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In July 2020, NASA’s Perseverance (Mars 2020) mission was launched. The rover sent to
the surface of Mars will not only perform in situ analyses, but will also collect rock and
regolith samples that will be returned to Earth by future missions for further investigations.
Therefore, the amount and quality of astrobiological data retrieved from these missions is
expected to be unprecedented. The challenge faced by the astrobiology community will be
to use these data in the most efficient way to assess whether any of the analysed samples
are of biogenic origin. However, in situ biogenic assessments often lack quantitative
support. Particularly, their statistical uncertainty is not systematically evaluated. This study
aims to provide the first quantitative framework that evaluates the uncertainty of in situ
biogenic assessments using recursive Bayesian statistics. Our results show that detecting
more than seven potential biosignatures does not increase the reliability of biogenic
assessments, unless the probability of detection of biosignatures in the sample and
the probability of the biosignatures being false positives are well constrained. This study
emphasizes the need for quantitative support of biogenic assessments and astrobiology
strategies in general.
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1 INTRODUCTION

Modern analytical techniques allow the astrobiology community to detect a great diversity of
potential biosignatures that may be preserved in the geological record, and may provide evidence
for the earliest traces of life on Earth and for traces of extra-terrestrial life in other planetary
systems. Six different types of in situ biosignatures have been defined by the MARS 2020 Science
Definition Team (Hays et al., 2017): 1) macro- and 2) micro-structures, 3) minerals, 4) organics,
5) chemistry, and 6) isotopes. While some potential biosignatures unequivocally indicate a
biological origin, the DNA molecule for example, others are less tangible proof of life on which
biogenic assessments cannot solely rely, such as micro-stromatolitic textures. Some potential
biosignatures are easier to detect than others, for example detecting complex organic
compounds requires advanced analytical techniques, whereas macrofossils are identifiable by
the naked eye. Also, potential biosignatures are not equally preserved through time in the
geological record. Some tend to be degraded, or even lost, during diagenesis and metamorphism,
while others remain at least quasi-intact for billions of years. Hence, it appears that potential
biosignatures may be ranked according to three criteria: their reliability (i.e., the probability of a
biosignature to be produced by life), their detectability (i.e., the likelihood that a biosignature can
be observed or measured), and their survivability (i.e., their ability to be preserved in the
geological record) (The National Academies of Sciences, Engineering, and Medicine, 2018).
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Therefore, despite modern advances in analytical techniques,
assessing the unequivocal biogenicity of a rock sample remains
challenging and controversial.

On Earth, evidence for ancient life forms is often questioned as
new data is collected from additional analyses. For example,
biogenic assessments relying on Archean microfossils are often
re-evaluated as new geochemical data are collected (e.g. Archean
stromatolites from the Apex Chert, Pilbara, Australia: Altermann
and Kazmierczak, 2003; Brasier et al., 2006). On Mars, most
biological experiments conducted by previous missions have been
inconclusive, despite a growing number of potential biosignatures
detected on the Martian surface. For example, while the Viking
Labeled release experiment returned positive results for metabolic
activity on the surface of Mars (Levin, 1972; Levin and Straat,
2016), the scientific community could not rule out an abiological
origin for the presumed metabolic oxidants detected in the
Martian soil (Klein, 1999). Therefore, it appears that the
uncertainty of biogenic assessments prevents the astrobiology
community to come to a consensus regarding Earth’s oldest life
forms and Mars’ past biological activity.

