Liu et al. (2019) developed a
hyperbolic cell-centered finite volume solver for the PFSSmodel.
In this paper, along with the purpose of enriching the numerical
algorithms for obtaining the potential magnetic field solutions,
we attempt to utilize the direct discontinuous Galerkin (DDG)
method (Liu and Yan, 2009) to solve Eq. 1.

The DG method has been widely developed for hyperbolic
problems since it was initially introduced in 1973 by Reed
and Hill (1973), which is a class of finite element methods
using a completely discontinuous piecewise polynomial space
for the numerical solution and the test functions. This method
can be easily extended to high-order approximation. The
spatial accuracy of DG method is obtained by means of high-
order polynomial approximation within an element rather
than by wide stencils used in the finite difference and finite
volume methods, which dramatically simplifies the use of high-
order methods to some extent. Besides, the DG method has
the capacity to handle the domain with complex geometry.
Moreover, it is compact in the sense that each cell is treated
independently and elements communicate only with direct
adjacent elements regardless of the order of accuracy. For the
other merits of DG method, we can refer to the literature
(e.g., Cockburn, Karniadakis, and Shu, 2000; Hartmann, 2006;
Luo et al., 2010; Dolejší and Feistauer, 2015). However, the
application of the DG method to diffusion problems has been
a challenging task because of the subtle difficulty in defining
appropriate numerical fluxes for diffusion terms. To solve this
problem, several approaches have been proposed, including
the interior penalty method (Douglas and Dupont, 1976;
Arnold, 1982), local DG method (Cockburn and Shu, 1998), the
first Bassi-Rebay (BR1) scheme (Bassi and Rebay, 1997), the
second Bassi-Rebay (BR2) scheme (Bassi et al., 2005), and the
DDG method as used in this paper.

The main idea of the DDG method (Liu and Yan, 2009)
for diffusion or elliptic equation is to use the direct weak
formulation for solution of equations in each computational
cell and let cells communicate through a numerical flux only.
The main feature in the DDG scheme lies in the numerical
flux choices for the solution gradient, which involve higher
order derivatives calculated across cell interfaces (Liu, 2021).
The DDG method has the advantage of easier formulation
and implementation, as well as efficient computation of the
solution. The DDG method holds the compactness in DG
formulations, which is conducive to high efficiency massively
parallel computation (He et al., 2022). Based on the finite
difference scheme, there have been three publicly available
solvers, including the FDIPS Fortran code publicly available at
http://csem.engin.umich.edu/tools/FDIPSWeb site, the PFSSPY
Python package (Stansby, Yeates, and Badman, 2020) and the
POT3D Fortran code (Caplan et al., 2021). Here we devote to
establishing a numerical PFSSmodel based on theDDGmethod,
which is termed as the DDG-PFSS solver. And, the magnetic
fields derived by the DDG-PFSS solver are compared with that
obtained by one of the three public methods. In this study, we
choose the FDIPS code for comparision.

The remainder of this paper is organized as follows.
We review the grid system of our code in Section 2. The
discontinuous Galerkin discretization process is described
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FIGURE 1
Six-component grid structure with partial overlap (left) and one-component mesh stacked in the r-direction (right). Adopted from Feng et al.
(2010).

FIGURE 2
Hexahedral cells: (A) the interior cell, (B) the boundary cell.

in Section 3. In Section 4, we present the implicit time
integration method used in our model. The numerical results
are provided in Section 5. Finally, we state our conclusions in
Section 6.

2 Grid system

The computational domain is set as a spherical shell
geometrical region ranging from 1Rs to 2.5Rs. Following
Feng et al. (2010), Feng et al. (2019), such spherical shell
geometry is partitioned into the six-component grid system
shown in Figure 1. This system consists of six identical
component meshes with partial overlapping areas. Each
component is a low-latitude spherical mesh

(π
4
− δ ≤ θ ≤ 3π

4
+ δ)⋂(3π

4
− δ ≤ ϕ ≤ 5π

4
+ δ),

where δ is proportionally dependent on the grid spacing entailed
for the minimum overlapping area. These six components have
the same features, and they can be transformed into each other by

coordinate transformation such that all numerical assignments
are identical on each component.

In both θ and ϕ directions, grid points are uniformly
distributed: θi = θmin + (i − 1)Δθ, i = 1, …, Nθ − 1, ϕi = ϕmin
+ (i − 1)Δϕ, i = 1, …, Nϕ − 1, with Δθ = (θmax − θmin)/(Nθ − 2),
Δϕ = (ϕmax − ϕmin)/(Nϕ − 2), where Nθ and Nϕ are the mesh
numbers in latitudinal and longitudinal directions, respectively.
In this paper, θmin =

π
4
, θmax =

3π
4
, ϕmin =

3π
4
, ϕmax =

5π
4
, δ = 3Δθ.

