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The field of space physics has a long history of utilizing dimensionality reduction

methods to distill data, including but not limited to spherical harmonics, the Fourier

Transform, and thewavelet transform.Here,wepresent a technique for performing

dimensionality reduction on ion counts distributions from the Multiscale Mission/

Fast Plasma Investigation (MMS/FPI) instrument using a data-adaptive method

powered by neural networks. This has applications to both feeding low-

dimensional parameterizations of the counts distributions into other machine

learning algorithms, and the problem of data compression to reduce

transmission volume for space missions. The algorithm presented here is lossy,

and in this work, we present the technique of validating the reconstruction

performance with calculated plasma moments under the argument that

preserving the moments also preserves fluid-level physics, and in turn a degree

of scientific validity. The method presented here is an improvement over other

lossy compressions in loss-tolerant scenarios like the Multiscale Mission/Fast

Plasma Investigation Fast Survey or in non-research space weather applications.
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Highlights

• Algorithm is developed for reducing the dimensionality of ion counts distributions

from MMS/FPI

• Algorithm performance is described and analyzed in terms of its effect on calculated

plasma moments

• Usage of the method to perform data compression problems is discussed and

demonstrated
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Introduction

Dimensionality reduction is the process of reducing complex

high-dimensional data to lower-dimensional representations

wherein the number of parameters is reduced, at minimal cost

to a certain perspective of information contained within the data.

The concepts of dimensionality reduction have a rich history in

mathematical physics (Brunton and Nathan Kutz 2022). They

undeniably play a role in the field of space plasma physics, with

examples ranging from reduced-order spherical harmonic

modeling of the external geomagnetic field (Chulliat et al.,

2015), truncated Fourier Series representations of plasma

waves, and wavelet decomposition of solar imagery (Stenborg

and Cobelli 2003; Stenborg et al., 2008).

Dimensionality reduction is typically performed by series

decompositions designed from idealized geometries with

attractive mathematical properties. Among the most common

of these is an ordering for sets of basis functions wherein the

leading functions capture the broadest structure, and the

following functions capture increasingly fine detail. A further

attractive property of such series decompositions is that when the

number of basis functions approaches infinity, the error between

the reconstructed model and the original data converges to zero

within some appropriate error metric. This is the case for both

Fourier series and spherical harmonics. In some cases,

transformed representations serve as convenient coordinate

systems for discussing high-level physical features of the

untransformed structure. For example, the time-rate-of-change

of specific spherical harmonic terms is a convenient language to

discuss movement of a major deviation of Earth’s magnetic field

from the dipole model known as the South Atlantic Anomaly

(SAA) (Heynderickx 1996; Finlay et al., 2020). Additionally,

previous work has analyzed the use of spherical harmonics for

modeling velocity distribution functions with Cluster data (Viñas

and Gurgiolo, 2009), which showed that relatively few spherical

harmonic basis functions were necessary to reproduce moments

in that dataset.

A recent prospect within the field of data-driven science and

machine learning is learning dimensionality reduction for given

sets of data, including the derivation of custom latent

representations. This is commonly done with neural network

autoencoders (Goodfellow et al., 2016; Bank et al., 2020) and

Principal Component Analysis (PCA) (Ringnér, 2008; Hastie

et al., 2009). With autoencoders, the parameters of a highly

dynamic functional space are optimized to produce a copy of its

input data as output whilst passing its intermediary

representation through a low-dimensional bottleneck. By

pushing the information through such a bottleneck, both a

transform and inverse transform are learned simultaneously.

The portion of the network up to and including the

bottleneck becomes a transform method (sometimes called

encoder), the portion including and following the bottleneck

becomes the inverse transform method (sometimes called

decoder), and the data at the stage of the bottleneck is a

latent, low-dimensional representation. The advantage of

neural network auto-encoders is that they specialize their

representation capability to the specific training data used,

avoiding unnecessary generalizability in the process.

In this work, we look at using a neural network autoencoder

to reduce the dimensionality of raw ion counts distributions from

different plasma regions sampled by the Fast Plasma

Investigation (FPI) Dual Ion Spectrometers (DIS) on the

Magnetospheric Multiscale Mission (MMS) (Burch et al.,

2016; Pollock et al., 2016). The FPI instrument currently uses

a discrete wavelet transformmethod (Yeh et al., 2005) with a high

compression level for fast survey quality data and a lower,

generally lossless, compression level for burst quality data

(Barrie et al., 2017; Barrie et al., 2019).

