
Using MEPED observations to
infer plasma density and chorus
intensity in the radiation belts

William J. Longley1*, Anthony A. Chan1, Allison N. Jaynes2,
Scot R. Elkington3, Joshua M. Pettit4, Johnathan P. J. Ross5,
Sarah A. Glauert5 and Richard B. Horne5

1Department of Physics and Astronomy, Rice University, Houston, TX, United States, 2Department of
Physics and Astronomy, University of Iowa, Iowa City, IA, United States, 3Laboratory for Atmospheric
and Space Physics, University of Colorado Boulder, Boulder, CO, United States, 4Goddard Space Flight
Center, NASA, Greenbelt, MD, United States, 5British Antarctic Survey, Natural Environment Research
Council, Cambridge, United Kingdom

Efforts to model and predict energetic electron fluxes in the radiation belts are

highly sensitive to local wave-particle interactions. In this study, we use multi-

point measurements of precipitating and trapped electron fluxes to investigate

the dynamic variation of chorus wave-particle interactions during the 17 March

2013 storm. Quasilinear theory characterizes the chorus wave-particle

interaction as a diffusive process, with the diffusion coefficients depending

on the particle energy and pitch angle, as well as the background plasma

parameters such as the wave intensity and plasma density. These plasma

parameters in the radiation belts are spatially localized and time-varying, so

we construct event-specific diffusion coefficients using MEPED (onboard

POES/MetOp) measurements of electron fluxes at low Earth orbit. This new

method provides realistic diffusion coefficients for chorus waves that account

for changes in the wave intensity, the plasma density, and the magnetic field

strength in the outer radiation belt. We show that the inferred chorus intensity is

significantly lower than previous estimates that use MEPED observations since

the same amount of increased precipitation by 30–300 keV electrons can be

explained by a change in the plasma density. This technique therefore allows for

us to create time varying, global maps of the plasma-gyrofrequency ratio (fpe/

fce), and therefore plasma density, in the outer radiation belts using the MEPED

measurements. The global density estimates compare reasonably well to in situ

density measurements from RBSP-B.

KEYWORDS

radiation belts, wave-particle interaction, quasilinear diffusion, SDE modeling, chorus
waves, density measurements, POES/MetOp, van allen probes

OPEN ACCESS

EDITED BY

Stanislav Boldyrev,
University of Wisconsin-Madison,
United States

REVIEWED BY

Binbin Ni,
Wuhan University, China
Ivan Vasko,
University of California, Berkeley,
United States

*CORRESPONDENCE

William J. Longley,
wlongley@rice.edu

SPECIALTY SECTION

This article was submitted to
Space Physics, a section of
the journal Frontiers in
Astronomy and Space Sciences

RECEIVED 06 October 2022
ACCEPTED 04 November 2022
PUBLISHED 21 November 2022

CITATION

Longley WJ, Chan AA, Jaynes AN,
Elkington SR, Pettit JM, Ross JPJ,
Glauert SA and Horne RB (2022), Using
MEPED observations to infer plasma
density and chorus intensity in the
radiation belts.
Front. Astron. Space Sci. 9:1063329.
doi: 10.3389/fspas.2022.1063329

COPYRIGHT

© 2022 Longley, Chan, Jaynes,
Elkington, Pettit, Ross, Glauert and
Horne. This is an open-access article
distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is
permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original
publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or
reproduction is permitted which does
not comply with these terms.

Frontiers in Astronomy and Space Sciences frontiersin.org01

TYPE Original Research
PUBLISHED 21 November 2022
DOI 10.3389/fspas.2022.1063329

https://www.frontiersin.org/articles/10.3389/fspas.2022.1063329/full
https://www.frontiersin.org/articles/10.3389/fspas.2022.1063329/full
https://www.frontiersin.org/articles/10.3389/fspas.2022.1063329/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fspas.2022.1063329&domain=pdf&date_stamp=2022-11-21
mailto:wlongley@rice.edu
https://doi.org/10.3389/fspas.2022.1063329
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org
https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org/journals/astronomy-and-space-sciences#editorial-board
https://www.frontiersin.org/journals/astronomy-and-space-sciences#editorial-board
https://doi.org/10.3389/fspas.2022.1063329


1 Introduction

The Earth’s radiation belts are composed of highly energetic

electrons and ions that interact with the colder, denser

background plasma. This collocation of the dense background

plasma and the radiation belts creates a natural laboratory for

studying wave-particle interactions in a plasma. The cold plasma

generates several types of waves, including whistler-mode chorus

waves driven by an electron temperature anisotropy. The higher

energy radiation belt particles play no role in the generation of

chorus waves, but they strongly interact with the waves through

collisionless Landau and cyclotron damping. This wave-particle

interaction can pitch angle scatter electrons near the resonant

energy, causing them to precipitate into the ionosphere where

they can drive the aurora (e.g., Abel and Thorne, 1998).

In this study, we are interested in calculating event-specific

chorus diffusion coefficients for later use in the K2 modeling

framework. K2 models the time evolution of electron phase-

space density using test particles in MHD fields (Elkington et al.

2002, 2004). This MHD-test particle method allows for accurate

modeling of both global effects such as radial transport and

magnetopause shadowing (Elkington et al., 1999, 2003; Fei et al.,

2006), as well as local wave-particle interactions such as

quasilinear diffusion due to chorus waves modeled by a 2D

Stochastic Differential Equation (Tao et al., 2008; Zheng et al.,

2014). The wave-particle interaction is strongly determined by

the wave properties in the radiation belts, and in this paper we

develop a novel method for estimating these wave properties on a

dynamic, global scale.

In the radiation belts, the colder background plasma is

typically anisotropic with a higher temperature in the

direction perpendicular to Earth’s magnetic field. Electron

populations with this temperature anisotropy drive an

instability that produces whistler-mode chorus waves, while

anisotropic ion populations produce electromagnetic ion-

cylotron (EMIC) waves (Kennel and Petschek, 1966; Omura

et al., 2009). The whistler-mode chorus waves interact

strongly with relativistic electrons and are the focus of this

current study due to the ability to measure their precipitation

into the ionosphere using the MEPED instrument on the POES

and MetOp spacecrafts. EMIC waves are also important for the

diffusion and loss of highly energetic electrons (>4 MeV) (Ross

et al., 2020, 2021) and will be the subject of future studies.

Since the energetic electrons have no role in generating

chorus waves, the wave-particle interaction is best described

through the diffusion equation obtained by quasilinear theory.

Quasilinear theory is a modification to typical linear solutions of

the Boltzmann equation, where a slow time dependence is

included for the zeroth order terms. In effect, this allows the

Boltzmann equation to be solved for the case where the initial

electron distribution is changing in time due to the wave losing

energy to the electrons through Landau and cyclotron damping.

This solution results in a standard diffusion equation, with the

diffusion coefficients depending on the wave properties (Lyons

and Williams, 1984).