In the r direction, r (1) = 1Rs, r (i + 1) = r(1) + Δr(i), where i = 1,
…, N r . Δr(1) = 0.01Rs if r(1) < 1.1Rs; Δr(1) = min (A × log (r (i
− 1)), Δθ × r (i − 1)) with A = 0.01/log (1.09) if r(1) < 3.5Rs.

There are two types of cells in our grid system after
the computation area is partitioned. One is the hexahedron
with six planes, shown in Figure 2A, and the other is the
hexahedron with five planes and a spherical surface, shown
in Figure 2B. The former denotes the interior computational
cell and the latter the boundary cell near the inner boundary
of the computational domain. The difference between them
is that the boundary cell has one face lying on a spherical
surface, and the associated area is labeled by the blue
color.
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3 Discontinuous Galerkin
discretization

Introducing a pseudo-time derivative term to the Laplace’s
Eq. 1makes this equation into the following form:

∂Φ
∂τ
= ∇ ⋅ ∇Φ, (4)

where τ is the pseudo time. Obviously, the steady-state solution
of Eq. 4 is the solution of the Laplace’s Eq. 1.

In DG method, the numerical solution of Eq. 4 in each cell
of computational grid is represented as a linear combination of
the local polynomial basis functions ψl(x):

Φ =
K

∑
l=1

wl (τ)ψl (x) . (5)

Coefficients of this expansion, wl(τ), are the main unknown
values in the DG methods. Usually, the DG method is termed
as the DG (Pk) method if the variable Φ is represented
using a piecewise polynomials of degree k. The number of
basis functions, K, depends on the degree k of the expanded
polynomials and the spatial dimensions d,

K =
(k+ 1) (k+ 2)⋯(k+ d)

d!
, d = 1,2,3. (6)

For DG (P2) case in three-dimensional space, K = 10, where
P2 indicates that a piecewise polynomial of degree of two is used
to compute the fluxes. The basis functions we choose are Taylor
basis functions and are listed as follows. For cell Ωi,

ψ1 = 1, ψ2 =
x− xi
Δxi
, ψ3 =

y− yi
Δyi
, ψ4 =

z− zi
Δzi
,

ψ5 =
ψ2
2

2
− 1
Ωi
∫
Ωi

ψ2
2

2
dΩ, ψ6 =

ψ2
3

2
− 1
Ωi
∫
Ωi

ψ2
3

2
dΩ,

ψ7 =
ψ2
4

2
− 1
Ωi
∫
Ωi

ψ2
4

2
dΩ, ψ8 = ψ2ψ3 −

1
Ωi
∫
Ωi

ψ2ψ3 dΩ,

ψ9 = ψ2ψ4 −
1
Ωi
∫
Ωi

ψ2ψ4 dΩ, ψ10 = ψ3ψ4 −
1
Ωi
∫
Ωi

ψ3ψ4 dΩ,

(7)

where xi, yi and zi are the coordinates of the centroid of cell
Ωi. Δxi, Δyi, and Δzi are the length scales in x−, y−, and
z− directions, Δxi = 0.5(xmax − xmin), Δyi = 0.5(ymax − ymin),
Δzi = 0.5(zmax − zmin), and xmax, xmin, ymax, ymin, zmax, and zmin
are the maximum and minimum coordinates in the local cell in
three directions, respectively. And, the coefficients in Eq. 5, i.e.,
wl(τ), are the cell-average value and the scaled derivatives at the

centroid of cell:

w1 = Φ̄i, w2 =
∂Φ
∂x
|
i
Δxi, w3 =

∂Φ
∂y
|
i
Δyi,

w4 =
∂Φ
∂z
|
i
Δzi, w5 =

∂2Φ
∂x2
|
i
Δx2i , w6 =

∂2Φ
∂y2
|
i
Δy2i ,

w7 =
∂2Φ
∂z2
|
i
Δz2i , w8 =

∂2Φ
∂x∂y
|
i
ΔxiΔyi,

w9 =
∂2Φ
∂x∂z
|
i
ΔxiΔzi, w10 =

∂2Φ
∂y∂z
|
i
ΔyiΔzi.

(8)

The weak formulation can be given through multiplying
Eq. 4 by each basis function ψl(x), integrating it over cell Ωi with
boundary Γi = ∂Ωi, and performing integration by parts:

d
dτ
∫
Ωi

ψlΦdΩ=∮
Γi
ψlH(∇Φ;nij) dΓ−∫

Ωi

∇ψl ⋅ ∇ΦdΩ,

l = 1,2,…,K, (9)

where nij denotes the unit outward normal vector to the
boundary Γi. Substituting Eq. 5 into Eq. 9 results in

K

∑
m=1
∫
Ωi

ψlψm dΩ
dwm

dτ
= ∮

Γi
ψlH(∇Φ;nij) dΓ

−∫
Ωi

∇ψl ⋅ ∇ΦdΩ, l = 1,2,…,K. (10)

The integral in Eq. 10 is computed exactly or approximately
by using suitable numerical quadratures (Xia, 2013;
Liu et al., 2017). To complete the DG space discretization, we
need to define the numerical fluxH(∇Φ;nij) = ∇̂Φ ⋅nij, for which
we adopt the DDG method in this work.