In general computing, different types of data have their own

respective compression algorithms adapted to the needs of the

data. For example, the problem of image compression has been

approached with JPEG or PNG; audio with MP3; and video with

MPEG-4 AVC/H.264. Each approach adapts to its domain by

identifying the highest priority information to be retained for

that type of data and designing itself to be effective for the

intended application. This paper moves towards the first

compression algorithm designed originally for plasma

distribution data, made with an eye towards physical validity

and applicability to spaceflight implementation.

The paper is structured as follows. In the Applications of

Compression section, the application to data compression in the

context of space physics missions is reviewed and discussed. In

the Dimensionality Reduction Method section we present the

method and discuss the architectural choices and data

preparation. In the Impact on Moments section the

performance is analyzed per orbit configuration, and the

differences between orbital configurations are discussed. This

lays the foundation for the Demonstration of Compression

Algorithm section, which describes a fully functional

compression algorithm utilizing the trained neural network

model capable of being run on board a spacecraft or on the

ground. Finally, in the Conclusion and Outlook section, we

review the results of the paper, describe future work, and look

forward to improvements to theoretical understanding from the

study.

Applications of compression

At the most basic level, space science missions in the

heliosphere measure particles and fields in-situ. Field data are

3-coordinate vectors which are collected through magnetometer

and electric field instruments, generated once per collection

cycle. In contrast, instruments measuring particle distributions

produce much larger arrays per collection cycle—up to four

orders of magnitude higher. Data transmitted for plasma
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measurements is dominated by the plasma velocity distributions

(Table 1). Therefore, to efficiently manage the telemetry reserve

for Heliophysics science goals, one should first look at the plasma

measurements.

To date, methods for managing the overwhelming amount of

plasma data include using selective downlink via scientist-in-the-

loop systems and various levels of data compression. In a

selective downlink solution, the mission will downlink a lower

quality version of the data that is less than ideal for the targeted

research application (“review quality”) and allow human

reviewers to pick a subset for transmission at full quality (“full

quality”) (Fuselier et al., 2016; Baker et al., 2016; Argall et al.,

2020). The idea is that review quality data is made much

smaller—through lossy compression and/or time averaging,

with the quality sufficient to just give a broad picture of

whether the collection warrants a full quality retrieval.

The use of data compression, which can be used to minimize

the size of both review quality and full quality data, is another

method. In the MMS mission, the image compression algorithm

set by the Consultive Committee for Space Data Systems

(CCSDS) standard was utilized (Yeh et al., 2005). However,

while utilizing a standard was convenient for implementation,

the plasma-agnostic nature of the algorithm led to small errors

appearing in the worst areas for maintaining physics integrity. In

the MMSmission, the full quality data utilized lossy compression

during the first phase of the mission, but this decision was

reversed in favor of lossless compression for the following

phases (Barrie et al., 2017; Barrie et al., 2019; da Silva et al., 2020).

The use of lossy compression for the measurement of

physical variables and scientific inquiry is a delicate subject.

Research missions, such as MMS, demand near-lossless

versions of the full quality data accompanied by a high

guarantee that all sources of noise and artifacts are well

understood. Such research-grade science quality data is not

the target for the compression presented here. Instead, review

quality data (which is already lossy in the case of MMS/FPI)

provides a much safer opportunity to better apply novel lossy

compression algorithms. Furthermore, there exists another class

of non-research operational space weather missions which, on a

case-to-case basis, may be judged more tolerant of lossy

compression.

Dimensionality reduction method

The neural network dimensionality reduction method is

based on an autoencoder (as illustrated in Figure 1). The

autoencoder simultaneously maps the full-dimensional data

to a lower dimensionality and from the low-dimensional

representation back to the original representation. Based

on previous work in da Silva et al. (2020) to remove

compression artifacts from satellite data, we use a multi-

layer perceptron network operating on patches of the raw ion

counts distributions from MMS/FPI DIS (Pollock et al.,

2016). We use rectified linear unit (ReLU) activations on

the hidden and final layers. The use of the ReLu instead of

linear activation in the final layer guarantees the output

counts are never negative. As da Silva et al. (2020) discuss,

the multi-layer-perception neural network is chosen over

more complex architectures (e.g. convolution neural

networks) because of an interpretability aspect.