To model the diffusion process accurately and efficiently, we

need to specify a priori the properties of the chorus waves in the

radiation belts. This is traditionally done through assembling

statistical maps of the wave intensity |Bw|2, wave frequency

distribution, and the plasma frequency to gyrofrequency ratio

fpe/fce (Albert et al., 2009; Horne et al., 2013). The empirical

nature of these diffusion coefficients leads to an inconsistency

with radiation belt modeling, which seeks to understand the

dynamic evolution of electron fluxes during strong geomagnetic

storms where intense chorus waves are not expected to strictly

follow statistical patterns. Recently, Li et al. (2013) and Ni et al.

(2014) developed a method to use MEPED measurements to

infer the chorus intensity as a function of location and time

during a geomagnetic storm. This method was used to create a set

of event-specific diffusion coefficients for chorus waves in Ma

et al. (2018). In this paper we expand on this method by

calculating the fpe/fce ratio as well as the chorus intensity.

This is achieved by including an additional energy channel

from MEPED and allows us to estimate the plasma density in

the outer radiation belts, a critical parameter for chorus wave-

particle interactions. This new method produces lower chorus

intensities since thefpe/fce ratio strongly influences the resonant

energy of the wave-particle interaction.

The remainder of this paper is organized as follows. In

Section 2 the calculation of quasilinear diffusion coefficients is

reviewed. The MEPED data used is provided in Section 3. In

Section 4 we detail the new method for using the MEPED data to

calculate event-specific chorus diffusion coefficients. Section 5

then shows the chorus intensities and plasma densities estimated

from scaling the diffusion coefficients, followed by a discussion of

further applications in Section 6.

2 Quasilinear diffusion coefficients

2.1 Theory overview

The Boltzmann equation plus Maxwell’s equations provide a

closed set of equations to describe the kinetic behavior of a

plasma. Typical solutions to this set of equations involve a

perturbation approach where the velocity distribution is in the

form of fs( �x, �v, t) � fs,0( �v) + fs,1( �x, �v, t), where fs,0( �v) is a

zeroth order, time independent distribution (i.e., a Maxwellian

or Kappa distribution), and fs,1 is a first order plane wave

fluctuation. In contrast, quasilinear theory seeks to obtain the

time evolution of the zeroth order background distribution as it

responds to waves with finite amplitudes (Nicholson, 1983). This

is an appropriate solution for wave-particle interaction in the

radiation belts as it 1) provides a time evolution of phase space

density, and 2) observations show that whistler-mode chorus

waves have substantial amplitudes that require nonlinear terms
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to be retained when solving the Boltzmann equation (Zhang

et al., 2019; Malaspina et al., 2021).

The quasilinear solution to the Boltzmann equation for

electromagnetic waves and relativistic particle energies is

derived in Kennel and Engelmann (1966) and Lyons and

Williams (1984). The solution is of the form of a diffusion

equation: zf0

zt � ∇ �v · ( �D · ∇ �vf0). Using velocity coordinates of

pitch angle α � atan(v⊥/v‖) and momentum p, and assuming

azimuthal symmetry, the resulting diffusion equation is

zf0

zt
� 1
sin α

z

zα
sin α(Dαα

zf0

zα
+ pDαp

zf0

zp
)

+ 1

p2

z

zp
p2(pDpα

zf0

zα
+ p2Dpp

zf0

zp
). (1)

Where the diffusion coefficients are all in units of 1/s, and form

the symmetric matrix

�D � (Dαα Dαp

Dαp Dpp
). (2)

The calculation of diffusion coefficients is detailed in Glauert

and Horne (2005). In this paper we use all 4 components of the

diffusion tensor in Eq. 2, however we will only show the

equations for Dαα for brevity. The pitch angle diffusion

coefficient is

Dαα � ∑
n

∫dX XDnX
αα , (3)

where n is the cyclotron harmonic, andX � tan (ϕ)with ϕ as the

wave normal angle. The diffusion coefficient for a given cyclotron

harmonic and wave normal angle is

DnX
αα � q2sω

2
i

4π(1 +X2)N(ωi) (nΩs/(γωi) − sin 2α

cos α
)·

B2(ωi)g(X)⎡⎢⎣ ∣∣∣∣Φn,k

∣∣∣∣2∣∣∣∣∣∣v‖ − zω
zk‖

∣∣∣∣∣∣⎤⎥⎦k‖ (4)

There is an implicit summation over all of the wave modes ωi

that are obtained from solving the cold plasma dispersion

relation (defined in Appendix A). The wave frequency

distributions are often assumed to be Gaussian, such as

B2(ω) � A2 exp( − (ω − ωm

δω
)2), (5)

A2 � Bw
2

δω

2��
π

√ [erf(ωm − ωlc

δω
) + erf(ωuc − ωm

δω
)]−1. (6)

The parameters ωm, ωlc, ωuc, and δω define the Gaussian

distribution, and B2
w is the peak magnetic field intensity of the

chorus waves, which shows that Dαα ∝B2
w. The parameters

N(ωi) and Φn,k are obtained from the dispersion relation (see

Glauert and Horne, 2005). Furthermore, the wavenumber is

constrained by the Landau/cyclotron resonance condition

ω − k‖v‖ � nΩs

γ
. (7)

The diffusion coefficient for a particle with a given pitch

angle and momentum is calculated by first solving the

dispersion relation in Appendix A simultaneously with Eq.

7 to obtain the resonant wave frequency and wavenumber.

The unspecified parameters in Eq. 4 are then: the wave

amplitude at the resonant frequency, B2(ωi); the wave

normal angle distribution g(X); and the background

plasma density ne and magnetic field B0 which are also

needed in solving the dispersion relation. The challenge in

calculating event-specific diffusion coefficients is in specifying

each of these parameters, which are sparsely measured by

satellites.

The basic motion of radiation belt particles is to bounce

between mirror points in each hemisphere. Along this trajectory

the wave properties and background plasma will change, so the

diffusion coefficients are bounce-averaged. For the pitch angle

diffusion coefficient, the bounce averaging is done as (Glauert

and Horne, 2005)

〈Dαeqαeq〉 � 1
τB

∫τB

0
Dαα (zαeq

zα
)2

dt, (8)

where αeq is the equatorial pitch angle of the particle, and τB is the

particle bounce period. The diffusion coefficients used in this

paper are all bounce-averaged.

2.2 Statistical chorus diffusion coefficients

The baseline set of diffusion coefficients used in this paper

are calculated using the PADIE (Pitch Angle and Energy

Diffusion of Ions and Electrons) model (Glauert and

Horne, 2005; Horne et al., 2013) with the procedure given

in Reidy et al. (2021) and the wave dataset fromMeredith et al.

(2020). This set of diffusion coefficients is based on statistical

aggregation of wave parameters from the DE 1, Double Star

TC1, and THEMIS (A, D, E) satellites, and plasma density

measurements from the CRRES satellite. The wave and plasma

data used in the diffusion coefficients are binned at half

integer values of L-shell, 1-hour increments of MLT, and

for Kp index values of 0, 1, 2, 3, and 4+. Figure 1 shows

the pitch angle, momentum, and mixed diffusion coefficients

at different Kp bins for the same MLT and L-shell.