In order to describe DDGmethod in a more convenient way,
we introduce the following jump and average operators:

⟦⋅⟧ = ⋅|R − ⋅|L, ⟨⋅⟩ =
⋅|L + ⋅|R

2
, (11)

where the subscripts ⋅|L and ⋅|R denote the left and right states of a
common face, respectively. With this definition, the x-direction,
y-direction and z-direction components of flux for the DDG
method can be given as

∂̂Φ
∂x
= β0
〚Φ〛
Δ

nij,x +⟨
∂Φ
∂x
⟩

+ β1Δ([[
∂2Φ
∂x2
]]nij,x +[[

∂2Φ
∂x∂y
]]nij,y +[[

∂2Φ
∂x∂z
]]nij,z),

∂̂Φ
∂y
= β0
〚Φ〛
Δ

nij,y +⟨
∂Φ
∂y
⟩

+ β1Δ([[
∂2Φ
∂y∂x
]]nij,x +[[

∂2Φ
∂y2
]]nij,y +[[

∂2Φ
∂y∂z
]]nij,z),

∂̂Φ
∂z
= β0
〚Φ〛
Δ

nij,z +⟨
∂Φ
∂z
⟩

+ β1Δ([[
∂2Φ
∂z∂x
]]nij,x +[[

∂2Φ
∂z∂y
]]nij,y +[[

∂2Φ
∂z2
]]nij,z),

(12)
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where β0 and β1 are regarded as two constant penalty
parameters, and Δ is the characteristic face length. According to
Cheng et al. (2016), we choose

β0 = 2, β1 =
1
12
, Δ = |dij ⋅nij|, (13)

where dij = (xj − xi,yj − yi,zj − zi) is the displacement vector
from the centroid of Ωi to the centroid of Ωj. Hence, the
numerical fluxH(∇Φ;nij) is calculated as

H(∇Φ;nij) =
∂̂Φ
∂x

nij,x +
∂̂Φ
∂y

nij,y +
∂̂Φ
∂z

nij,z. (14)

At this moment, the flux Jacobian matrices for Φ and ∇Φ
contributing to the diagonal block are respectively

∂H(∇Φ;nij)
∂Φi

= β0
−1
Δ
(n2ij,x + n

2
ij,y + n

2
ij,z) , (15)

∂H(∇Φ;nij)
∂∇Φi

= (1
2
nij,x,

1
2
nij,y,

1
2
nij,z), (16)

and the flux Jacobian flux for Φ and ∇Φ contributing to the off-
diagonal block are respectively

∂H(∇Φ;nij)
∂Φj

= β0
1
Δ
(n2ij,x + n

2
ij,y + n

2
ij,z) , (17)

∂H(∇Φ;nij)
∂∇Φj

= (1
2
nij,x,

1
2
nij,y,

1
2
nij,z). (18)

As for boundary face, the numerical flux H(∇Φ;nB) is
constructed by using only the first derivatives and by assuming
the jump of the second derivatives to be zero, which is as follows:

H (∇Φ;nB) =
∂̂Φ
∂x
|
B
nB,x +

∂̂Φ
∂y
|
B
nB,y +

∂̂Φ
∂z
|
B
nB,z, (19)

with

∂̂Φ
∂x
|
B
= β0
〚Φ〛
Δ

nB,x +⟨
∂Φ
∂x
⟩,

∂̂Φ
∂y
|
B
= β0
〚Φ〛
Δ

nB,y +⟨
∂Φ
∂y
⟩,

∂̂Φ
∂z
|
B
= β0
〚Φ〛
Δ

nB,z +⟨
∂Φ
∂z
⟩.

(20)

Therefore, at the outer boundary face,

{{{{{{{{{
{{{{{{{{{
{

ΦR = 2ΦB −ΦL,
∂Φ
∂x
|
R
= ∂Φ

∂x
|
L
,

∂Φ
∂y
|
R
= ∂Φ

∂y
|
L
,

∂Φ
∂z
|
R
= ∂Φ

∂z
|
L
,

(21)

where ΦB is given at the boundary specified by the Dirichlet
condition. In this case, the numerical flux given by Eq. 19
becomes

H (∇Φ;nB) = β0
2ΦB − 2ΦL

Δ
(n2B,x + n

2
B,y + n

2
B,z)

+ ∂Φ
∂x
|
L
nB,x +

∂Φ
∂y
|
L
nB,y +

∂Φ
∂z
|
L
nB,z, (22)

and the flux Jacobian matrices for Φ and ∇Φ contributing to the
diagonal block are respectively