Specifically, the weights of the trained network can be

visualized as basis functions. Another result from da Silva

et al. (2020) is that the emergent basis functions exhibit non-

random spatial structures, comparable to spherical

harmonics, despite having no spatial relationships

integrated into the network. This is in contrast to, e.g.,

Convolutional Neural Networks (CNNs) that use spatial

locations of input pixels relative to one another. We also

experimented with multi-layer networks, adding additional

“transition” layers before/after the low-dimensional

representation. However, this did not improve

performance and made the resulting network more volatile

and dependent on the random weight initialization.

During Phase 4 of the MMS mission (9/28/2018–9/30/2019),

four orbital configurations were executed to sample different

TABLE 1 Number of elements per velocity distribution for various plasma instruments.

Mission Launch
year

Instrument Number of elements per velocity
distribution

Magnetospheric Multiscale
Mission (MMS)

2015 Fast Plasma Instrument/Dual Ion Spectrometers
(FPI/DIS)

16,384 (=32 azimuth x 16 elevation x 32 energy)

Fast Plasma Instrument/Dual Electron Spectrometers
(FPI/DES)

16,384 (=32 azimuth x 16 elevation x 32 energy)

THEMIS 2007 Ion Electrostatic Analyzer (iESA) 15,872 (= 32 azimuth x 16 elevation x 31 energy)

Cluster 2000 Cluster Ion Spectroscopy Experiment (CIS) 3,968 (=16 azimuth x 8 elevation x 31 energy)

Number of elements per collection timestep for various plasma instruments. For the MMSmission, see Pollock et al., 2016. For THEMISmission, see McFadden et al., 2008. For the Cluster

mission, see Rème et al., 1997. The number of elements per velocity distribution here is purely the size of the counts array—it does not include any type of supplementary information that

may accompany the downlink such as headers, calibration parameters, etc.
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magnetosphere populations: the day-side magnetopause region

(4B), the tail region (4D), and the dawn/dusk flanks (4C/4A). In

this paper, we looked at the neural network dimensionality

reduction for a per-orbital-configuration training set. Data

was used exclusively from the MMS1 spacecraft to prevent

any spacecraft-specific issues from complicating the

experiment. All bursts were downloaded from each of the

orbital configurations, and the number of timesteps present in

each burst was recorded. From each orbital configuration, a total

of 50,000 timesteps were selected randomly for training and

5,000 timesteps for testing/validation (with no overlap between

the two sets). We excluded the portion of the data recorded for a

solar wind study; this used a non-standard instrument

configuration which scanned different energies from the

normal operating mode. This data was identified by the string

“12–14” in the “Energy_table_name” header field. Finally, we

trained individual sets of networks for each orbital configuration

(4A-4D).

The raw ion counts distribution is the number of ion

detections by the instrument within a collection cycle, over a

look direction solid angle and energy range. It is related to the ion

velocity distribution in units of phase space density s3cm−6

through an instrument response variable known as the

geometric factor (Collinson et al., 2012). The raw ions count

distributions are of shape (Naz, Nel, Nen) where Naz is the

number of azimuth pixels (32), Nel is the number of elevation

pixels (16), and Nen is the number of energy channels (32). We

split each raw ion count distribution into smaller patches, which

cover the full range of azimuth and elevation but are restricted to

two energy channels. This results in the shape (Naz, Nel, 2). The
network architecture is duplicated between each patch location in

the image. This means that one network is trained for the first

two energies, while another network is independently trained for

the next two energies. This was chosen to enable each network to

tailor itself to a more specific portion of data. Experimentation

with patches that spanned three energy shells was attempted, but

FIGURE 1
The neural network encoding and decoding steps of the dimensionality reduction method. A normalization to guarantee the mean number of
counts is preserved is not shown here. In the encoding step, a patch is retrieved from the full counts distribution structure, flattened, and processed
through the transform encoder network. The encoded form of this patch is stored as a column in a matrix, where the number of columns is the
number of patches. For the decoding step, an encoded column is retrieved from the table, passed through the decoder, and placed back in its
original location in the full counts distribution.
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it was found that performance was worse. Experimentation with

one energy shell was also attempted, but it was found that this

lead to worse overall dimensionality reduction when the entire

counts distribution was considered.