The diffusion coefficients from PADIE will be scaled with

MEPED data for wave intensity, Bw, and the plasma-

gyrofrequency ratio, fpe/fce. The main benefit of using these

statistical coefficients is that they use chorus frequency

distributions, B2(ω), that are fit to data (Meredith et al.,

2020). The frequency distribution is still proportional to the

chorus intensity, B2(ω)∝B2
w, but the normalization factor is

computed numerically for each distribution. With this
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proportionality and Eqs 3, 4, the diffusion coefficients are related

to the chorus intensity as

Dαα ∝B2
w. (9)

This proportionality also holds for Dαp and Dpp, and is the

basis for using MEPED data to scale the diffusion coefficients for

event studies.

3 Medium Energy Proton and
Electron Detector (MEPED)
observations

Energetic electron fluxes are measured at ~800 km altitudes

using the NOAA Polar Orbiting Environmental Satellites (POES)

and the European Space Agency Meteorological Observational

(MetOp) satellites. The Medium Energy Proton and Electron

Detector (MEPED) instrument onboard the POES and MetOp

satellites measures incident electron fluxes in 4 energy channels

(>30 keV, >100 keV, >300 keV, and >700 keV) with two detectors
having different pointing angles. The nominal 0° detector is

pointed to the spacecraft zenith, and measures electrons within

the loss cone that are precipitating into the ionosphere (when at

high latitudes). The nominal 90° detector is pointed behind the

spacecraft’s trajectory, and measures electrons that are trapped in

the radiation belts and have mirror points just below the

spacecraft’s altitude. The angular width of each detector is

approximately 30°, however the MEPED detectors admit fluxes

through the full 180° face due to the energetic particles penetrating

the shielding. This issue is discussed thoroughly in Selesnick et al.

(2020), which used Monte Carlo simulations to compute accurate

angular response functions for each detector. All analysis of

MEPED data in this paper utilizes the angular response

functions from Selesnick et al. (2020).

The construction of the MEPED instrument minimized the

cross-contamination between the proton and electron channels.

However, low energy protons at the right incidence angle are able

to enter the electron detector where they produce a false count

(Pettit et al., 2021). To account for proton contamination, we use

the MEPED dataset from Pettit et al. (2019, 2021) which corrects

for proton contamination by fitting the proton detector counts to

obtain differential fluxes that are subtracted from the electron

channels.

The POES and MetOp satellites are in polar orbit planes,

providing a wide range of local time coverage. However, this

coverage leaves significant gaps in the data when binning by L

FIGURE 1
Diffusion coefficients binned by Kp index for L = 5, and MLT from 6:00 to 07:00. Note the color scale and axes are the same in each plot. The
energies range from 100 eV up to 10 MeV, and the equatorial pitch angle ranges from 0.5° to 89°.
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shell, MLT, and time. We fill these gaps in data by taking a 2-D

linear interpolation in time (UT) and MLT, using the fillmissing

function in MATLAB with linear interpolation. This makes the

assumption that precipitation is highly localized in L shell, and

therefore adjacent bins in L shell are not strongly correlated. In

Figure 2 is a plot of the precipitating (0° detector) to trapped (90°

detector) flux ratio on March 17-18, 2013, measured by the

NOAA POES 15, 16, 17, 18, and 19 satellites, along with MetOp

1 and 2. Figure 2 shows the data filled in to create maps of

precipitating/trapped flux in 1-hour local time bins, 0.5 L-shell

bins. The data is later binned in 3-hour MLT increments for

analysis in Section 4, however Figure 2 shows 6-hour MLT bins

for space constraints.

4 Event-specific diffusion coefficients

4.1 Inferring chorus wave intensity

The method of using MEPED observations of electron fluxes

in order to estimate chorus wave intensity was first developed in

Li et al. (2013) and Ni et al. (2014). This method compares the

observed precipitating/trapped electron flux ratio from MEPED

to the ratio obtained by solving a 1-D diffusion equation in

Kennel and Petschek (1966). The predicted flux inside the loss

cone, corresponding to the 0-degree MEPED telescope, is

(Kennel and Petschek, 1966)

J0 � ∫E2

E1

∫2π

0
∫β

0

S(E)
〈Dαα〉LC cos αeq

I0(αeq
αLC

z0)
z0I1(z0) A sin ηdη dψ dE.

(10)
where I0 and I1 are modified Bessel functions. The corresponding

flux outside the loss cone, corresponding to the 90-degree

MEPED telescope, is (Kennel and Petschek, 1966)

J90 � ∫E2

E1

∫2π

0
∫β

0

S(E)
〈Dαα〉LC cos αeq

[ I0( z0)
z0I1(z0) + log( sin αeq

sin(αLC))]A sin ηdη dψ dE.

(11)

In both equations, αLC is the loss cone angle at the equator,

and the equatorial pitch angle αeq of a particle is related to the

local pitch angle α by

sin 2αeq � Beq

BLEO
sin 2α, (12)

where BLEO is the magnetic field strength at the satellite’s location

in low Earth orbit, nominally 800 km altitude. The parameter z0
is related to 〈Daa〉LC, the bounce-averaged pitch angle diffusion

coefficient evaluated at the loss cone angle:

FIGURE 2
MEPEDmeasurements of precipitating to trapped flux ratio as a function of MLT, L-shell, and universal time on March 17-18, 2013. The data are
binned in 1 h time (UT) intervals and 0.5 L-shell intervals. The data are obtained from theNOAA POES 15, 16, 17, 18, and 19 satellites, alongwithMetOp
1 and 2.
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z0 � 2αLC��������������
τB 〈Dαα〉LC cos αe

√ (13)

The integrations in Eqs 10, 11 are over a finite energy range,

[E1, E2], which we will choose to correspond to the energy ranges
from MEPED. The lowest energy interval from MEPED is

30–100 keV and has the highest count rates. In Section 4.2 we

further develop this scalingmethod to account forfpe/fce by also

examining the energy range of 100–300 keV. The function S(E)
is the electron energy spectrum, which we choose as the Kappa

distribution used in Ni et al. (2014).

The remaining integration variables ψ and η account for the

solid angle of the detector’s field of view. The azimuthal angle ψ,

polar angle η, and detector tilt angle θ are related to the particle

pitch angle α by the equation

cos α � cos θ cos η + sin θ sin η cosψ. (14)

The tilt angle θ is defined such that θ � 0° corresponds to the
0-degree detector looking parallel to the Earth’s magnetic field,

and θ � 90° corresponds to the 90-degree detector looking

perpendicular to the magnetic field. The tilt angle is a known

quantity from the MEPED data.

Eq. 14 can be used to write the local pitch angle α as a

function of the integration variables, η and ψ, for a known

detector tilt angle. The detector is axisymmetric, so ψ ranges

from 0 to 2π. As written, Eqs 10, 11 show the integration over

the polar angle η is from 0 to β, where β is the half-width of the

detector field of view. The MEPED detectors on POES and

MetOp are typically reported to have a detector half-width of

β � 15°. However, as discussed in Section 3, Selesnick et al.