∂H (∇Φ;nB)
∂Φi

= β0
−2
Δ
(n2B,x + n

2
B,y + n

2
B,z) , (23)

∂H (∇Φ;nB)
∂∇Φi

= (nB,x,nB,y,nB,z) . (24)

At the inner boundary face,

{
{
{

ΦR =ΦL,
∂Φ
∂n
|
R
= 2 ∂Φ

∂n
|
B
− ∂Φ

∂n
|
L
,

(25)

where ∂Φ
∂n
= ∂Φ

∂x
nx +

∂Φ
∂y
ny +

∂Φ
∂z
nz is the normal gradient given at

the boundary specified by the Neumann condition. In this case,
the numerical flux given by Eq. 19 becomes

H (∇Φ;nB) =
∂Φ
∂n
|
B
, (26)

and the flux Jacobian matrices for Φ and ∇Φ contributing to the
diagonal block are

∂H (∇Φ;nB)
∂Φi

= 0, (27)

∂H (∇Φ;nB)
∂∇Φi

= (0,0,0) . (28)

At an inner boundary face as a patch of the spherical surface,
the normal direction of the boundary coincides with the radial
direction. And, the outer normal direction of the inner boundary
is negative to the radial direction, i.e., pointing to the interior
of the Sun. As a result, ∂Φ

∂n
|
B
= − ∂Φ

∂r
|
1Rs

. At boundary faces, Δ is
chosen as the distance from cell centroid to the boundary faces.

The spatial discretization in Eq. 10 leads to a system of
ordinary differential equations:

Mi
dW
dτ
= Ri (Φ) , (29)

where Mi denotes the mass matrix whose entries are Mi1,j1
=

∫Ωi
ψi
i1
(x)ψi

j1
(x) dΩ (i1, j1 = 1,2,…,K), W is the solution vector

made up of the coefficients in Eq. 5, and Ri is the residual vector
over cell Ωi, consisting of K components shown in the right
hand side of Eq. 10. In order to speed up the convergence in
steady problems, implicit temporal discretization is applied to the
pseudo-time system Eq. 29 in this work.
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4 Implicit time integration

Using Euler implicit time integration, the semi-discrete
system of ordinary differential Eq. 29 is rewritten as

Mi
ΔWn

i

Δτ
= Ri (Φ

n+1) , (30)

whereΔτ is the pseudo-time increment, andΔτ = CFLΔh2minwith
CFL = 1000 in this work. Δhmin denotes the minimum value of
the sizes of all of the computational cells. ΔWn

i =W
n+1
i −W

n
i is

the difference of unknown vector between levels n and n+ 1.
Each component Rl

i(Φ
n+1) of the residual vector Ri (Φ

n+1) can
be linearized in pseudo-time as

Rl
i (Φ

n+1) =Rl
i (Φ

n) + ( ∂R
l

∂Φi
)
n
ΔΦn

i +(
∂Rl

∂Φj
)
n
ΔΦn

j

+( ∂Rl

∂∇Φi
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l = 1,2,…,K,
(31)

where (Φx,Φy,Φz)T denotes the gradient of Φ, and
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with the superscripts i and j representing cell Ωi and Ωj,
respectively.

Substituting Eq. 31 into Eq. 30, we obtain the following
linear system over cell Ωi
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(37)

For boundary cells, note that there are only five Bij matrices
on the left hand side of Eq. 36, corresponding to the five
face-neighboring cells respectively. Considering all cells in the
computational domain, we obtain the large linear system at
each pseudo-time step. In terms of solving large linear systems,
iterative methods are vital tools. In this study, we employ the
block successive over-relaxation (SOR) scheme which can be
written at cell Ωi as

ΔWn,(m+1)
i = (1−ω)ΔWn,(m)

i +ωΔW
GS
i , (38)

ΔWGS
i = (

Mi

Δτ
−Ai + Ci)
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i
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i +Ri (Φ

n)] , (39)
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where m denotes the iteration step, and ω the over-
relaxation factor which is taken to be 1.3 in this work.
This relaxation is performed to a specified tolerance, i.e.,
‖ΔWn,(m+1)

i −ΔWn,(m)
i ‖/‖ΔW

n,(1)
i ‖ < 1.0× 10

−6, or to a specified
maximum number 20 of relaxations. The implicit solver is
taken as converged when the L2 norm of the Φ residual satisfies
‖R1

i (Φ
n+1)‖2/‖R

1
i (Φ

0)‖2 < ϵ, where ϵ is a small positive number
and considered in the range 10–6∼ 10–10.

5 Numerical results

In this section, a 3D test case with the exact solutions is
first performed to verify the effectiveness and accuracy of the
developedDDG-PFSS code.Thenwe apply it to the extrapolation
for solar potential magnetic field. All the computations in this
study are accomplished on the TH-1A supercomputer from the
National Supercomputing Center in TianJin, China, in which
each computing node is configured with two Intel Xeon X5670
CPUs (2.93 GHz, six-core).