Figure 1 illustrates the dimensionality reduction method

applied on a per-patch basis. Starting with a patch selected

from the training set, the transform encoder encodes the

patch into a latent representation with dimensional size N

(where N is a user-selected parameter). The fully encoded

counts distribution from the autoencoder is thus 16 × N,

where 16 is the number of patch slots for the DIS data. The

process for decoding is the reverse of encoding: the latent

representation is run through the middle and final layers of

the autoencoder network. The decoded representation of each

patch is stored in an array holding the full reconstructed count

distribution.

A critical question is the dimensionality of the latent

representation (as given by the parameter N), which controls

the amount of dimensionality reduction. This is left as a tunable

parameter for the algorithm, with investigations into the ideal

parameter discussed in the Impact on Moments section.

To process the data more efficiently, we structured the

problem with as much physical knowledge as possible. This is

done by providing the neural network input data pre-processed

in a form that is intended to simplify the task the network

performs.

First, we align the data as best as possible in the GSE frame. In

the native data layout, the pixels are ordered in the azimuth of the

spacecraft frame. We reorder the data across the azimuth

dimension so that counts at the same azimuth index,

elevation, and energy correspond to the same look direction

(within the size of azimuth and elevation bins). This allows the

network to learn representations of the training set in a non-

spinning frame. This is preferred because the network can, for

instance, learn correlations between count rates in X and Y GSE

directions.

We also define a patch size of two energy channels. This

allows the network to take advantage of information redundancy

between energy channels and learn both the broad structure

common across energy channels and a concise relative structure

that captures how it changes between energy channels.

Finally, we adjust the data reconstructed by the network so

that the mean number of counts in each energy shell prior to

encoding is preserved after the reconstruction. By doing this we

require only Nen additional parameters for the entire

(Naz,Nel, Nen) counts distribution, and in turn achieve

increased performance in the moments (particularly the

number density). As the network itself decodes two energy

shells at a time (patch size of 2), we force the mean number

of counts to be equal between the original and reconstructed

energy shells, each of shape (Naz, Nel). This is described in Eq. 1,
where �C

E

recon,adjusted is the reconstructed vector of counts for

energy shell E, �C
E
recon is the reconstructed counts for energy shell

E, �CE
orig is the mean number of counts in the original energy shell

E, and �C
E
recon is the mean number of counts in the reconstructed

energy shell E. We note that merely preserving the mean number

of counts per patch (instead of per energy shell) leads to artifacts

and discontinuities along the patch boundaries in the final

reconstruction.

Eq. 1 – Adjustment to Preserve Mean Number of Counts per

Energy Shell.

�C
E

recon,adjusted � �C
E

recon (
�C
E
orig

�C
E
recon

) (1)

The networks are trained using the ADAM optimizer with a

learning rate of .001 (Kingma and Jimmy, 2014). The loss

function uses the squared residual error of the counts. We

also experimented with custom loss functions to compare

moments integrated over the subset of velocity space

associated with a patch (i.e. partial moments). In a partial

moment, the triple integral over all of velocity space is

rewritten to integrate only over the subset of velocity space

where the energies are within the range associated with the

patch. Geometrically, this corresponds to restricting the

integration domain to the volume between a sphere at

constant energy E1 (lowest energy of the patch), and a larger

sphere at constant energy E2 (highest energy of the patch).

The moments are computed directly after converting the

counts to phase space density. The performance of a

dimensionality reduction is evaluated using the moments

derived from the reconstructed ion velocity distribution. This

is done under the perspective of preserving conservation laws in

the reduced model data. As an example, a dimensionality

reduction which performs well to preserve n and �v on data

can be argued that to also preserve any equation which uses only

those variables, such as zρ
zt + ∇ · (ρ �v) � 0 (with the understanding

that ρ � ρ(n)). Therefore, the performance in accurately

reconstructing the moments can be said to generate

confidence in the ability to preserve continuum-level physics.

It is understood that this does not necessarily speak to the ability

to preserve kinetic-level physics, and such an analysis is left for

future work.

