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Modeling the temperature field near the Martian surface is critical for many

scientific exploration tasks, such as detecting liquid water and analyzing the

existence of saline ice. Meteorological conditions on Mars are highly dramatic,

with a daily temperature change of up to 80–100 K. Most previous tasks of

surface temperature monitoring on Mars are based on satellite observations,

lacking in-situ measured data. Recently, two Martian missions at mid-low

latitudes in the northern hemisphere, InSight lander and Zhurong rover,

carried out near-surface temperature observations. However, the

temperature monitoring of the Zhurong rover obtained data for only some

short periods in its working days; thus, the amount of recorded temperature

data is inadequate for a whole-day analysis at the landing site. Here we

reconstruct the near-surface temperature at the Zhurong landing site by

incorporating the continuous temperature data observed at the InSight

lander, simultaneously referring to the Martian Climate Database; then, the

reconstructed data are used to constrain the numerical simulation of the

response of shallow subsurface under the Zhurong landing site. The

numerical simulation of heat conduction shows that the daily temperature

change under the Zhurong landing site mainly influences the uppermost depth

of 0–30 cm, with a daily average temperature of ~225 K. During the traveling

duration of the Zhurong rover (i.e., summer of Mars), the seasonal temperature

change within the top 1 m is significant and is related to the thermal properties

of possible subsurface media (e.g., soil, ice, and sandstones). Although there

might be aqueous activities in Utopia Planitia, our results show that from the

perspective of temperature field, there is little possibility of liquid water in the

shallow subsurface under the Zhurong landing site. The proposed method in

this study provides a new way for the temperature field simulation of the

subsurface in areas with insufficient local observations, especially on

extraterrestrial objects.
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Introduction

China’s Zhurong rover successfully landed on Mars in

2021, at southern Utopia Planitia (Zhou et al., 2020; Wu et al.,

2021; Ye et al., 2021; Zhao et al., 2021; Niu et al., 2022), where

is thought to have been an ancient ocean. Having experienced

complex ancient geological events (Acuna et al., 1999; Zhong

and Zuber, 2001; Stanley et al., 2008; Christensen et al., 2009;

Zhang et al., 2022a), the present meteorological condition on

Mars is still extreme. The Zhurong landing site is in the mid-

low latitude (25.066° N), with four distinct seasons. There are

significant differences in wind speed and direction in different

seasons (Charalambous et al., 2021; Gou et al., 2022). The air

pressure changes steadily as the revolution process on Mars

(Banfield et al., 2020). According to wind conditions during

different seasons, an entire martian year can be divided into

dust-storm season (mainly autumn and winter in the northern

hemisphere) and quiet season (mainly spring and summer in

the northern hemisphere).

The daily temperature difference of the near-surface is extremely

large (up to 80–100 K) and varies significantly with seasons. The large

temperature variation strongly affects the near-surface and

subsurface meteorologic conditions (Banfield et al., 2020) and

even the thermal behavior of the lander on Mars (Zhang et al.,

2023a). The temperature field and its seasonal variation in the

subsurface layer of Zhurong landing area are very important for

water/ice detection. Previous studies have conducted thermal

simulations on a seasonal timescale (Li et al., 2022) for evaluating

the temperature field in the subsurface based on Martian Climate

Database (MCD, Forget et al., 1999). For in-situ observation-based

thermal simulation, the problem is that only a short period of

temperature data was collected by Zhurong during its working

days; thus, the amount of recorded temperature data is

inadequate for a whole-day analysis at the landing site.

FIGURE 1
The locations of Zhurong rover, InSight lander, and Perseverance lander. (A) the topography around southern Utopia Planitia. (B) Surface view
taken by navigation and terrain cameras on Zhurong rover (NaTeCam, Liang et al., 2021; Liu et al., 2021). (C) Surface view taken by InSight lander
(https://pds-geosciences.wustl.edu/missions/insight/index.htm).
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Mars Climate Station (MCS, Peng et al., 2020) was deployed on

the deck of the Zhurong rover (Figure 1), with a height of ~1m over

the ground, to monitor air temperature, air pressure, and wind.

However, the temperature monitoring only works for several short

periods during the daytime; thus, the total amount of recorded

temperature data is inadequate for an entire-day temperature

analysis at the landing site. Fortunately, the general temperature

has a high similarity within a limited spatial range, especially along a

similar latitude. InSight, a Martian lander located in northern mid-

low latitude like Zhurong, has collected continuous temperature data

for approximately 2 martian years. InSight was equipped with

Temperature and Winds for InSight (TWINS, Spiga et al., 2018),

which collected continuous temperature data and thus can provide

solid constraints for the reconstruction of Zhurong temperature data.