5.1 Validation of DDG-PFSS

To validate the solutions generated with the DDG-PFSS
solver, we use an analytic solution, which is constructed
according to Caplan et al. (2021), given by

Br = (
2
r3
+ 1
R3
ss
)(cos ⁡θ+ sin ⁡θ⁡cos ⁡ϕ) ,

Bθ = (
1
r3
− 1
R3
ss
)(sin ⁡θ− cos ⁡θ⁡cos ⁡ϕ) ,

Bϕ = (
1
r3
− 1
R3
ss
) sin ⁡ϕ,

(40)

The potential solution is given by

Φ = ( r
R3
ss
− 1
r2
)(cos ⁡θ+ sin ⁡θ⁡cos ⁡ϕ) . (41)

To test the code, we set the initial guess Φ = 0 and solve
the system using the analytic Br of Eq. 40 as the inner boundary
condition in the manner of Eq. 2 and using Eq. 3 as the outer
boundary condition. The implicit solver is taken as converged
when the L2 norm of the Φ residual is reduced by six orders of
magnitude, i.e., ϵ = 1.0× 10–6. For any solution variable s, the
L2 norm error is defined as

ErrorL2 =

√√√

√

∑
Nglobal

i=1 ∫
Ωi

[s (x) − sexact (x)]2 dΩ

∑
Nglobal

i=1 |Ωi|
, (42)

where s(x) and s(x)exact are respectively the numerical and
exact solutions evaluated at point x. Nglobal denotes the
total number of the interior computational cells. Starting

TABLE 1 L2 error and the order of accuracy forΦ.

Grid (Nr ×Nθ ×Nϕ × 6) L2 error Order

 40× 12× 12× 6 1.2173E-003
 40× 22× 22× 6 3.1301E-004 3.36
 40× 32× 32× 6 1.4266E-004 3.15
 40× 42× 42× 6 7.8981E-005 3.26

with a resolution of 40× 12× 12× 6, we test the code with
successively increased resolution. All runs are performed using
96 MPI processes. The results are presented in Table 1 and
Figure 3. In Table 1, we present the L2 norm error of Φ
on each level of meshes, as well as the order of accuracy
for Φ. Between the coarser and finer meshes, following
Lee, Ahn, and Luo (2018), the order of accuracy is measured as
follows

Order of accuracy =
log10 (Error

coarse
L2
/ErrorfineL2

)

log10(
3√Nfine

global/N
coarse
global)

, (43)

with the superscripts “coarse” and “fine” denote the coarse
mesh and fine mesh, respectively. Figure 3 displays the three-
dimensional topologies of the gradient B = ∇Φ of Φ on the
level of mesh with the resolution of 40× 42× 42× 6. The left
panel in this figure represents the analytic solution and the
right panel the numerical solution. In these two panels, the
starting points of the black lines representing ∇Φ are the same
in order to make a visual comparison between the numerical
solution and the exact solution. We see that the numerical
solution is almost identical with the analytic solution, and the
code exhibits the third-order accuracy as the mesh is gradually
refined.

5.2 Coronal potential magnetic field
extrapolation

In this section, we extrapolate the coronal magnetic fields for
CR 2060 (14 August To 10 September 2007) using the developed
DDG-PFSS solver. The integral GONG synoptic magnetograms
(in “mrmqs” format) are used as the inner boundary condition.
These magnetograms are provided in the FITS format with the
uniform 180× 360, sin θ− ϕ mesh. With the help of MATLAB
for reading the FITS files, we remesh the magnetograms to
a uniform 181× 361 latitude-longitude grid. In our DDG-
PFSS solver, the magnetogram needs to be pre-processed,
which is to remove the monopole. Therefore, the observed
radial field Br (Rs,θj,ϕk) at the solar surface is corrected into
Br (Rs,θj,ϕk) = Br(Rs,θj,ϕk) −

1
4π
∑ j,kBr(Rs,θj,ϕk)(Δ ⁡cos⁡θ)j(Δϕ)k.

The initial condition is set to zero, and the parameter ϵ of the
convergence criterion is set to 1.0× 10–10. When extrapolating
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FIGURE 3
Depiction of the gradient ∇Φ of Φ in the test problem with the analytic solution: (left) analytic solution and (right) numerical solution.

the coronal magnetic fields with the DDG-PFSS solver, we
adopt the uniform radial grid, which is similar to the finite
difference solver FDIPS. The mesh resolution we used in the
DDG-PFSS solver is (Δr,Δθ,Δϕ) = (0.025Rs,2.25°,2.25°). In
this solver, we use 168 MPI processes to obtain the potential
field solutions, and the wall o’clock times are about 4.7 h. The
divergence-free condition is basically satisfied to the level of the
solver tolerance. The maximum value of the divergence errors
over all cells in the simulation domain, max(|(∇ ⋅B)i|), is about
4.2× 10–7 and the global divergence L2 norm of the magnetic

field, ‖∇ ⋅B‖2 ≔√[∑
Nglobal

i=1 (∫Ωi
∇ ⋅B dΩ)

2
]/∑

Nglobal

i=1 |Ωi|, is about

5.05× 10–10, where (∇ ⋅B)i =
1
|Ωi|
∫Ωi
∇ ⋅B dΩ = 1

|Ωi|
∮
Γi
B ⋅n dΓ.