However, there is mathematical support that strong

agreement in moments leads to agreement in the distribution

function. The result of the Hausdorff moment problem states

that if two distributions f1( �v) andf2( �v) have the samemoments

M(k)
1 � M(k)

2 for all moment order k � 0, 1, 2, . . .∞, then it is

necessarily true that f1 � f2 (Hausdorff 1921a; Hausdorff

1921b; Shohat and David Tamarkin 1950). This is only

guaranteed because f1 and f2 are defined on a bounded

space (which can be taken here as the velocity space subset

given by || �v||< c) and is not necessarily true for distributions

defined on unbounded space. We note a major limitation of this

theorem is that it is stated in terms of absolute equality for an

infinite sequence, and similarly concludes that f1 � f2 exactly.
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In practice absolute equality is not achievable and therefore the

literal interpretation is limited. However, we believe the intuitive

principle of the theorem is still useful and provides a foundation

of mathematical support for the methodology.

The final loss function is given in Eq. 2, where �Crecon is the

reconstructed counts patch, �Corig is the original counts patch,

Nmoments spans each scalar moment

(n, nVx, nVy, nVz, nkbTxx, . . . nkbTzz), Npixels is the number

of pixels in the patch, the variable λm spans the penalty weights

for moments, λSC is the penalty weight for squared counts

residuals, Mm( �C) is the m’th moment of a counts array per

the above ordering, and �wm holds information from both the

conversion from counts to phase space as well as the numerical

quadrature weights for trapezoidal integration for the moments

integral in a single set of weights. That is, calculating �wm· �C

applies numerical integration. We note that Nmoments uses

number density times the velocity and temperature moments

instead of the direct velocity and temperature moments because

division by zero occurs for some empty counts distributions

where n � 0.

Eq. 2 – Loss Function including Moments Comparison

L �Crecon, �Corig( ) � λSC ∑
Npixels−1

i�0
Ci

orig − Ci
recon( )2

+ ∑Nmoms−1

m�0
λm Mm

�Crecon( ) −Mm
�Corig( )[ ]2

(2)

Mm
�C( ) � �wm · �C (3)

Different values of the penalties λm were experimented

with include a weighted combination of the squared residual

of counts and the squared error of moments, including where

the weight on the square residual of counts was zero. However,

it found was found that while conceptually elegant, these

methods did not lead to better performing networks. It is

hypothesized that the reasons these networks trained with

such loss functions did not perform well was because the

additional penalty term produces an especially non-convex,

difficult to train optimization space.

Impact on moments

We must tune the dimensionality reduction parameters to

maximize the preservation of the count distribution moments

after encoding and decoding. Specifically, we focus on the

number density n, the bulk velocity �v, and the temperature T.

Moment preservation is a proxy for how well one can trust

that fundamental continuum conservation laws are being

followed.

An independent variable in the study is the dimensionality

of the latent representation (N), which determines the number

of parameters each patch (and the cumulation of all patches) is

(are) condensed into. The performance of the moment

reconstruction is evaluated in terms of the correlation

coefficient r2, with the correlation done between the

original and reconstructed data. The performance is also

demonstrated through comparison of the original and

reconstructed moments in the form of moments time series

located later in this manuscript.

The correlation of the number density is strong for all orbital

configurations, with the r2 peaking between .998 and .999 for

each. Figure 2 shows the per-orbit correlation coefficient for the

bulk velocity as a function of the dimensionality reduction

fraction (DRF). The DRF represents the total dimensionality

of each latent patch representation relative the original

dimensionality of the patch, where 1 corresponds to no

dimensionality reduction. Specifically, it is given by

DRF � N/1024, where 1024 � 32 × 16 × 2 is the original size

of each patch.

In the Vx direction, the r2 falls between .97 and .98; in Vy,

it falls between .93 and .98; and in Vz, it falls between .92 and

.97. First, we note that a knee in the performance curve as a

function of the reduction fraction occurs around .05 and .10

for each curve, corresponding to total dimensionality

reductions of a factor between 10 and 20. It is noted here

that we consider one DRF for all patches; but with a deeper

investigation one could set the DRF per patch location to

account for varying levels of condensability between patches.

Readers eager to see a time-series comparison of original and

reconstructed data using DRF � .098 (closest discrete point to

.1) may jump ahead to Figure 4 before coming back to read this

section.