In this paper, we first reconstruct the near-surface

temperature at the Zhurong landing site by incorporating the

temperature data observed at the InSight lander. Then, the

reconstructed near-surface data is applied to simulate the

response of the subsurface of the Zhurong landing site due to

the temperature changes in the air, with both daily and seasonal

timescales. Finally, we discussed the possibility of the existence of

water/ice according to the temperature simulation results.

Results

Temperature reconstruction of a
representative day at the Zhurong landing
site

As mentioned in the introduction section, during the first

~100 sols (Sol 11–Sol 107) of the Zhurong rover, only some

FIGURE 2
Temperature correction at the Zhurong landing site by
InSight temperature observation. (A) Record data at the Zhurong
landing site (~1 m over the ground) and MCD modeled
temperature at Ls of 72° with altitudes of 0 m and 1 m,
respectively. (B) Zhurong recorded temperature data, compared
with the daily temperature records at the InSight landing site in its
Sol 475, with Ls = ~177°. The gray bar indicates an error of ±8 K

FIGURE 3
The Solar longitude (Ls) correction for the representative daily
temperature at Zhurong’s latitude according to InSight’s latitude.
The horizontal axis is the equation of time (minutes) and the
vertical axis is the declination (degrees). The Zhurong landing
site (at the latitude of ~25°) and InSight landing site (at the latitude
of ~4.5) are marked, respectively. Zhurong temperature data
period (Ls = 50–93, 72° on average) is marked as a thick blue line.
The declination variation for the Zhurong data period is ~7°. For the
average day (red arrow) of the Zhurong data period, there is a ~3.5-
degree declination/latitude difference to its hottest day.
Accordingly, a ~3.5° declination/latitude difference is applied to
the InSight landing site; thus, at the InSight landing site, the day
with a similar daily temperature condition to the Zhurong landing
site has an Ls of ~177° (green arrow).
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discrete temperature data have been collected with local mean

solar time (LMST) of 09:00–17:00, basically consistent with the

daily temperature modeled by MCD (Figure 2A). These discrete

temperature data are not enough for a daily temperature field

simulation in the subsurface under the landing site, restricting

our understanding of the response of the subsurface materials

due to daily and seasonal temperature changes.

Although the elevation difference between the Zhurong

landing site and InSight landing site is almost 2000 m, the

near-surface environment of these two sites is similar (Figures

1B,C). Therefore, we reconstruct the near-surface temperature at

the Zhurong landing site by incorporating the temperature data

observed at the InSight landing site according to similar solar

incident conditions in an entire martian year since these two sites

are both located at mid-low latitudes. Specifically, the period of

Zhurong temperature data collected has average solar longitude

(Ls) of 72°. At the InSight landing site, the day with similar daily

temperature conditions to the Zhurong landing site has an Ls of

~177 (Figure 3). Therefore, we use the temperature data of Ls =

177° (Sol 475) at the InSight landing site as a representative day

for the temperature data collecting period at Zhurong

(Figure 2B). With an error bar of ±8 K (~10% of daily

temperature amplitude), the representative temperature curve

from InSight can cover the Zhurong data collected, indicating

that the temperature reconstruction for the representative day is

reasonable.

Temperature correction from the air to the
ground

Although the MCD-modeled temperature can generally

well cover the recorded Zhurong data (Figure 2A), the

accuracy is still limited, compared with the representative

temperature curve from InSight (Figure 2B). As a result, the

MCD modeled temperature cannot be directly used to fit the

Zhurong temperature records, nor setting the altitude as 0 m

or 1 m (Figure 2A). Fortunately, the temperature ratios

(ground/air) of both recorded and MCD modeled are

approximately equal, according to the measured data from

InSight lander and Perseverance rover (Zhang et al., 2023b).

In addition, the air temperature sensors of MCS are on the

deck of the Zhurong rover, ~1 m over the ground. However,

the ground temperature (above the surface 0 m) is supposed to

be used as the input for the simulation of heat conduction.

Therefore, we correct the representative air temperature

(above the surface 1 m) of Zhurong (i.e., temperature data

of Ls = 177° at the InSight landing site, as reconstructed in

Temperature reconstruction of a representative day at the

Zhurong landing site) to the ground temperature (above the

surface 0 m) according to the modeled air temperature and

ground temperature from the MCD as below:

TEstimated
0m � TMCD

0m

TRecorded
1m, Ls�72°

TMCD
1m, Ls�72°

where TEstimated
0m is the estimated ground temperature at Zhurong,

which is used as the top temperature boundary for the heat

conduction simulation; TMCD
0m is the ground temperature

modeled by the MCD; TRecorded
1m, Ls�72° is the recorded air

temperature (above the surface 1 m) corrected from InSight

temperature data with Ls = 72° for Zhurong (Ls = 177° for

InSight). TMCD
1m, Ls�72° is the MCD-modeled air temperature (above

the surface 1 m) at Zhurong. Figure 4 shows the temperature

distribution through a whole year at the Zhurong landing site

after above temperature correction process.