To address this issue and strengthen the reliability of biogenic
assessments, most recent astrobiology strategies are focussed on
three topics: 1) identifying novel biosignatures, 2) identifying
abiotic processes that may mimic biosignatures, and 3) better
constraining the preservation pathways of currently known
biosignatures. However, it is unclear whether all three topics
are equally important for biogenic assessments. Would increasing
the number of potential biosignatures increase the reliability of
the biogenic assessments? Or should a biogenic assessment
consider fewer but better constrained biosignatures? Elements
of answers to these questions may provide quantitative guidelines
for the search for the oldest life forms on Earth and for remnants
of extraterrestrial life on other planetary bodies. Also, while
efforts have been made to qualitatively assess the reliability of
biogenic assessments (e.g. The Ladder of Life Detection, Neveu
et al., 2018), limited efforts have been put to statistically quantify
the uncertainty of biogenic assessments. Catling et al. (2018)
developed a Bayesian approach to identify the information and
procedures required to quantify the confidence that a potential
biosignature, namely spectral and photometric signals, detected
on an exoplanet is truly a detection of life. Similarly, Walker et al.
(2018) introduced a Bayesian method for guiding future
directions for detection of life on exoplanets. While Catling
et al. (2018) focuses on the biogeochemistry of exoplanets as
recorded by atmospheric signatures, Walker et al. (2018)
advocates for a Bayesian method spanning a wide range of
potential biosignatures derived from various definitions of life.
Bayesian statistics have also proved useful to quantify the
probability of success of space missions (Sephton and Carter,
2015). The present study aims to provide a quantitative
framework that evaluates the uncertainty of in situ biogenic
assessments using a simple Bayesian inference. More
sophisticated Bayesian methods allow for more accurate
estimations and decision-making in astrobiology in the
presence of instrumental and processing noise and multiple
sources of uncertainty, such as Bayesian networks or Kalman
filter (Ellery, 2018; Dai et al., 2019). We find that detecting more

than seven potential biosignatures does not increase the reliability
of biogenic assessments, unless their probability of being false
positives is well constrained.

2 MATERIALS AND METHODS

To ensure this article is accessible to a wide audience, the
following statistical model is described assuming relatively
little familiarity with Bayesian statistics.

2.1 Bayes’ Theorem and Bayesian Inference
Bayesian methods are founded on the explicit use of judgement,
expressed as prior beliefs, and provide a natural means of revising
opinions in the light of new evidence. As opposed to frequentist
statistical approaches, Bayesian frameworks are agnostic to any
pre-specified sample size (Spiegelhalter et al., 2004). Therefore, a
Bayesian statistical approach would be particularly useful when
assessing if an astrobiological sample is biogenic, given the low
number of tests that can be performed on the sample due to space
missions’ limitations (i.e. mission payload, instrument
limitations, etc). One way of formulating Bayes’ theorem is as
follows:

P(A|B) � P(B|A) × P(A)
P(B|A) × P(A) + P(B|�A) × P(�A)

(1)

where P (A|B) is the probability of the hypothesis A to be true
given the evidence B and is called the “posterior” probability, P(B|
A) is the likelihood of the evidence B to occur if the hypothesis A
is true, P(A) is the initial degree of belief that the hypothesis A is
true and is called the “prior” probability, P(B| �A) is the likelihood
of the evidence B to occur if the hypothesis A is not true, and P
( �A) is the initial degree of belief against A.

One of many applications of Bayes’ theorem is the Bayesian
inference, when Bayes’ rule is repeatedly applied as new data is
collected from the same object, or as new tests are performed
on the same object, in order to determine whether the
hypothesis about the object is true. For example, a patient
who shows symptoms for a specific disease would consult a
doctor who would perform a series of tests in order to
determine whether the patient contracted the disease or not.
Each test is characterised by a probability of being positive if
the patient is sick and by a probability of being a false positive.
The prior probability is determined by the initial belief of the
patient being sick and was assessed based on the patient’s
symptoms. If a first test returns negative, the posterior
probability that the patient is sick is lower than the initial
prior probability. The initial belief is then updated after the
first data were collected. Then a second test is performed, also
returning negative. The prior probability used for this second
assessment is the posterior probability that was updated after
the first test, and so on. Mathematically, the Bayesian inference
may be formulated as follows:

P(A|B)n � P(B|A)i × P(A)n−1
P(B|A)i × P(A)n−1 + P(B

∣∣∣∣�A)i × P(�A)n−1
(2)
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where n (n ≥ 1) is the number of tests performed, and i (1 ≤ i ≤ n)
is the ith test. It is important to note that the sample always
remains the same, only the tests differ.