We observe that the performance of Vx, Vy, and Vz is not

only dependent on the DRF and the orbit, but also the bulk

velocity component (GSE X, Y, Z). In some cases, the

performance counter-intuitively drops once the DRF is

increased past a certain point. Simply put, this is due to

overfitting. To explain these phenomena, we note that each

autoencoder is trained to just a locally optimal solution

susceptible to imperfection from the training process: it is not

a global minimum. The decrease in performance is thus a result

of the network becoming more difficult to train as the number of

parameters becomes too large. This is evident because the larger

network contains the smaller network, so the additional

parameters must over-complicate the reconstruction. The fact

that this effect appears for some orbital configurations and not

others is understood to be a dependence on the data it is trying to

fit to.

The influences of orbital configuration and bulk velocity on

the reconstruction performance is linked to the magnetospheric

populations represented in each configuration. While it is

difficult to give definitive conclusions, it is hypothesized that

for some orbital configurations the relevant information in each

population is more difficult to condense into a low-dimensional

representation. The portions of the counts distribution relevant

to the bulk velocity are possibly less redundant with the rest of the
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distribution and require more information for accurate

reconstruction.

Demonstration of Compression
Algorithm

The effect of the compression algorithm can be seen in Figure 3

with before and after spectrograms for a scientifically relevant event,

and in Figure 4 with before and after time series for the same event.

This event originated in the 4B dayside orbital configuration. This

complements the full end-to-end compression algorithm based on

what is described in Dimensionality Reduction Method,

parameterized by a latent patch size of N � 100 corresponding

to DRF � .098. This example resulted in a compression ratio of

30.2 times, which is almost double the average ratio of 16.67 times

for the lossy review quality (fast survey) data from MMS/FPI DIS

instrument over Phases 1A and 1B of the mission, as reported in

Table 1 of Barrie et al. (2019).

Because the means are preserved between the original and

reconstructed data, the error in the reconstructed counts

spectrogram (Figure 3, bottom) is very low. This result is

taken with a grain of salt because the spectrogram perspective

ignores important errors in the directional distribution of counts.

In a sense, the error in the spectrogram is inevitable because we

(effectively) transmit the entire spectrogram as part of the

compressed data via the individual means of each energy

shell. Therefore, in the spectrogram, error is only caused

primarily by quantization of each mean. This is particularly

apparent in area of high counts and areas of very low counts

where a single count difference is significant. In the time series

perspective (Figure 4), the apparent relative errors are, as

expected, on a scale higher than the errors in the spectrogram.

The compressed data in Figure 3 includes additional

processing of quantization and entropy coding. For

compression algorithms, the quantization step compliments

the dimensionality reduction to further reduce the number of

bits by truncating the precision of the latent representation

coefficients. The entropy coding step finalizes the compression

through a lossless process where the final compressed bytes are

reduced by alternating symbols to reduce information entropy.

In this demonstration, the entropy coding was performed using

the GZIP software which implements the DEFLATE algorithm

(Deutsch 1996a; 1996b). Throughout the intervals experimented

with using these settings, the dimensionality reduction reduced

the size by a factor 10.24, the quantization by a factor of 1.6, and

entropy coding by a varying amount between a factor of 1.8–2.2.

The quantization approach used is to reduce the number of

bits allocated to each latent representation coefficient. First, each

floating-point coefficient is converted to a 16-bit floating point

number, which itself is composed of a single bit dedicated to the

sign of the number and bits corresponding to the fractional/

exponent parts of a scientific notation representation of the

number. In the traditional IEEE specification of a 16-bit

floating point number, the sign bit is 1 bit, the fractional part

is 10 bits, and the exponent is 5 bits. In our quantization scheme,

we reduce the 16-bit floating point number to a 10-bit floating

point number by reducing the fractional part to 4 bits.

In Figure 3 the compression demonstrates strong ability to

capture the energy spread of the distribution as well as transitions

between cold and hot plasma. Features of the spectrogram such

as bimodal populations (first 10 s) and populations skewed with

tails extending to lower energies (about 10–25 s in) are also well

preserved. The background flux of the spectrogram (dark purple)

is similar between the original and reconstructed data, with some

cells where zero counts occur matching in a way that is consistent

FIGURE 2
The correlation coefficient r2 performance of the bulk velocity components Vx , Vy , Vz (GSE) on a per-orbital-configuration basis. The
independent variable on the y-axis in the dimensionality reduction fraction (DRF) corresponds to the size of the latent representations for each patch.
In this plot, we observe a knee in the performance curve occurring at DRF’s between .05 and .10, corresponding to a dimensionality reduction
between 10 and 20. Other characteristics of the performance, such as the dependence on orbital configuration and bulk velocity component,
as well as the low performance as the DRF before the knee, are discussed in the text. DRFs above one corresponds to networks that do not actually
perform dimensionality reduction and instead demonstrates information loss not associated with a reduced number of parameters.
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with the underlying random detection process. Between 17:41:

00 and 17:41:30 the dip in the peak of the main population is also

well preserved. The relative error is lowest in areas where the flux

is the highest, and more apparent in regions of low flux.