The magnetic field B at the cell interfaces is calculated in
the same way as the first term of the right residual in Eq. 10
when we calculate this surface integral. In order to validate the
numerical magnetic fields generated by the DDG-PFSS solver,
we compare these results with those derived by the FDIPS
code. The magnetic fields obtained by the SHE method with
a number nmax = 120 of harmonics on the mesh resolution of
(Δr,Δθ,Δϕ) = (0.025Rs,1°,1°) serve as the reference solution
in this study. The results from the FDIPS code are obtained
by the version of (UseCosTheta, nR, nTheta, nPhi) = (T, 60,
180, 360). For the SHE solver and the FDIPS code, we adopt
the serial versions, and their wall o’clock times are about
10.5 min and 7.5 min, respectively. Obviously, the computational
efficiency of the DDG-PFSS solver is inferior to that of the
FDIPS code. This is the main weakness of the DG method
since it requires solutions of systems of equations with more
unknowns.

According to Schrijver et al. (2006) and Liu et al. (2011),
we calculate some metrics that are used for checking the
performance of the extrapolation solvers. They are Cvec, Ccs, Em
and En, respectively, which are briefly defined below. Cvec is used

TABLE 2 Cvec, Ccs, En and Em for the extrapolated fields of the FDIPS
and DDG-PFSS solvers.

Cvec Ccs En Em

SHE 1 1 0 0
FDIPS 0.852 0.996 8.809E-002 5.512E-002
DDG-PFSS 0.949 0.998 5.636E-002 4.218E-002

to quantify the vector correlation,

Cvec =
∑

i
Bref
i ⋅B

num
i

√∑
i
|Bref

i |2∑i
|Bnum

i |2
, (44)

where Bref
i and Bnum

i are the magnetic field derived by the SHE
solver and the extrapolated field at the grid point i, respectively.
If the field vectors are identical, then Cvec = 1; if Bref

i ⊥B
num
i , then

Cvec = 0. Ccs is based on the Cauchy-Schwarz inequality and is
mostly applied for measuring the differences of the vector fields,

Ccs =
1

Mglobal
∑
i

Bref
i ⋅B

num
i

|Bref
i ||B

num
i |
, (45)

where Mglobal is the total number of vectors in the domain to
be calculated. Ccs = 1 means that Bref

i and Bnum
i are parallel;

Ccs = −1 means that Bref
i and Bnum

i are anti-parallel; Ccs = 0
means that Bref

i ⊥B
num
i . En is a normalized vector error,

En =
∑

i
|Bnum

i −B
ref
i |

∑
i
|Bref

i |
. (46)

Em is a mean of the normalized vector errors,

Em =
1

Mglobal
∑
i

|Bnum
i −B

ref
i |

|Bref
i |
. (47)

The agreement is perfect whenEn andEm are equal to zero, which
is unlike the first two metrics.
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FIGURE 4
Topologies of the coronal magnetic fields on the meridional plane of ϕ =180°−0° from 1Rs to 2.5Rs, obtained with (A) the SHE solver, (B) FDIPS,
and (C) the DDG-PFSS solver. In order to make direct comparisons between these two numerical methods, the starting points at 1Rs of the
magnetic fields are the same.

FIGURE 5
Radial magnetic field (Unit: G) at 1.8Rs for SHE (black lines), FDIPS (green lines) and DDG-PFSS (magenta lines). The backgrounds are colored
with the radial field of the SHE solver. Negative and positive Br are denoted by blue and red color, respectively.

FIGURE 6
Synoptic maps of coronal holes: (A) observed by EUVI/SECCHI on board STEREO A; (B) obtained by the SHE solver; (C) obtained by the
DDG-PFSS solver.
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FIGURE 7
Synoptic map at 2.5Rs: (A) the pB at the east limb observed by SOHO/LASCO C2; (B) log (ds) obtained by SHE solver; (C) log (ds) obtained by
DDG-PFSS solver. The red line in (A) denotes the magnetic neutral line (Br =0) from the SHE solver, while the blue line represents the magnetic
neutral line from the DDG-PFSS solver.

FIGURE 8
Magnetic flux tube expansion factor fs and the minimum angular separation between an open magnetic field footpoint and its nearest coronal
hole boundary θb (Unit: degree) obtained by the SHE solver (A1, A2), and the DDG-PFSS solver (B1, B2).