(2020) used Monte Carlo simulations to compute accurate

angular response functions for each detector that accounted

for energetic electrons penetrating the shielding around the

instrument. In taking the polar integrals in Eqs 10, 11

we utilize the tabulated angular response functions

from Selesnick et al. (2020). This is done through the

substitution

dη → RSel(η)dη, (15)

where we denote RSel(η) as the angular response function from

Selesnick et al. (2020), and we now integrate across the entire

polar angle range from 0° to 90°.

The Li et al. (2013) and Ni et al. (2014) method for scaling

diffusion coefficients for chorus intensity is as follows:

1) Specify the statistical diffusion coefficient to scale, 〈Dαα〉, as a
function of electron energy and pitch angle.

2) Calculate the predicted ratio of precipitating to trapped flux,

J0/J90, using Eqs 10, 11, 12, 13, 14, 15.

3) Choose a scaling factor s and recalculate J0/J90 using s〈Dαα〉
as the diffusion coefficient.

4) Repeat step 3 for a wide range of scaling factors to calculate

the function J0/J90(s).

5) Obtain the measured precipitating to trapped flux ratio from

MEPED data, [ J0J90]Obs.
6) Solve for [ J0J90]Obs � J0/J90(s), which provides the scaling factor

sr which 〈Dαα〉 needs to be multiplied by in order to explain

the observed flux ratio.

7) The scaled diffusion coefficients are then sr〈Dαα〉, sr〈Dαp〉,
and sr〈Dpp〉.

This method can be applied without ever knowing the

chorus wave intensity used in PADIE to calculate 〈Dαα〉.
The inferred chorus intensity B[inferred]

w in the radiation

belts is

B[inferred]w � ��
sr

√
B[input]w , (16)

where B[input]
w is the input for PADIE, and the square root comes

from the fact that 〈Dαα〉∝B2
w.

Figure 3 shows an example of this scaling process, with Eq. 16

used to plot J0/J90 as a function of chorus wave intensity instead

of the abstract scaling ratio. In Figure 3 the scaling method is

applied using observed flux ratios by MEPED, leading to an

inferred chorus intensity of Bw � 435 pT from the 30–100 keV

band, and an inferred chorus intensity of Bw � 825 pT from the

100–300 keV band. Since the observed fluxes are caused by the

same chorus waves in the radiation belts, the scaling method

should produce the same chorus intensity values. In the next

section we show that scaling the diffusion coefficients for fpe/fce

addresses this problem.

4.2 Inferring plasma density

The method for scaling chorus intensity using MEPED data

produces different estimates of the chorus intensity in the

30–100 keV and 100–300 keV energy ranges (Figure 3). This

discrepancy was noticed in Ni et al. (2014), where they attributed

the difference to 1) lower uncertainties in the measured

30–100 keV fluxes due to higher count rates, and 2) the

increased importance of momentum diffusion at higher

energies. We offer an alternative explanation: the diffusion

coefficients assume an inaccurate plasma-gyrofrequency ratio,

fpe/fce. This section develops a method to scale diffusion

coefficients with fpe/fce, which we use to force the chorus

intensity to be the same in both energy ranges.

Eqs 3, 4, 5 show how the pitch angle diffusion coefficient is

calculated. The plasma-gyrofrequency ratio does not explicitly

enter into those equations, but it does change the dispersion

relation for chorus waves. From Appendix A, the chorus

dispersion relation for parallel propagating waves

(X � tanψ � 0) is

ω2

c2k2
� (1 + ω2

p

Ω2
c − ω2

(1 + |Ωc|
ω

))−1
, (17)
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which is solved simultaneously with the Landau/cyclotron

resonance condition in Eq. 5. For parallel propagating waves

the resonance condition yields

k � 1
v‖
(ω − nΩc

γ
). (18)

Substituting Eq. 18 into Eq. 17, and utilizing γ �
(1 − v2‖

c2 cos 2α)−1/2 with α as the pitch angle, the resonant chorus

frequency ω is

ω3

Ω3
c

(γ2 sin 2α + cos 2α) + ω2

Ω2
c

(γ2 sin 2α + cos 2α − 2nγ)
+ ω

Ωc
(n2 + ω2

p

Ω2
c

(γ2 − 1)cos 2α − 2nγ) + n2 � 0 (19)

This is a cubic equation in ω/Ωc, and the coefficients for the

0th, 2nd and 3rd order terms do not depend on the plasma

frequency. Therefore, the same solution for ω is obtained if

ωp and γ are changed such that

n2 + ω2
p

Ω2
c

(γ2 − 1)cos 2α − 2nγ � constant. (20)

For parallel propagating waves only the n � −1 resonance is

important, however we keep n in the equation since it is a

constant anyways. Defining the plasma-gyrofrequency

ratio as

R � ωp

Ωc
. (21)

Eq. 20 shows that two sets of parameters (subscripts 0 and 1)

lead to the same solution of ω/Ωc if

R2
0(γ20 − 1)cos 2α0 − 2nγ0 � R2

1(γ21 − 1)cos 2α1 − 2nγ1. (22)

This can be solved for γ1 with the quadratic equation.

However, looking at Eq. 19, we see γ is present in the 2nd and

3rd order terms, and therefore changing γ in response to ωp/Ωc

will change those coefficients and the overall solution for ω. We

therefore constrain Eq. 22 to the weakly-relativistic limit, such

that 2nγ0 ≈ 2nγ1. Then Eq. 22 simplifies to

R2
0(γ20 − 1)cos 2α0 � R2

1(γ21 − 1)cos 2α1. (23)

Using γ � 1 + E/Er, where Er is the electron rest mass, we

express this relation in terms of particle energy,

E1(E1 + 2Er) � E0(E0 + 2Er)R
2
1 cos

2α1
R2
0 cos

2α0
, (24)

with the quadratic solution

E1 � −Er +
�����������������������
R2
0 cos

2α0
R2
1 cos

2α1
E0(E0 + 2Er) + E2

r

√
. (25)

Notice that in the nonrelativistic limit, and for α1 � α0, Eq. 24

simplifies to

E1 � E0(ωp1

Ωc1
)2(ωp0

Ωc0
)−2

. (26)

Eq. 25 provides an approximate relation between two

different particles with different energies and plasma

FIGURE 3
Sample calculations of the predicted ratio of precipitating to trapped flux using Eqs 10, 11, 12, 13, 14, 15, with different detector tilt angles. The
inferred chorus intensity is obtained by finding where the curve for J0/J90 intersects the observed value by MEPED, then reading the Bw value at that
intersection. The black arrows show an example of this process: at 15:00 UT, 03:00 MLT, and L = 5, the measured flux ratio in the 30–100 keV band
was J0

J90
� 0.62, which gives an inferred chorus intensity of Bw � 435 pT from plot (A). At the same time, the measured flux ratio in the

100–300 keV band is J0
J90

� 0.42, so the inferred chorus intensity in plot (B) is Bw � 825 pT. The discrepancy in the flux ratio J0/J90 between the two
energy bands is due to chorus diffusion favoring electron energies less than 100 keV (see Figure 1). However, the inferred values of the chorus
intensity should be the same for each energy band since the observed precipitation in each band is caused by the same chorus wave. This
discrepancy between the inferred Bw values is the subject of Section 4.2.
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frequencies that yields the same solution of the dispersion

relation for the chorus frequency. These two sets of particle

energy and plasma-gyrofrequency parameters will therefore yield

approximately the same diffusion coefficients, providing a fast

and simple way of scaling Dαα with changing plasma frequency.