A key question in Bayesian analysis is the choice of the prior as
it sets the starting point of the inference procedure. A prior can be
1) “informative” when it expresses specific information about a
variable, 2) “weakly informative” when it expresses partial
information, or 3) “diffuse” when very little to no information
is expressed. “Informative” and “weakly informative” priors tend
to reflect higher levels of subjectivity. A researcher may have a
very strong, yet educated, opinion about the model parameter
values that may drive and eventually bias the final model
estimates (Depaoli et al., 2017; van de Schoot et al., 2018). In
contrast, “diffuse” priors tend to be more objective, or at least
express objective information about a variable. Nonetheless,
“diffuse” priors have their own limitations and may not always
be a viable option (Natarajan and McCulloch, 1998; Van Erp
et al., 2018). To assist in the choice of the prior, it has been
recommended to always conduct a sensitivity analysis of priors,
by examining the final model results obtained from different
priors (Muthén and Asparouhov, 2012). In this study, the
Bayesian inference will make use of a “diffuse” prior that
reflects a specific situation in astrobiology that is discussed in
the next section.

2.2 A Bayesian Framework for Assessing
Biosignatures
Based on Bayes’ theorem, the statistical model developed in
Catling et al. (2018) is of particular relevance as it evaluates
the likelihood of an exoplanet to be hosting life, given the
potential biosignatures collected and the exoplanetary context.
The model is formulated as follows:

P(life|D,C)
� P(D|C, life) × P(life|C)
P(D|C, life) × P(life|C) + P(D|C, no life) × P(no life|C)

(3)
where P (life|D,C) is the probability of an exoplanet to host life
given the data collected D and the exoplanetary context C, P (D|
C,life) is the likelihood of the data D to occur in that exoplanetary
context C if there is life, P (D|C, no life) is the likelihood of the data
D to occur in that exoplanetary context C if life is not present
(i.e., the likelihood of being a false positive), and P (life|C) and P
(no life|C) are the likelihoods of life being present and not present,
respectively, in that exoplanetary context C (i.e., the prior
probabilities). Assuming that the hypothesis of an exoplanet to
host life is binary, either life is present on the exoplanet or not, the
two prior probabilities of life being present, P (life|C), and of life
not being present, P (no life|C), are complementary and related by
P (life|C) = 1-P (no life|C). Applied to in situ biosignatures and
biogenic assessments of fossil sinters, and of the geological record
in general, Eq. 3 can be re-formulated as follows:

P(biogenic|signature,C) �
P(signature|C, biogenic) × P(biogenic

∣∣∣∣C)
P(signature|C, biogenic) × P(biogenic|C) + P(signature|C, abiogenic) × (1 − P(biogenic

∣∣∣∣C))
(4)

Where the term signature refers to a potential biosignature (i.e. a
biosignature or a false positive signature), P (biogenic|
signature,C) is the posterior probability of a sample to be
biogenic given the signature detected in the sample’s context
C, P (signature|C, biogenic) is the likelihood of the signature to
occur in that sample’s context C if it is biogenic, P (biogenic|C)
is the prior probability of the sample to be biogenic given its
context (i.e., the prior probability), and P (signature|C,
abiogenic) is the likelihood of the signature to occur in the
sample if it is not biogenic (i.e., the likelihood of being a false
positive).