Heat conduction equation

It would be very helpful to analyze the underground

structure and thermal state (temperature field) based on

three-dimensional simulations. Although the previous study

has revealed the structure of the subsurface under the Zhurong

landing site (Li et al., 2022). However, the detailed three-

dimensional structure of the shallowest 10 m remains

enigmatic. Simplistically, we apply the one-dimensional

version of heat conduction equation for an efficient

calculation but use three sets of thermal diffusivity values

to show the maximum possible range of thermal state

variations.

On the near surface of Mars, the heat conduction equation

can be described below (Li et al., 2022; Zhang et al., 2023b)

zT

zt
� κ

z2T

z2z
(1)

where T is the temperature, t is the time, z is the depth (positive

downward), and κ is the thermal diffusivity of the region of

interest. The solution of heat production equality generally

depends on diffusion (Gläser and Gläser, 2019). At the

ground surface (z = 0), TEstimated
0m is used as the top

temperature boundary. In the heat conduction equation, T (0,

t) can be written as a sine function

T(0, t) � T0 + A0 sin(2πP t + φ0) (2)

where P is the period (diurnal variation with P of one sol and annual

variation with P of one martian year), T0 is the average ground

temperature in the period, A0 is the amplitude, and φ0 is the initial

phase. Then the heat conduction equation can be solved as

T(z, t) � T0 + γz + A0e
−

��
π
κP

√
z sin(2π

P
t + φ0 −

���
π

κP

√
z) (3)

where γ is a constant to describe the thermal gradient zT/zz,

which can be determined by Fourier’s Law
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γ � zT

zz
� Q0

k0
(4)

where the average thermal conductivity k0 of the Martian

subsurface is set to be 0.8 Wm−1K−1 (Egea-Gonzalez et al.,

2021), and the average heat flux (Q0) of 18 mWm−2 is

selected for the Zhurong landing site from the present-day

heat flow model of Mars (Parro et al., 2017).

Figure 5 presents the diurnal temperature change in the

subsurface beneath the Zhurong rover for the representative

day with an average Ls of 72°. Since the in-situ thermal

parameters have not been obtained at the Zhurong landing

site, the thermal diffusivity is set as 5.1 × 10−8 (InSight

measured, Spohn et al., 2018), 1 × 10−7 (water), and 1 ×

10−6 (ice or sandstone, Mühll and Haeberli, 1990; Sun et al.,

2016), respectively, for parameter sensitivity analysis. The

simulation results show that when the thermal diffusivity is

set as 5.1 × 10−8 (InSight measured) or 1 × 10−7 (water), the

diurnal temperature variations over 1 K only occur within the

top 30 cm (Figure 5C). Although the surface (z = 0) has a daily

temperature variation of over 100 K, for the shallowest 8 cm,

daily temperature variations are less than 25 K (Figure 5B);

when the thermal diffusivity is set as ice or sandstone, the

diurnal temperature variations over 1 K occur much deeper,

with the depth of ~100 cm (Figure 5C). The average

temperature in the top 100 cm subsurface is approximately

225 K. Without considering the heat flow from deep Mars, the

temperature with depth over 100 cm is constantly ~225 K

(Figure 5C). In addition, the highest temperature usually

occurs at afternoon 14:00 LMST. The temperature over

273 K (melting point of water) occurs only in the

shallowest several centimeters. At other times or other

depths, the temperature is always less than 273 K, as low

as 180 K before sunrise.

FIGURE 4
Temperature distribution through a whole year at the Zhurong landing site. (A) MCD modeled temperature with an altitude of 1 m (in the air);
(B)MCDmodeled temperature with an altitude of 0 m (on the ground); (C) InSight-based corrected temperature with an altitude of 1 m; (D) InSight-
based corrected temperature with an altitude of 0 m.
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Seasonal variation of the subsurface
temperature

Figure 6 shows the temperature profiles in Sols 11–107 of

Zhurong rover (Ls of 50°–93°) at representative moments for each

sol (06:00, 14:00, 18:00, and 24:00 LMST). The thermal diffusivity

is also set as 5.1 × 10−8 (left column), 1 × 10−7 (middle column),

and 1 × 10−6 (right column), respectively, for parameter

sensitivity analysis. We can see that the hottest period occurs

at Ls of ~90°, which is approximately the summer solstice of

Zhurong landing site. In contrast, the top 100 cm temperature in

spring (Ls = ~50°) is much lower.