This is effectively done by setting α0 � α1, and shifting the entire

diffusion coefficient Dαα up or down in energy. An example of

this scaling with fpe/fce is shown in Figure 4, where the scaling is

done by shifting the whole diffusion coefficient up or down in

energy based on Eq. 25.

Eq. 25 gives a quick and approximate way to shift the

diffusion coefficients up and down in energy when fpe/fce

changes. We use this relation to scale the diffusion coefficients

with the MEPED data by iterating over the method in Section

4.1 until the inferred Bw from the 30–100 keV band matches

the inferred Bw from the 100–300 keV band. This is done as

follows:

1) Specify the statistical diffusion coefficient to scale, 〈Dα〉.
2) Use the method in Section 4.1 to calculate the chorus intensity

in the 30–100 keV band, B30−100
w , and the chorus intensity in

the 100–300 keV band, B100−300
w .

3) Select a range of scaling factors r for the plasma-

gyrofrequency ratio.

4) Use Eq. 25 to shift the diffusion coefficient in energy,

substituting ωp0

Ωc0
� r

ωp1

Ωc1
, and α0 � α1.

5) Repeat the method in Section 4.1 to construct the curves for

chorus intensity B30−100
w (r) and B100−300

w (r) as a function of

the scaling factor r.

6) Find the intersection of the curves B30−100
w (r) � B100−300

w (r).
The value of Bw at this intersection is the inferred Bw needed

to scale the diffusion coefficients, and the value of r is the

factor that fpe/fce needs to be scaled by using Eq. 25 to scale

the diffusion coefficients in energy. An example of this is

shown in panel (d) of Figure 4.

5 Results

The previous section outlines two methods for scaling

diffusion coefficients using observed flux ratios at low Earth

orbit. The method in Section 4.1, originally developed by Li et al.

(2013) and Ni et al. (2014) only uses a single energy range of

30–100 keV to infer chorus intensity, Bw. In Section 4.2 we

developed a new method that utilizes measurements in both

the 30–100 keV range and the 100–300 keV range to provide

information to scale both Bw and the equatorial plasma-

gyrofrequency ratio, fpe/fce. We apply both scaling methods

to the statistical diffusion coefficients in Section 2.2, using the

MEPED data in Section 3. Figure 5 shows examples of the

original PADIE diffusion coefficients from Section 2.2, and

the coefficients scaled using the methods in section 4.1 and

FIGURE 4
Scaling diffusion coefficients for fpe/fce and Bw . In plot (A) is the PADIE statistical diffusion coefficient Dαα to be scaled. The Li et al. (2013) and Ni
et al. (2014) method in Section 4.1 for scaling with Bw is done by integrating at the loss cone from 30 to 100 keV and 100–300 keV. This integration
path is shown as the thickwhite and black vertical lines at α ≈ 7° in plots (A–C). Plot (D) shows the inferred value ofBw as a function of scaling fpe/fce by
a constant. The Li et al. (2013) method does not scale fpe/fce , so it infers Bw � 175pT , which creates the very strong diffusion coefficient in plot
(C). In contrast, the newmethod developed in this paper finds the intersection of the curves for the 30–100 keV band and the 100–300 keV band in
plot (D). This method infers Bw � 61 pT , while also scaling the diffusion coefficient up in energy using Eq. 25, with fpe/fce reduced by a factor of 1/3.
This method produces a much weaker overall diffusion coefficient since the shift in energy puts the stronger part of the diffusion coefficient in the
integration path (vertical white and black line at α ≈ 7°) when calculating J0/J90.
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4.2. The coefficients scaled for both Bw and fpe/fce (Section 4.2)

look different than the statistical PADIE coefficients or those

scaled only with Bw (Section 4.1). This is because Eq. 25 shifts the

whole diffusion coefficient up in energy as fpe/fce changes. Both

sets of scaled diffusion coefficients are included in the Zenodo

data repository for use in radiation belt simulations.

Figure 6 shows a snapshot of the results of scaling Dαα for

chorus intensity Bw using the two methods. A movie showing

the Bw scaling for every hour of the March 17-18, 2013 event is

included in the supplemental material. The method from

Section 4.1 (Li et al., 2013; Ni et al., 2014) provides

estimates of chorus intensity based solely on the

30–100 keV range. The new scaling method forces the

inferred Bw values in the 30–100 keV range to be equal to

the inferred values in the 100–300 keV range by shifting the

diffusion coefficient in energy. This shift in energy is due to

fpe/fce being different in the model versus reality. By shifting

the diffusion equation in energy, the stronger parts of the

diffusion coefficient are moved into the integration range. In

contrast, the single energy range method relies on multiplying

all of Dαα by a constant, and therefore large values of the

precipitating/trapped flux ratio are only explained by large

chorus intensities. This is reflected in the results of Figure 6,

where the single energy range method consistently produces

chorus intensities that are significantly higher than the chorus

intensities inferred when accounting for changes in fpe/f ce.

The Bw only scaling in Section 4.1 is equivalent to the method

developed first in Li et al. (2013). In Li et al. (2013) the inferred

chorus intensity is consistently higher than the chorus

intensity measured by the Van Allen Probes. Therefore, the

lower estimates of chorus intensity obtained in this paper are

reasonable.

The new method for scaling diffusion coefficients enables us

to infer what fpe/fce is in the radiation belts, using only low

Earth orbit measurements. Inferring fpe/fce on a global scale is

useful for producing accurate diffusion coefficients. We can go a

step further and create a global map of equatorial plasma density

by assuming fce is determined by a dipole magnetic field and

therefore is constant in time. In Figure 7 we show the statistical

density model used as an input to PADIE, and the density

estimated using MEPED data and the new scaling method in

Section 4.2. The supplemental materials include movies of the

plasma density and fpe/fce ratio changing dynamically

throughout the 17 March 2013 event.