In Table 2, we show the metrics calculated using the
extrapolated magnetic fields of the FDIPS and DDG-PFSS
solvers. From the metrics, we see that the potential magnetic
fields derived by the DDG-PFSS solver are slightly better than
that obtained by the FDIPS method. Figure 4 presents the
coronal magnetic field topologies obtained with (A) the SHE
solver, (B) the FDIPS code and (C) the DDG-PFSS solver on the
meridional plane of ϕ = 180°–0°. The backgrounds are colored
with the radial component of magnetic field (Unit: G). The black
lines represent the magnetic field lines, on which the arrowheads

denote the directions. In order to make direct comparisons
between these two numerical methods, the starting points at 1Rs
of the magnetic fields are the same. By visual inspection, the
large-scale magnetic topologies obtained from the three solvers
are almost identical, such as the open-field regions, bipolar
streamers and pseudo-streamers. In addition, we also present
the comparison of the radial magnetic field between the two
numerical solvers inFigure 5.Theblack, green andmagenta lines
represent the radial fields obtained by the SHE, FDIPS andDDG-
PFSS solvers, respectively. The backgrounds are colored with the
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FIGURE 9
Comparisons between the interplanetary measurements from OMNI and the modeled radial velocity vr (km/s) based on the SHE solver (A) as
well as the DDG-PFSS solver (B).

radial field of the SHE solver. From the low-latitude regions to the
high-latitude regions, we can see that the radial field derived by
the DDG-PFSS solver is closer to that of the SHE solver when
compared to that derived by FDIPS. These results suggest the
credibility of our established DDG-PFSS solver. In the following
section, we continue to obtain other large-scale structures using
our DDG-PFSS solver.

By tracing the magnetic field lines from the source surface
to the photosphere, we obtain the coronal holes (CHs) regions,
i.e., the footpoints of open magnetic field lines, which are shown
in the dark regions in Figure 6. In Figure 6A, we present the
195 Å EUVI observation obtained by Solar Terrestrial Relations
Observatory (STEREO)-A/Extreme Ultraviolet Imager (EUVI)
instrument. In Figures 6B,C, we display the distributions of
CHs derived from the SHE and DDG-PFSS solvers, respectively.
From Figures 6B,C, we find no apparent differences between
them. In addition, we calculate the CHs areas, shown as fraction
of the Sun’s total surface area, which is about 13.77% for the
SHE solver and 14.28% for the DDG-PFSS solver, respectively.
From Figure 6A, we see that large CHs are mainly located
in polar regions (polar CHs) during the solar minimum.
The observed polar CHs and the extension of the southern
polar CHs at about the longitudinal range of 90°–180° to
lower latitude are well caught by the SHE and DDG-PFSS
solvers. In observation, we also see some small and isolated
CHs in the low-latitude regions, which we call as low-latitude
CHs. Comparing the SHE- and DDG-derived results with
observation shows that the configuration of low-latitude CHs

is basically reproduced. However, some observed low-latitude
CHs marked by red rectangles in Figure 6A are not captured
by the SHE and DDG-PFSS solvers, which is also evidenced
by Nikolić (2019). The red rectangles appearing in Figures 6B,C
are located at the same positions as that shown in Figure 6A,
with the purpose of making the visual comparison more
convenient.

In Figure 7A, we show the synoptic map of polarized
brightness (pB) observation at 2.5Rs. This synoptic map is
created using data from the east limb of the SOHO/LASCO
C2 instrument. The bright structures in the pB synoptic map
may include the bipolar streamer and the pseudo-streamer
(Wang, Sheeley, and Rich, 2007; Li, Feng, and Wei, 2021). The
red line superimposed on this pB synoptic map denotes the
magnetic neutral line (Br = 0) from the SHE solver, while the
blue line represents the magnetic neutral line from the DDG-
PFSS solver. From Figure 7A, we see that the blue line almost
coincides with the red line and they are surrounded by the bright
structures. Usually, the position of the magnetic neutral line
is considered as the bipolar streamer belt. In comparison with
the observation, the positions of SHE-derived and DDG-derived
bipolar streamer belts agree reasonably with the observed pB
bright structures. In addition, we use a streamer identification
algorithm (Owens, Crooker, and Lockwood, 2014; Li, Feng, and
Wei, 2021) to further identify the bipolar streamer and pseudo-
streamer from the SHE- and DDG-derived results. That is, the
regionswhere the parameter log(ds) > 1 are identified as bipolar
streamer and pseudo-streamer belts. The parameter log(ds) is

TABLE 3 The empirical parameters inWSA formula.

a1(km/s) a2(km/s) a3 a4 a5 a6 a7 a8

SHE solver 350 680 2/9 1.0 0.8 1° 2.0 1.0
DDG-PFSS solver 350 680 2/9 1.0 0.8 1° 3.0 2.0
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defined as ds = dss
dph

with dss denoting the distance between two
adjacent grid points on the source surface and dph the distance
between the photospheric footpoints of their corresponding
magnetic field lines. These results from the SHE solver and the
DDG-PFSS solver are presented in Figures 7B,C, respectively.
Apart from the bipolar streamer belt, i.e., the position of the
magnetic neutral line, we find that the pseudo-streamer belt
derived from the DDG-based results is not only similar to that
obtained by the SHE-based result, but also agrees well with the
observation.