We analyze the effect of the reconstruction on the fluidmoments.

The relationship between original and reconstructed moments shows

large agreement in qualitative physics arising from analysis of the data

(Figure 4). This is using the full end-to-end compression algorithm

outlined in the Demonstration of Compression Algorithm section,

including quantization and entropy coding, and is the same interval

displayed in the spectrogram from that section (Figure 3). This

comparison shows good agreement in the moments of the data,

wherein an analysis looking at only the reconstructedmoments would

come to similar conclusions about the plasma environment as if the

original moments were used.

In the beginning of the interval around 17:39:05 is a transition

from a cold, lower-density ion population to a much hotter and

higher-density population. This transition is captured well in the

original and reconstructed data. Following the fly-through of this hot

and higher-density population is an abrupt change in flow velocity.

Until the end of the interval, the flow velocity shifts in the vy and vz
directions and more slightly in the vx direction. This is generally

tracked well between the original and reconstructed data, with

differences existing but generally not impacting an understanding

of the environment. Towards the end of the interval, starting around

17:42:20, is the appearance of oscillations in the number density

possibly indicating plasma wave behavior. This is captured very well

in the number densities obtained from the reconstructed data.

Similarly, the other variables during the time of oscillation are in

good agreement to support understanding of the plasma wave

phenomenon.

Analysis of the signed moment errors in the test set was

performed and is presented in Figure 5. The line drawn is

centered at the mean error for each moment and phase, and

FIGURE 3
Demonstration of the compression algorithm in its end-to-end form displaying the original ion data, the compressed (reconstructed) ion data,
and the relative error between the two given by (original—reconstructed)/original. This uses a version of themodel with a latent patch size of n � 100
corresponding to DRF � .098. In addition to the dimensionality reduction, quantization is used to trim 6 bits off the fractional parts of IEEE 16-bit
floating point latent representation coefficients, and the GZIP software implementing DEFLATE is used for lossless entropy coding. This interval
comes from data measured during the 4B dayside orbital configuration.
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the error bars correspond to the 95% confidence interval. To

calculate the 95% confidence interval, the list of errors was sorted

in ascending order and the 2.5% and 97.5% positions were

selected. The confidence interval can be interpreted to indicate

that 95% of the errors found in the test set fell between the drawn

error bars. In the number density moment, the 95% confidence

interval is low enough to distinguish sheath plasmas from

magnetosphere plasmas. Similarly, the temperature moments

are sufficient to distinguish a cold plasma from a hot plasma.

Asymmetries in the error distribution are observed where the

radius of the confidence interval above and below are not equal,

indicating that the error distribution is first and foremost not

Gaussian, but also not symmetric in general. For all variables and

orbital configurations, the mean signed error is close to zero

FIGURE 4
A time series comparison of moments from the original and reconstructed versions of the data. This is using the full end-to-end compression
algorithm outlined in the Demonstration of Compression Algorithm section, including quantization and entropy coding. This is the same interval
displayed in spectrogram from that section. This comparison shows good agreement in themoments of the data, wherein an analysis looking at only
the reconstructed moments would come to similar conclusions about the plasma environment as if the original moments were used. The Txx,
Tyy, and Tzz variables are the diagonal elements of the temperature tensor. All coordinates are in the GSE coordinate system.
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within the scale of the data, a reassuring feature. For reference, a

table of the 95% ranges for the test set data (2.5% and 97.5%

percentiles for each variable) is included in Table 2. This is meant

to provide context for those not familiar with the data to

comprehend the signed errors reported in Figure 5.