Similarly to the medical example described above, a set of
potential biosignatures detected in a rock sample can be
considered as a series of tests that are performed on the rock
sample to determine whether it is biogenic or not. Figure 1
illustrates the process of Bayesian inference in an astrobiological
context. Each potential biosignature has a specific likelihood to be
detected in the sample and a specific probability of being a false
positive. Therefore, a Bayesian inference applied to Eq. 4 may be
formulated as follows:

FIGURE 1 | The Bayesian model developed in this study may assist in
assessing the biogenicity of extraterrestrial samples in a similar way to the
medical example provided in Section 2.1. Consider NASA’s Perseverance
(MARS 2020) mission as an example. Jezero Crater has been chosen as
the mission landing site due to its likelihood to having been habitable, among
other geological and engineering criteria. The initial belief about Jezero
Crater’s habitability represents the initial belief that a sample collected within
the crater is biogenic and is formulated as P (biogenic|C)0. If a first potential
biosignature is detected by one of Perseverance’s instruments within a
sample, the likelihood of the biosignature to occur given the context if the
sample is biogenic P (signature|C, biogenic) and abiogenic P (signature|C,
abiogenic) can be determined, or at least estimated. Using Baye’s theorem,
the posterior probability of the sample being biogenic given the potential
biosignature detected and the planetary context, P (biogenic|signature, C),
can now be computed. If a second potential biosignature is detected within
the same sample, a new Bayesian inference begins using the previous
posterior probability as the updated prior probability. The number of
inferences is determined by the number of potential biosignatures detected.
Blue boxes contain data and yellow boxes contain probabilities inferred from
these data.
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P(biogenic
∣∣∣∣signature,C)n �

P(signature
∣∣∣∣C, biogenic)i × P(biogenic

∣∣∣∣C)n−1
P(signature

∣∣∣∣C, biogenic)i × P(biogenic
∣∣∣∣C)n−1 + P(signature

∣∣∣∣C, abiogenic)i × (1 − P(biogenic
∣∣∣∣C)n−1)

(5)

where n (n ≥ 1) is the number of signatures detected in the
sample, and i (1 ≤ i ≤ n) is the ith signature. Here again, while the
signatures detected in the sample may differ, the sample itself
always remains the same. For n = 1, P (biogenic|C)0 is the initial
prior probability determined by the prior knowledge of the
habitability of the sample’s depositional environment. From
Eq. 5, biogenic assessments rely on three variables: (i) P
(signature|C,biogenic)i, the likelihood of each signature to
occur in the sample if it is biogenic; (ii) P (biogenic|C)n-1, the
prior knowledge of the habitability of the sample’s depositional
environment; and (iii) P (signature|C,abiogenic)i, the likelihood
of each signature of being a false positive.

The prior designates the initial degree of belief that the sample
is biogenic, given its context before any data was collected. This
initial belief reflects our combined knowledge about the sample’s
planetary, environmental, and geological context, as well as our
knowledge about life, its potential origins, emergence processes,
and survival limits. For example, on a planetary scale, Mars has
been the predominant astrobiological target in our Solar System,
because in its early history, the planetary and environmental
conditions might have been similar, to some extent, to those of
early Earth’s (Sautter et al., 2015; McLennan et al., 2019).
Considering that some of the earliest traces of life on Earth
are around 3.5 Byrs old (Djokic et al., 2017; Dodd et al., 2017), it is
fair to hypothesize that life could have been present on Mars
around the same time. On an environmental scale, Jezero Crater
was selected as NASA’s Perseverance (Mars 2020) mission
landing site, from 60 other candidates, because previous
investigations indicated that the area must have undergone
wetting-drying cycles in the early history of Mars. Wetting-
drying cycles have been shown to enable the polymerization of
complex biomolecules including the building blocks of life
(Mulkidjanian et al., 2012a; Mulkidjanian et al., 2012b;
Stüeken et al., 2013).

The above contextual information about Jezero Crater
determines the prior probability of a sample from that area to
be biogenic. However, as mentioned in Section 2.1, in Bayesian
analysis the prior tend to reflect a subjective belief that not
everybody might subscribe to. In fact, many scientists
advocated for Columbia Hills as NASA’s Perseverance landing
site, because they believe that hot springs are more suitable
environments for life to emerge and be sustained (Squyres
et al., 2008; Ruff et al., 2011; Teece et al., 2020).