The PFSS model plays an important role in forecasting solar
wind. Here, we take advantage of theWang-Sheeley-Arge (WSA)
model (Arge et al., 2003; Riley, Linker, and Arge, 2015) and the
Arge-Pizzo kinematic evolution model (Arge and Pizzo, 2000;
Riley and Lionello, 2011) to predict the solar wind speed vr at
1 AU. More specifically, by using the SHE- and DDG-derived
magnetic fields we first configure the WSA model to obtain the
solar wind speed at 30Rs, and then map the solar wind streams
from 30Rs to 1 AU using the Arge-Pizzo kinematic evolution
model. The general formulation of WSA model for solar wind
speed is as follows

VWSA = a1 +
a2
(1+ fs)

a3
(a4 − a5 ⁡exp(−(

θb
a6
)
a7
))

a8
, (48)

where a1∼ a8 are the empirical and adjustable parameters. fs
represents the magnetic flux tube expansion factor and θb the
minimum angular separation between an open magnetic field
footpoint and its nearest coronal hole boundary. In Figure 8,
we display the synoptic maps of two parameters fs and θb at
2.5Rs, in which fs and θb in Figure 8(A1, A2) are obtained by
the SHE-derived magnetic fields, and those in Figure 8(B1, B2)
from the DDG-derived magnetic fields. According to Riley and
Lionello (2011), the Arge-Pizzo kinematic evolution model is
expressed as

Vi+1,j = √
2

(1/Vi,j)
2 + (1/Vi,j+1)

2 , (49)

where Vi+1,j denotes the speed at ri+1 for longitude j. The
iterative number in radial direction, which is applied between
30Rs and 1 AU, is set here to be 120. The mapped results
are exhibited in Figure 9, which demonstrates the comparison
between the OMNI data and the numerical results. The red lines
in Figures 9A,B represent the mapped results based on the SHE
solver and the DDG-PFSS solver, respectively. The black line
denotes the OMNI data. The parameters in Eq. 48 which are
chosen to produce the best match to the OMNI data are listed
in Table 3.

The comparison between the modeled and observational
results suggests that the simulated results basically capture
the structures of the high- and low-speed streams occurring
in the observation, apart from the small deviation of the
high-speed stream at about longitudinal range of 150°–190°
shown in Figure 9A.

6 Conclusion

In this paper, we develop a DDG-PFSS solver for obtaining
the potential magnetic field solutions. By introducing the
pseudo-time into the Laplace’s Eq. 1, the Laplace’s equation is
changed into a diffusion-like Eq. 4. The initial-boundary value
problem for the modified equation is obtained to replace the
boundary value problem for the Laplace’s equation. Then we
apply the DGmethod to the space discretization of the modified
equation. The steady-state solution of the initial-boundary value
problem is the sought solution of the Laplace’s equation. As for
the space discretization, we choose the DDGmethod to calculate
the numerical flux across the interfaces because of its simplicity
in implementation and efficiency in computation. In order to
speed up the convergence, implicit backward Euler temporal
discretization is applied to the pseudo-time system, and the
resulting large linear system at each pseudo-time step is solved
by the block SOR scheme.

To validate the DDG-PFSS solver, we test a problem with
the exact solution, which demonstrates the effectiveness and
third-order accuracy of the solver. Then we utilize this solver
to calculate the global coronal magnetic field of CR 2060.
The numerical magnetic fields generated by the DDG-PFSS
solver are compared with those derived by the FDIPS code.
The magnetic fields obtained by the SHE method serve as a
reference solution. By comparison, we see that the magnetic
fields derived by the DDG-PFSS solver are closer to that of the
SHE solver. Finally, we also obtain the large-scale structures
including CHs, bipolar streamer belts and pseudo-streamer
belts using the DDG-PFSS solver. These structures have a good
agreement with solar observations except for a few small and
isolated low-latitude CHs. In addition, we obtain the solar
wind speed at 1 AU using the WSA model and the Arge-
Pizzo kinematic evolution model. The derived solar wind speed
basically captures the structures of the high- and low-speed
streams as occurred in the OMNI data. These results strongly
suggest the credibility of our established DDG-PFSS solver.
Compared to other numerical methods including the finite
difference and finite volume methods, DDG discrete method
possesses some attractive features, such as the compactness and
the easy extension to high-order approximation. The numerical
viscous flux defined by the DDG method is consistent and
conservative (Liu and Yan, 2009). The most prominent feature
of the DDG method is its simplicity in implementation and its
efficiency in computation (Cheng et al., 2017). In a word, our
DDG-PFSS model can be seen as an alternative contribution to
computational space weather modelling in space physics.
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