FIGURE 5
Pitch angle diffusion coefficients Dαα at various times on March 17-18, 2013, for L = 6 and MLT range of 0:00-03:00. The diffusion coefficients
computed from PADIE (Section 2.2) are shown in the left column and use statistical models of the plasma density and chorus intensity. The middle
column shows the diffusion coefficients scaled for only the chorus intensity Bw using only the 30–100 keV energy range (Section 4.1). The right
column shows the diffusion coefficients scaled for both Bw and the plasma-gyrofrequency fpe/fce (Section 4.2).
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The estimated densities are compared to Van Allen Probes

measurements (Kurth et al., 2015) in Figure 8. The densities

are obtained from the EMFISIS instrument onboard the

RBSP-B spacecraft. During the 17 March 2013 event the

satellite apogee was on the nightside, and therefore

sampled MLT ranges of approximately 21:00 to 04:00 when

in the radiation belt (defined as L ≥ 3). Figure 9 shows the

same date-model comparison but plotting the plasma-

gyrofrequency ratio fpe/fce. In Figure 10, the % error in

the density is computed between the model densities and

the RBSP-B measurements. The MLT and L-shell

dependence of RBSP-B is shown in Figure 11. Over the

5 full passes through the radiation belts during the event,

the MEPED scaling method produces density estimates that

FIGURE 6
Inferred values of chorus wave intensity, Bw. In plot (A) the diffusion coefficients are scaled using only the 30–100 keV range from MEPED. In
plot (B) the diffusion coefficients are scaled using the new method that accounts for changes in plasma density by matching the 30–100 keV and
100–300 keV results. The inferred chorus intensity using only the 30–100 keV range (plot a) is consistently larger than the inferred chorus intensity
using both energy ranges to account for changes in fpe/fce (plot b). A movie showing the chorus intensity at every time step is included in the
supplemental materials.

FIGURE 7
Snapshot of equatorial density. Plot (A) shows the statistical density model used to calculate diffusion coefficients with PADIE (Meredith et al.,
2020). In plot (B) the inferred density is shown from the new scalingmethod that utilizes both the 30–100 keV and 100–300 keV energy ranges from
MEPED. A movie showing the inferred density at every time step is included in the supplemental materials.
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systematically underestimate the observed density but are

generally close to the RBSP-B values. On three of the

passes (1st, 2nd, and 4th) the MEPED scaling method

produces better density estimates compared to the

statistical PADIE density model (Figure 10). However, on

the 3rd pass, the MEPED scaled density is not more accurate

that the PADIE density model, with both models producing

erratic estimates during the pass. The last pass does not

FIGURE 8
Comparison of estimated densities to Van Allen Probes measurements. The densities measured by the RBSP-B spacecraft are shown in (black),
for time periods where the spacecraft was in the radiation belts (L ≥ 3). The densities estimated using the MEPED scaling method in Section 4.2 are
shown in the (blue) curve, with reasonable agreement to RBSP-B. However, much of this agreement with observations is due to the high quality of
the statistical density model used in the PADIE code (orange).

FIGURE 9
Same as Figure 8, except showing the plasma-gyrofrequency ratio fpe/fce .
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produce a difference between the two models as there is no

observed precipitation by MEPED at that time. The reliance

on POES/MetOp observations is an inherent limitation of this

method for estimating density.

6 Conclusion

Modeling wave-particle interaction in the radiation belts

requires event-specific diffusion coefficients for each of the

relevant waves. Whistler-mode chorus waves strongly interact

with electrons in the 10 keV to 1 MeV range and will pitch angle

scatter those electrons into the loss cone where they precipitate

into the upper atmosphere. The MEPED instrument on the

POES/MetOp spacecrafts measures the precipitating and

trapped flux of electrons in this energy range, allowing the

estimation of the wave parameters in the radiation belts. In

this paper, we expanded the method from Li et al. (2013) and Ni

et al. (2014) to estimate chorus intensity and the plasma-

gyrofrequency ratio, fpe/fce, using the MEPED observations.

The estimation of fpe/fce creates a proxy measurement for time

dependent maps of the global plasma density in the radiation

belts. This new scaling method ensures the same chorus intensity

is estimated using measurements in the 30–100 keV range and

the 100–300 keV range. The resulting event-specific diffusion

coefficients will be used in a future study with the K2 model

(Elkington et al. 2002, Elkington et al. 2004).

Estimating the plasma-gyrofrequency ratio provides global,

dynamic maps of the plasma density as discussed in Section 4.2.

The global maps were compared to Van Allen Probes

measurements of the density, showing moderately better

percent errors than the statistical PADIE density model. This

density estimation is not an exact process, and is limited by the

following issues and approximations:

FIGURE 10
Error analysis of the density models. The percent error is computed as error = 100*(model-RBSP)/RBSP, where RBSP is the density measured by
RBSP-B, and the model densities are from the MEPED scaling estimates (blue), and the PADIE statistical model (orange). By this metric, the MEPED
estimated densities are typically closer to the RBSP-B measurements than the PADIE model is.

FIGURE 11
The MLT (blue) and L-shell (black) dependence of RBSP-B during the 17 March 2013 event.
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1) The scaling in Eq. 25 assumes parallel propagating chorus

waves near the equator are the dominant driver of

precipitating electrons measured by MEPED. The scaling

equation breaks down in the relativistic limit, so care must

be used to avoid scaling MeV energies down into the

30–300 keV integration range. In this paper, the diffusion

coefficients needed to be scaled up in energy, so we did not

encounter this issue.

2) The POES and MetOp satellites do not provide global

coverage. An interpolation scheme was used to fill in

spatial and temporal gaps in the data.

3) The scaling method is for the plasma-gyrofrequency ratio

fpe/fce, and changes in this ratio are attributed to changes in

plasma density. In practice, this ignores non-dipolar magnetic

fields which are prevalent at larger L-shells during

geomagnetic storms.

4) This method only applies to time periods with enhanced

chorus activity, since there needs to be enhanced electron

precipitation in the 30–300 keV range. Furthermore, all

precipitation in the 30–300 keV range is attributed to

chorus waves and ignores all other wave modes in the

radiation belts.

Furthermore, this method could be improved by skipping the

energy scaling in Eq. 25 and instead using a large database of

precomputed diffusion coefficients at various values of Bw and

fpe/fce. A nonlinear least-squares method like the Levenberg-

Marquardt algorithm can then be used to obtain the optimal

solution for Bw and fpe/fce.

Data availability statement

The datasets presented in this study can be found in online

repositories. The names of the repository/repositories and accession

number(s) can be found below: The data, diffusion coefficients, and

code used in this paper are available on Zenodo at doi: 10.5281/

zenodo.7154151. The POESMEPEDdata is available at theNational

Centers for Environmental Information (NCEI) at https://www.

ngdc.noaa.gov/stp/satellite/poes/dataaccess.html. The Van Allen

Probes densities were obtained from the EMFISIS instrument

and are available at https://emfisis.physics.uiowa.edu.

Author contributions

WL developed the methodology and analysis in this study

and wrote the first draft of the manuscript. AC, AJ, and SE

contributed to the conception and development of the study. JP

processed the MEPED dataset. JR, SG, and RH provided the

PADIE diffusion coefficients and model inputs. All authors

contributed to manuscript revision, read, and approved the

submitted version.

Funding

WL was supported by the NASA Living With a Star Jack

Eddy Postdoctoral Fellowship Program, administered by

UCAR’s Cooperative Programs for the Advancement of

Earth System Science (CPAESS) under award
#NNX16AK22G. WL, AC, AJ, and SE were supported by

NASA H-SR grant #NNX17AI51G and NASA LWS grant
#80NSSC21K1323. JP acknowledges funding from the NSF

Coupling, Energetics and Dynamics of Atmospheric Regions,

grant AGS 1651428 and the NASA Living With a Star

program, grant NNX14AH54G. RH, SG, and JR were

supported by NERC grant NE/V00249X/1 (Sat-Risk). RH

and SG were supported by NERC National Capability grant

NE/R016038/1 and NERC National Public Good activity grant

NE/R016445/1.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their

affiliated organizations, or those of the publisher, the

editors and the reviewers. Any product that may be

evaluated in this article, or claim that may be made by

its manufacturer, is not guaranteed or endorsed by the

publisher.