Here, we chose a “diffuse” prior, specifically a “uniform” prior
(i.e. following a uniform distribution), so as to reflect no previous
knowledge about the potential biogenicity of a sample. While
diffuse priors may bypass the subjective component of the
Bayesian analysis, it is important to notice that setting the
prior to be uniform only captures a very specific situation,
that nothing is known about the system’s context. In
astrobiological terms, a uniform prior reflects the situation
where we do not know anything about a sample’s planetary or
environmental context. This choice of prior does not reflect a
practical situation as expensive and technically challenging

astrobiology-focused missions would want to target the best-
known relevant environments.

The likelihood term designates the likelihood of the data to be
present in the sample, if it is biogenic, and given the sample’s
context. In other words, it quantifies the compatibility of the
evidence with the hypothesis. The likelihood is a variable of the
context of the sample. For example, scientists believe that river
channels within the Jezero Crater area might have transported
clay minerals into the crater lake (Ehlmann et al., 2008), that
would have formed a well-preserved fluvio-deltaic stratigraphy
with a high potential to concentrate and preserve organic matter
(Goudge et al., 2017). Therefore, detecting organic compounds in
samples from Jezero Crater would be consistent with the site’s
context. The likelihood is also a variable of instrumental criteria,
such as sensitivity, detection limits, and noise. In other words, the
likelihood reflects the detectability of a signal.

Finally, the false positive term designates the likelihood of the
data to be present in the sample, if it is not biogenic, and given the
planetary, geological, and environmental context. It is the
probability of the data to be abiotic observations that mimic
biologically-produced signals. Such signals may originate from
three sources: unknown abiotic processes, contamination, and
byproducts. For example, the detection of chlorinated
hydrocarbons by NASA’s Curiosity Sample Analysis at Mars
(SAM) have been shown to most likely be produced during
heating of samples in the presence of chlorinated compounds,
rather than to be of a Martian origin (Ming et al., 2014).

2.3 Sensitivity Analysis
Determining the precise value or describing the probability
densities of each variable involved in Eq. 5 and for each type
of biosignature is beyond the scope of this study. However,
understanding the influence of each variable on the final
output of Eq. 5 (i.e., the nth posterior probability) is not as
tedious and may provide quantitatively-assessed guidelines for
current astrobiology strategies.

A common way to evaluate how a model responds to each
variable is to perform a sensitivity analysis on that same model. A
sensitivity analysis can be used for various objectives, and these
should be specified beforehand (Saltelli et al., 2004). These
objectives may include: 1) identify and prioritise the most
influential inputs; 2) identify non-influential inputs in order to
simplify a model (usually for models involving a high number of
inputs like ocean circulation models); or 3) calibrate model inputs
using the information that is known on the model (e.g.,
constraints, real output observations, etc...). Here, the
sensitivity analysis performed on Eq. 5 has the objective to
identify the most influential variables on the model output.

Different levels of sensitivity can be analysed during a
sensitivity analysis. Comprehensive reviews of sensitivity
analysis techniques are provided in De Rocquigny et al.
(2008), Castaings et al. (2009), and Iooss and Lemaître (2015).
Given that Eq. 5 only involves three variables, a sensitivity
analysis technique that is computationally costly may be
considered. Eq. 5 is directly derived from Bayes’ theorem and
no prior assumptions are made in order to formulate the end
model. Also, no assumptions are made on any of the inputs as
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each input will be evaluated on the full variation range from 0 to
1. The number of model inputs is low, therefore the
computational cost is also low. Therefore, the best suited
sensitivity analysis method for Eq. 5 is the Sobol’ indices, or
the Sobol’ method (Sobol, 1993; De Rocquigny et al., 2008).