In the subsurface of Zhurong landing site, the absence of liquid

water has been investigated by radar detection, but the existence of

FIGURE 5
Daily temperature simulation results for the Zhurong landing site. (A) Daily temperature variation in the top 100 cm of the subsurface.
(B) temperature profiles in different depths. (C) temperature profiles at different times of the day. The left, middle, and right columns are based on the
thermal diffusivity of 5.1 × 10−8 (InSight measured), 1 × 10−7 (water), and 1 × 10−6 (ice or sandstone), respectively.
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ice cannot be ruled out (Li et al., 2022). Taking the case with thermal

diffusivity of 1 × 10−6 (right column, sand and/or stone) as an

example, the temperature changes dramatically with the depth near

the summer solstice, especially in the afternoon (14:00 LMST) and at

sunset (18:00 LMST), which indicates the existence of multiphase in

the medium if there is ice. Liquid water might exist temporarily in

summer afternoons within the top ~20 cm due to ice melting if ice

exists there. This simulation result shows that the best time to detect

liquid water in this area might be summer afternoons (Ls = ~90,

LMST = ~14:00).

Discussion and conclusion

For the temperature correction process of the Zhurong

landing site according to InSight temperature observation,

FIGURE 6
Temperature distribution in the top 100 cm subsurface under the Zhurong landing site in its Sols 11–107 with Ls of 50–93. (A) 06:00; (B) 14:00;
(C) 18:00; (D) 24:00. The left, middle, and right columns are based on the thermal diffusivity of 5.1 × 10−8 (InSight measured), 1 × 10−7 (water), and 1 ×
10−6 (ice or sandstone), respectively.
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although the error is only ~10% of daily temperature

amplitude, the error of ±8 K is still notable (Figure 2B). In

addition, the InSight-based fitting process is only according to

the nighttime but without the constraints from nighttime

data. As Zhurong continues to move forward on Mars, with

more temperature data collected in the future (especially at

nighttime), the evaluation for the near-surface daily

temperature variation would be improved.

Besides the temperature boundary conditions at the top of

the subsurface (z = 0), thermal simulation mainly relies on the

thermal diffusivity of the medium. Owing to the lack of

measurement for the thermal properties of the medium

around the Zhurong landing site, we used three possible

values in this study. In the future, thermal parameters such as

thermal conductivity, thermal inertia (Mellon et al., 2000), and

specific heat capacity obtained by orbital or in-situ observations

should be incorporated into the analyses.

This paper studied the subsurface temperature in the top

100 cm of the Martian regolith, by considering several constant

diffusivities. However, the density, as well as heat conductivity of

the Martian regolith, likely varies with the depth, indicating that

the Martian regolith shows similar properties to the lunar

regolith (Hayne et al., 2017). Further work based on depth-

varying property parameters should be conducted for a more

realistic estimation of the temperature field in the Martian

subsurface. In addition, numerical methods such as the finite-

difference method (Kaczmarzyk et al., 2018) and finite-element

method (Wasilewski et al., 2021) could numerically simulate the

temperature field and even the thermodynamic behaviors based

on amore complex andmore detailed model of the subsurface. In

addition, with a more detailed three-dimensional structure being

detected in the future, the three-dimensional heat conduction

equation can be developed to simulate a more realistic

temperature field in the subsurface of Mars.

Although liquid water is most likely to appear in the

afternoon of summer from the point of view of the

simulated seasonal temperature variations, pressure should

also be considered for evaluating the phase state of water. In

the future, continuous comprehensive meteorological

observations are expected to provide more data for the

detection of the possible existence of water/ice on Mars.

Since liquid water is believed to exist on Mars and there

might have been recent aqueous activities in Utopia

Planitia (Liu et al., 2022), in-situ detection of

meteorological conditions in the polar regions would

provide a valuable comparison for the detection of water/

ice in the areas of Zhurong and other martian landers or

rovers.

As the structure of the Martian subsurface is more clearly

detected by radar in Zhurong area (Li et al., 2022), more refined

thermodynamic models based on the detected structure would

provide more accurate results for the temperature analysis of the

subsurface in this region. For example, the modeling of both the

martian regolith and the filled rocks using the finite-element

method can accurately simulate the temperature distribution and

its variation for the martian subsurface.

In this study, we proposed a strategy for reconstructing the

near-surface temperature at the Zhurong landing site by

incorporating the temperature data observed at the InSight

lander. The reconstructed temperature data are then used to

solve the heat equation as a boundary condition for the

thermal simulation in the subsurface of the Zhurong

landing site. Simulation results in both daily and annual

timescales are further used to analyze the possibility of the

existence of water/ice. The procedure based on a limited

amount of records suggested in this study can be an

example of the subsurface temperature field simulation in

areas with insufficient local data, particularly on

extraterrestrial objects.
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