Conclusion and outlook

In this paper we look at the topic of learning dimensionality

reduction on counts distributions as they would be measured by a

spacecraft. The capability of dimensionality reduction for counts

distributions has a natural application to compression but is

more generally a continuation of traditional methods (spherical

harmonics, Fourier series, Wavelet transforms) in the era of data-

intensive modeling. In addition to compression, dimensionality

reduction is also applicable to synthesizing spacecraft data into

condensed features for other machine learning algorithms,

saving them the work of learning to distill counts

distributions themselves. The performance reported here is an

initial attempt at using machine learning for compressing plasma

data. In our demonstration, we showed that our initial attempt

provided a compression ratio of 30.2 times, almost double the

average ratio of 16.67 times for the lossy review quality (fast

survey) data from MMS/FPI DIS instrument during mission

Phases 1A and 1B (Barrie et al., 2019). We believe that there is

FIGURE 5
Analysis of Signed Errors for each of themoments (reconstructed—original), investigated through 95% confidence intervals calculated from the
test set (sample size 5000). The primary line drawn corresponds to the mean signed error, and the error bars correspond to the confidence interval.
The confidence interval can be interpreted to indicate that 95% of the signed errors found in the test set fell between the drawn error bars. The
density and temperature moments appear suitable to distinguish dense plasma from sparse plasma and hot plasma from cold plasma, and the
velocity components appear suitable to determine the general flow direction.

TABLE 2 95% range (2.5% and 97.5% percentiles) of test set values to better interpret Figure 5.

4A Dusk Flank 4B Dayside 4C Dawn Flank 4D Tail

n (cm−3) .499–66.145 .822–60.546 .467–49.276 .146–4.887

vx (km/s) -476.115–26.707 -554.104–45.632 -414.732–63.921 -284.746–173.642

vy (km/s) -44.425–208.268 -167.317–183.669 -193.874–47.641 -83.245–100.394

vz (km/s) -70.394–125.645 -89.795–136.619 -113.052–99.698 -55.794–68.221

Txx (eV) 31.983–2,847.648 3.710–2,631.109 14.099–2,953.167 83.653–3,120.441

Tyy (eV) 9.971–2,847.975 1.399–2,609.728 7.110–2,800.843 74.695–2,796.996

Tzz (eV) 19.018–2,565.776 2.152–2,300.594 8.079–2,682.937 82.152–2,883.957
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room for improvement; further experimentation with different

kinds of network architectures is a promising avenue for

investigation. We emphasize that the use of lossy compression

should be aimed at review quality data or non-research space

weather applications judged on a case-by-case basis.

In this paper, we contribute the perspective of validating the

dimensionality reduction in terms of preserved physics. The approach

utilized here is to consider its impact on moments and the fluid

perspective—best applicable to Maxwell-Boltzmann-conforming

distributions—as a metric for the ability to preserve scientific

integrity. More advanced capabilities exist for analyzing the

integrity of reconstructed counts distributions—including analysis

of terms of the Vlasov equation measured directly from spacecraft

data (Shuster et al., 2019; Shuster et al., 2021). Careful analysis of these

Vlasov equation termsmay offer increased confidence in the scientific

validity of the counts distributions at the kinetic level for collisionless

plasma environments. Finally, in this paper we only look at the ion

counts distributions; a natural extensionwould be a similar studywith

electron counts distributions.

A future avenue for this work includes studying the

practical details required to implement such a compression

systems in flight. In the context of mission-development and

systems engineering, developing a sample concept of

operations and data format specification would increase the

technical readiness level (TRL) and ease development burden

on the benefactor. In the spirit of this, it would be of

significant advantage to understand whether data from a

past space mission could be used to train a compression

algorithm for a future spaceflight mission, particularly

before that future spaceflight mission launches. For

instance, could THEMIS or CLUSTER be used to train a

compression algorithm for MMS FPI/DIS, pretending that

MMS had not yet launched? If such could be done

successfully, a subsequent question would be how closely

the orbits and instrumentation specifications need to match

to retain strong performance.

For an in-situ plasma sensing mission seeking

measurements of the distribution function, the data volume

from the plasma instruments will overwhelm the transmission

bandwidth compared to the magnetometer contribution.

When there are compression artifacts, such artifacts should

be quantified for both error analysis and development of

artifact removal algorithms. The quantification of

compression artifacts in terms of non-naïve error metrics is

an active area of research in data compression, which we leave

for future work. Finally, this paper aims to remind the

machine learning community that contributions to the

problem of data compression would be a directly

measurable and practical problem in Heliophysics for us to

undertake.
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