Sobol’ Indices, also called variance-based sensitivity analysis,
decompose the variance of a model output into fractions that can
be attributed to the variance of the model inputs. Sobol’ indices
have become a widely-used variance-based method for sensitivity
analysis across various scientific fields (Sobol, 1993). There are
several types of Sobol’ indices. The first order Sobol’ sensitivity
index accounts for the proportion of variance of a model output
explained by changing each variable alone while marginalizing
over the rest, and are computed as follows:

Si � V[E[Y|Qi]]
V(Y) (6)

Where Si is the first order Sobol’ index for the ith parameter,
V[E[Y|Qi]] is the conditional variance of the expectated model
output Y when parameter Qi is fixed, and V(Y) is the total
variance of the response. The higher the first order index is, the
more influential the variable is. Not only does the Sobol method
allocate the output variance to each inputs’ variance, but it also
evaluates the interactions between the model inputs. Variance-
based sensitivity analyses most commonly compute first order
and total Sobol’ indices (Saltelli and Tarantola, 2002), however,
higher order indices may also be computed to better understand
the influence of the inputs’ interactions on a model output.
Performing the Sobol’ method requires the model inputs to be
independent and non-correlated, and the model to be

deterministic (although several methods to estimate Sobol’
indices for dependent and correlated variables as well as for
stochastic models have been developed; Chastaing et al., 2012;
Most, 2012; Chastaing et al., 2015; Li and Mahadevan, 2017).
These issues will be further discussed in Section 4.

While the first order Sobol’ indices may be analytically
computed by evaluating the integrals in the decomposition of
the variance, in most cases they are estimated. There are various
estimators of Sobol’ indices, mostly differing in their sampling
procedures and computational costs (Tarantola et al., 2006).
Here, the first order Sobol’ indices of Eq. 5 were computed
following the Monte Carlo method described in Monod et al.
(2006) (Section 4.2.4.2 Estimation based on Monte Carlo
sampling) and implemented in the ‘sobolSalt’ function of the R
‘sensitivity’ package (https://cran.r-project.org/web/packages/
sensitivity/sensitivity.pdf). The indices were computed along
fifteen biosignatures (n = 15), as beyond fifteen Bayesian
inferences the results from the sensitivity analysis stabilise
(Figure 2). Following Monod et al. (2006)’s procedure,
the indices were estimated using m = 1,000,000 combinations
of p = 3 variables uniformly and randomly distributed on [0; 1] and
for a total cost of mp (2p2 + 2) � 15, 000, 000 model evaluations.

3 RESULTS

The first order Sobol’ indices of each variable were plotted against
the increasing number of potential biosignatures n from 1 to 15
(Figure 2). The term “prior” designates the prior knowledge of
the sample’s depositional environment, the term “likelihood”
designates the likelihood of a potential biosignature to occur
in the sample’s depositional environment if it is biogenic, the term
“false positive” designates the probability of the potential
biosignature to be a false positive (i.e. to occur in the sample’s
depositional environment if it is not biogenic), and the term
“posterior” designates the output probability of the sample to be
biogenic given the potential biosignatures detected and the
sample’s depositional environment.

For a single potential biosignature (n = 1), the prior probability
has a first order index of 0.6, while the likelihood and the false
positive have first order indices of ~0.16 and ~0.17, respectively.
Therefore, for a single potential biosignature, the prior’s variance
is responsible for 60% of the posterior’s variance, whereas the
likelihood’s and false positive’s variances are responsible for 16
and 17% of the posterior’s variance, respectively. The remaining
7% of the posterior’s variance is due to variables interacting with
each other (Figure 2). In other words, when detecting a single
biosignature, 60% of the uncertainty of biogenic assessments
comes from the uncertainty of the prior, whereas the
uncertainty of the likelihood and false positive are responsible
for 16 and 17%, respectively, of the uncertainty of the final
biogenic assessment.