Supplementary material

The Supplementary Material for this article can be found

online at: https://www.frontiersin.org/articles/10.3389/fspas.2022.

1063329/full#supplementary-material

Frontiers in Astronomy and Space Sciences frontiersin.org13

Longley et al. 10.3389/fspas.2022.1063329

http://10.5281/zenodo.7154151
http://10.5281/zenodo.7154151
https://www.ngdc.noaa.gov/stp/satellite/poes/dataaccess.html
https://www.ngdc.noaa.gov/stp/satellite/poes/dataaccess.html
https://emfisis.physics.uiowa.edu
https://www.frontiersin.org/articles/10.3389/fspas.2022.1063329/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fspas.2022.1063329/full#supplementary-material
https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org
https://doi.org/10.3389/fspas.2022.1063329


References

Abel, B., and Thorne, R. M. (1998). Electron scattering loss in earth’s inner
magnetosphere: 1. Dominant physical processes. J. Geophys. Res. 103 (A2),
2385–2396. doi:10.1029/97JA02919styled

Albert, J. M., Meredith, N. P., and Horne, R. B. (2009). Three-dimensional diffusion
simulation of outer radiation belt electrons during the 9 October 1990 magnetic storm.
J. Geophys. Res. 114, A09214. doi:10.1029/2009JA014336styled

Bellan, P. M. (2006). Fundamentals of plasma physics. Cambridge, UK:
Cambridge University Press. doi:10.1017/CBO9780511807183styled

Elkington, S. R., Hudson, M. K., and Chan, A. A. (1999). Acceleration of
relativistic electrons via drift-resonant interaction with toroidal mode Pc-5 ULF
oscillations. Geophys. Res. Lett. 26 (21), 3273–3276. doi:10.1029/
1999GL003659styled

Elkington, S. R., Hudson, M. K., and Chan, A. A. (2003). Resonant acceleration
and diffusion of outer zone electrons in an asymmetric geomagnetic field.
J. Geophys. Res. 108, 1116. doi:10.1029/2001ja009202styled

Elkington, S. R., Hudson, M. K., Wiltberger, M. J., and Lyon, J. G. (2002). MHD/
Particle simulations of radiation belt dynamics. J. Atmos. Sol. Terr. Phys. 64 (5-6),
607–615. doi:10.1016/S1364-6826(02)00018-4styled

Elkington, S. R., Wiltberger, M., Chan, A. A., and Baker, D. N. (2004). Physical
models of the geospace radiation environment. J. Atmos. Sol. Terr. Phys. 66,
1371–1387. doi:10.1016/j.jastp.2004.03.023styled

Fei, Y., Chan, A. A., Elkington, S. R., andWiltberger, M. J. (2006). Radial diffusion
andMHD particle simulations of relativistic electron transport by ULF waves in the
September 1998 storm. J. Geophys. Res. 111, A12209. doi:10.1029/
2005JA011211styled

Glauert, S. A., and Horne, R. B. (2005). Calculation of pitch angle and energy
diffusion coefficients with the PADIE code. J. Geophys. Res. 110, A04206. doi:10.
1029/2004JA010851styled

Horne, R. B., Kersten, T., Glauert, S. A., Meredith, N. P., Boscher, D., Sicard-Piet,
A., et al. (2013). A new diffusion matrix for whistler mode chorus waves. J. Geophys.
Res. Space Phys. 118, 6302–6318. doi:10.1002/jgra.50594styled

Kennel, C. F., and Engelmann, F. (1966). Velocity space diffusion from weak
plasma turbulence in a magnetic field. Phys. Fluids (1994). 9, 2377–2388. doi:10.
1063/1.1761629styled

Kennel, C. F., and Petschek, H. E. (1966). Limit on stably trapped particle fluxes.
J. Geophys. Res. 71 (1), 1–28. doi:10.1029/JZ071i001p00001styled

Kurth, W. S., De Pascuale, S., Faden, J. B., Kletzing, C. A., Hospodarsky, G. B.,
Thaller, S., et al. (2015). Electron densities inferred from plasma wave spectra
obtained by the Waves instrument on Van Allen Probes. JGR. Space Phys. 120,
904–914. doi:10.1002/2014JA020857styled

Li, W., Ni, B., Thorne, R. M., Bortnik, J., Green, J. C., Kletzing, C. A., et al. (2013).
Constructing the global distribution of chorus wave intensity using measurements
of electrons by the POES satellites and waves by the Van Allen Probes.Geophys. Res.
Lett. 40, 4526–4532. doi:10.1002/grl.50920styled

Lyons, L. R., and Williams, D. J. (1984). Quantitative aspects of magnetospheric
physics. New York: Springer.styled

Ma, Q., Li, W., Bortnik, J., Thorne, R. M., Chu, X., Ozeke, L. G., et al. (2018).
Quantitative evaluation of radial diffusion and local acceleration processes during GEM
challenge events. JGR. Space Phys. 123, 1938–1952. doi:10.1002/2017JA025114styled

Malaspina, D. M., Jaynes, A. N., Elkington, S., Chan, A., Hospodarsky, G., and
Wygant, J. (2021). Testing the organization of lower-band whistler-mode chorus
wave properties by plasmapause location. JGR. Space Phys. 126, e2020JA028458.
doi:10.1029/2020JA028458styled

Meredith, N. P., Horne, R. B., Shen, X.-C., Li, W., and Bortnik, J. (2020). Global
model of whistler mode chorus in the near-equatorial region (|λm|< 18°). Geophys.
Res. Lett. 47, e2020GL087311. doi:10.1029/2020GL087311styled

Ni, B., Li, W., Thorne, R. M., Bortnik, J., Green, J. C., Kletzing, C. A., et al. (2014).
A novel technique to construct the global distribution of whistler mode chorus wave
intensity using low-altitude POES electron data. J. Geophys. Res. Space Phys. 119,
5685–5699. doi:10.1002/2014JA019935styled

Nicholson, D. R. (1983). Introduction to plasma theory. New York, NY:
Wiley.styled

Omura, Y., Hikishima, M., Katoh, Y., Summers, D., and Yagitani, S. (2009).
Nonlinear mechanisms of lower-band and upper-band VLF chorus emissions in the
magnetosphere. J. Geophys. Res. 114, A07217. doi:10.1029/2009JA014206styled

Pettit, J. M., Randall, C. E., Peck, E. D., and Harvey, V. L. (2021). A new MEPED-
based precipitating electron data set. J. Geophys. Res. Space Phys. 126,
e2021JA029667. doi:10.1029/2021JA029667styled

Pettit, J. M., Randall, C. E., Peck, E. D., Marsh, D. R., van de Kamp, M., Fang, X.,
et al. (2019). Atmospheric effects of >30-keV energetic electron precipitation in the
southern hemisphere winter during 2003. JGR. Space Phys. 124, 8138–8153. doi:10.
1029/2019JA026868styled