As the number of potential biosignatures increases, the first
order index of the prior probability strongly decreases until n = 4,
before steadily decreasing until its minimal value of 0.01 for n =
15. Conversely, the first order indices of the likelihood and the
false positive sharply increase from n = 1 to n = 4, before steadily

FIGURE 2 | Evolution of the first order Sobol’ indices along with the
increasing number of signatures for the prior probability (orange area), the
likelihood variable (purple area), the false positive variable (blue area), and their
interactions (hatched area). The Sobol’ index values of each variable are
given by the vertical extent of the colored fields. For example, for n = 4, the
prior probability has a first Sobol’ index value of 0.12, whereas the likelihood
and false positive variables have first Sobol’ index values of 0.35 each. In other
words, when detecting four potential biosignatures, the uncertainty of the prior
is responsible for 12% the uncertainty of the biogenic assessment, whereas
the uncertainty of the likelihood and false positive are distinctively responsible
for 35% of the final assessment’s uncertainty.
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increasing until their maximal values of 0.35 for n = 15.
Therefore, as the number of potential biosignatures increases,
the uncertainty of the prior probability sharply decreases, from
being responsible for 60% of the posterior’s uncertainty for n = 1,
to no more than 1% for n = 15. Moreover, the uncertainties of the
likelihood and the false positive sharply increase, from being
responsible for 16 and 17% of the posterior’s variance for n = 1,
respectively, to as much as 35% for n = 15. Similarly, the effect of
the interactions between the three variables smoothly increases,
from being responsible for 7% of the posterior’s variance for n = 1,
to nearly 26% for n = 15 (Figure 2).

4 DISCUSSION

The results of the sensitivity analysis using Eq. 5 show that 60% of
the uncertainty of biogenic assessments based on a single
potential biosignature is due to the uncertainty of the prior
habitability assessment of the sample’s depositional
environment. In other words, for a single potential
biosignature, knowing the exact probability of the habitability
of a sample’s depositional environment would reduce the
uncertainty of the final biogenic assessment by 60%.

As new potential biosignatures are detected in the sample, the
effect of the habitability of the sample’s depositional environment
on the final biogenic assessment sharply decreases, from being
responsible for 12% of the uncertainty of the final biogenic
assessment for four potential biosignatures, to about 5% for
seven potential biosignatures, and finally reaching a minimum
value of 1% for 15 potential biosignatures. This result implies that
when seven or more potential biosignatures are detected in the
sample, knowing the exact probability of the habitability of the
sample’s depositional environment will only reduce the uncertainty
of the biogenic assessment by 5% or less (i.e. it will only increase the
reliability of the biogenic assessment by 5% or less). Therefore, for
more than seven potential biosignatures, the effect of the
habitability of the sample’s depositional environment on the
final biogenic assessment becomes negligible. These results are
in accordance with the recursive Bayesian inference whose purpose
is to update the prior belief of a hypothesis to be true as new data
are collected, so that it has a negligible influence on the end output.
Therefore, this result shows that the Sobol’ method is consistent
with the model expressed by Eq. 5.

Conversely, the uncertainty of the likelihood of a potential
biosignature to occur in a biogenic sample and its probability of
being a false positive is increasingly responsible for the
uncertainty of the final biogenic assessment when there are
greater numbers of potential biosignatures. For four potential
biosignatures, both parameters have already reached their
maximum influence on the biogenic assessment and are
equally responsible for 35% of the biogenic assessment’s
uncertainty. This implies that knowing the exact probability of
a potential biosignature to occur in a biogenic sample and to be a
false positive would increase the reliability of biogenic
assessments by nearly 70%.

The combination of these results has implications for
astrobiological strategies. Firstly, the reliability of biogenic

assessments based on a single potential biosignature mainly
relies on our understanding of the sample’s depositional
environment. Secondly, detecting four or more potential
biosignatures does not increase the reliability of biogenic
assessments unless the processes forming, preserving, and
mimicking those biosignatures are well-constrained. Thirdly,
for more than seven biosignatures, the importance of our
prior understanding of the sample’s depositional environment
is negligible.

However, there are several significant limitations to the
approach presented here. As mentioned in Section 2.3,
performing the Sobol’ method on a model requires the model
inputs to be independent and non-correlated and the model to be
deterministic. In Eq. 5, it is most likely that P (biosignature|
C,biogenic)i, the likelihood of the ith biosignature to occur in a
biogenic sample, is at least partly determined by P (biogenic|C)0,
the prior knowledge of the habitability of the sample’s depositional
environment. For example, the likelihood of detecting signs of
oxygen-consuming organisms is much lower for samples collected
on the surface of Titan that has an atmospheremainly composed of
nitrogen and methane, than on the surface of Earth where
atmospheric oxygen is abundant. However, the dependence
issue is addressed by the random sampling method. As a fixed
value is randomly attributed to each variable prior to the
calculation of the Sobol’ indices, the dependent relationship
between the variables is eliminated. Moreover, to date there is
no mathematical correlation in the literature that links the
habitability of an environment with the likelihood of a
biosignature to occur in that same environment. However, such
correlation is not completely implausible and the fact that it has not
been documented does not refute its existence. Nevertheless, even if
at least two variables inEq. 5were correlated, the random sampling
method would also eliminate any sense of correlation between the
variables. In summary, the stochastic model from which Eq. 5 is
derived (i.e., the Bayesian inference) is simplified to a deterministic
model by attributing randomly pre-determined values to each
variable. Therefore, the random sampling method enables the
computation of Sobol’ indices for Eq. 5 but is not a high-
fidelity representation of the natural processes involved in the
formation, preservation, and detection of biosignatures.

Also, while the model quantitatively evaluates the uncertainty
of biogenic assessments, we realize that its practical
implementation is challenging when looking for life in a
relatively unknown and inaccessible environment, such as
Mars for instance. The diversity and variability of the
environmental conditions make it difficult to accurately
estimate the values of the likelihoods of biosignatures to occur
and to be false positives. However, tools like The Ladder of Life
Detection (Neveu et al., 2018) or other Bayesian frameworks
developed for exoplanetary biosignatures (Catling et al., 2018;
Walker et al., 2018) may assist in estimating those likelihoods.

Another limitation comes from the choice of a uniform prior.
Asmentioned above, a uniform prior reflects the specific situation
where nothing about a sample’s potential biogenicity or its
environment’s habitability is known. In practice, it is most
likely that any astrobiology mission would target environments
that are believed to be, or have been, habitable, and from which
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samples are believed to potentially contain traces of life.
Therefore, the results obtained are only relevant to this
specific situation that may not be practically relevant. Future
investigations may perform a sensitivity analysis on the prior in
order to choose a prior that is more informative and closer to
realistic situations when looking for extraterrestrial life.

Furthermore, the global sensitivity analysis performed on Eq.
5 is of very large scale as it evaluates the influence of each term
globally without accounting for variations within each term. For
example, while the Sobol’ indices quantified the effect of the
likelihood P (D|C, life) as a whole on the posterior probability P
(life|D, C), it does not account for the potential uncertainties
associated with the context C or the data D. Therefore the large
scale of the sensitivity analysis does not frame the full spectrum of
uncertainties involved in Eq. 5.

Nonetheless, the results obtained from the sensitivity analysis
of Eq. 5 provide preliminary quantitative guidelines for
astrobiological strategies. This study reinforces the usefulness
of Bayesian frameworks in astrobiological context, as
recommended by recent astrobiological strategies (The
National Academies of Sciences, Engineering, and Medicine,
2018; Chou et al., 2021). Recommendations for future
investigations include, but are not limited to, the performance
of sensitivity analyses that are better suited for stochastic models
involving dependent and correlated variables, and the evaluation
of the variability range of each variable for different types of in
situ biosignatures.
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