Reidy, J. A., Horne, R. B., Glauert, S. A., Clilverd, M. A., Meredith, N. P.,
Woodfield, E. E., et al. (2021). Comparing electron precipitation fluxes calculated
from pitch angle diffusion coefficients to LEO satellite observations. JGR. Space
Phys. 126, e2020JA028410. doi:10.1029/2020JA028410styled

Ross, J. P. J., Glauert, S. A., Horne, R. B., Watt, C. E. J., andMeredith, N. P. (2021).
On the variability of EMIC waves and the consequences for the relativistic electron
radiation belt population. JGR. Space Phys. 126, e2021JA029754. doi:10.1029/
2021JA029754styled

Ross, J. P. J., Glauert, S. A., Horne, R. B., Watt, C. E., Meredith, N. P., and
Woodfield, E. E. (2020). A new approach to constructing models of electron
diffusion by EMIC waves in the radiation belts. Geophys. Res. Lett. 47,
e2020GL088976. doi:10.1029/2020GL088976styled

Selesnick, R. S., Tu, W., Yando, K. B., Millan, R. M., and Redmon, R. J. (2020).
POES/MEPED angular response functions and the precipitating radiation belt
electron flux. JGR. Space Phys. 125, e2020JA028240. doi:10.1029/
2020JA028240styled

Tao, X., Chan, A. A., Albert, J. M., and Miller, J. A. (2008). Stochastic modeling of
multidimensional diffusion in the radiation belts. J. Geophys. Res. 113, A07212.
doi:10.1029/2007JA012985styled

Zhang, X.-J., Mourenas, D., Artemyev, A. V., Angelopoulos, V., Bortnik, J.,
Thorne, R. M., et al. (2019). Nonlinear electron interaction with intense chorus
waves: Statistics of occurrence rates. Geophys. Res. Lett. 46, 7182–7190. doi:10.1029/
2019GL083833styled

Zheng, L., Chan, A. A., Albert, J. M., Elkington, S. R., Koller, J., Horne, R. B., et al.
(2014). Three-dimensional stochastic modeling of radiation belts in adiabatic
invariant coordinates. J. Geophys. Res. Space Phys. 119, 7615–7635. doi:10.1002/
2014JA020127

Frontiers in Astronomy and Space Sciences frontiersin.org14

Longley et al. 10.3389/fspas.2022.1063329

https://doi.org/10.1029/97JA02919
https://doi.org/10.1029/2009JA014336
https://doi.org/10.1017/CBO9780511807183
https://doi.org/10.1029/1999GL003659
https://doi.org/10.1029/1999GL003659
https://doi.org/10.1029/2001ja009202
https://doi.org/10.1016/S1364-6826(02)00018-4
https://doi.org/10.1016/j.jastp.2004.03.023
https://doi.org/10.1029/2005JA011211
https://doi.org/10.1029/2005JA011211
https://doi.org/10.1029/2004JA010851
https://doi.org/10.1029/2004JA010851
https://doi.org/10.1002/jgra.50594
https://doi.org/10.1063/1.1761629
https://doi.org/10.1063/1.1761629
https://doi.org/10.1029/JZ071i001p00001
https://doi.org/10.1002/2014JA020857
https://doi.org/10.1002/grl.50920
https://doi.org/10.1002/2017JA025114
https://doi.org/10.1029/2020JA028458
https://doi.org/10.1029/2020GL087311
https://doi.org/10.1002/2014JA019935
https://doi.org/10.1029/2009JA014206
https://doi.org/10.1029/2021JA029667
https://doi.org/10.1029/2019JA026868
https://doi.org/10.1029/2019JA026868
https://doi.org/10.1029/2020JA028410
https://doi.org/10.1029/2021JA029754
https://doi.org/10.1029/2021JA029754
https://doi.org/10.1029/2020GL088976
https://doi.org/10.1029/2020JA028240
https://doi.org/10.1029/2020JA028240
https://doi.org/10.1029/2007JA012985
https://doi.org/10.1029/2019GL083833
https://doi.org/10.1029/2019GL083833
https://doi.org/10.1002/2014JA020127
https://doi.org/10.1002/2014JA020127
https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org
https://doi.org/10.3389/fspas.2022.1063329


Appendix A: Whistler dispersion
relation

The cold plasma dispersion relation is (Bellan, 2006):

D(ω, k, X) � (SX2 + P)μ4 − (RLX2 + PS(2 +X2))μ2
+PRL(1 +X2) (A1)

Where μ � ck/ω is the index of refraction andX � tanψ where ψ

is the wave normal angle (defined such that ψ � 0 for waves

propagating parallel to �B). The Stix parameters in the cold plasma

dispersion relation are

S � 1 −∑
s

ω2
ps

ω2 −Ω2
cs

, (A2)

D � ∑
s

Ωcs

ω

ω2
ps

ω2 −Ω2
c

, (A3)

P � 1 −∑
s

ω2
ps

ω2 , (A4)

R � S +D, (A5)
L � S −D. (A6)

The Whistler mode is obtained by solvingD(ω, k, X) � 0 for

wave frequencies at approximately ωr ≈ Ωe/2. While oblique

propagating Whistler waves ( �k has a component orthogonal

to the background magnetic field) are important in radiation

belt interactions, we will analyze the simpler case of parallel

propagating waves. With ψ � 0, and noting 2S � R + L, the

dispersion relation simplifies to

D(ω, k, X) � Pμ4 − P(R + L)μ2 + PRL. (A7)

From Eq. A4, P � 0 only occurs if ∑
s
ω2
ps/ω

2 � 1. This occurs

when ω ≈ ωpe, and therefore is the Langmuir mode, so we can

divide out P. Solving for μ2, the two solutions are

μ2 � R, (A8)
μ2 � L. (A9)

TheWhistler mode corresponds to the R-mode solution, and

Electromagnetic ion-cyclotron (EMIC) waves come from the

L-mode solution, so we have

c2k2

ω2 � R. (A10)

From the definitions of S and D, and ignoring ion terms,

R � S +D � 1 − ω2
pe

ω2 − Ω2
ce

(1 − Ωce

ω
). (A11)

We are interested in solutions where ω ≈ Ωc, with the strict

inequality of ω< |Ωce|. Therefore, we can rearrange the

denominator in the second term to obtain

R � 1 + ω2
pe

Ω2
ce − ω2 (1 + |Ωce|

ω
). (A12)

This shows that R is strictly positive in the

Whistler regime (ω< |Ωce|), and therefore Eq. A10 has real

solutions.

With Eqs A10, A12, we obtain the dispersion relation for

parallel propagating Whistler waves:

ω2

c2k2
� (1 + ω2

pe

Ω2
ce − ω2

(1 + |Ωce|
ω

))−1
. (A13)

In Section 4.2 we use this dispersion relation along with the

Landau/cyclotron resonance condition to solve for the Whistler

mode frequency that is resonant with electrons at a specified

energy and pitch angle.
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