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This paper deals with the bulk viscous Bianchi type-V cosmological model with an
exponential scale factor in Lyra geometry based on f(R, T) gravity, by considering a
time dependent displacement field. To determine the nature and physical properties of the
model, we considered Harko et al. (Harko et al., Phys. Rev. D, 2011, 84, 024020)
[proposed the linear form f(R, T) = f1(R) + f2(T)], in which the barotropic equation of
state for pressure, density, and bulk viscous pressure is proportional to energy density.
The kinematical properties of the model are also discussed in the presence of bulk
viscosity. Evolution of energy conditions is also studied and examined the behaviour of that
in examined in order to explain the late-time cosmic acceleration.
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1 INTRODUCTION

As evidenced by various observational data fromGarnavich (Garnavich et al., 1998a; Garnavich et al.,
1998b), Riess (Riess et al., 1998) and Perlmutter (Perlmutter et al., 1997; Perlmutter et al., 1999) the
expansion of the universe is accelerating. The cause of this observed acceleration is still unknown,
and the “dark energy” problem is commonly used to describe it. Twomethods have been proposed to
overcome this problem, one is to develop several dark energy candidates and the other is to modify
Einstein’s theory of gravitation. It is very exclusively well known that modification of Einstein’s
theory plays an important role in explaining the late time acceleration and negative pressure. Among
these modifications of Einstein’s theories are Brans Dicke (BD) theory, f(R) gravity: Carroll (Carroll
et al., 2004), Nojiri (Nojiri and Odintsov, 2007), Bertolami (Bertolami et al., 2007), Capozziello
(Capozziello et al., 2008), Sotiriou (Sotiriou and Faraoni, 2010), Capozziello (Capozziello and
Vignolo, 2010), Iosifidis (Iosifidis et al., 2019), Gogoi (Gogoi and Dev Goswami, 2020), f(T) gravity:
Yang (Yang, 2011), Tamanini (Tamanini and Böhmer, 2012), Paliathanasis (Paliathanasis et al.,
2016), Bamba (Bamba et al., 2017a), Ferraro (Ferraro and Guzmán, 2018), Bahamonde (Bahamonde
et al., 2019), f(G) gravity: De Felice (De Felice and Tsujikawa, 2009), Abbas (Abbas et al., 2015),
Bamba (Bamba et al., 2017b), Sharif (Sharif and Saba, 2018), and f (R, T) gravity: De Felice (De Felice
et al., 2011), De Laurentis (De Laurentis and Lopez-Revelles, 2014), De Laurentis (De Laurentis et al.,
2015), Odintsov (Odintsov et al., 2019), where R, T, and G indicate the scalar curvature, the torsion
scalar, and the Gauss Bonnet scalar respectively. But in a recent cosmological model, f(R) gravity has
become a more attractive theory to represent the behaviour of the expansion of the universe, known
as f(R, T) gravity, where the matter Lagrangian is given by an arbitrary function of the Ricci scalar R
and the trace of the energy momentum tensor T. Recently, Rao (Rao and Papa Rao, 2015),
Kanakavalli (Kanakavalli et al., 2016), Sahoo (Sahoo et al., 2017), Nath (Nath and Sahu, 2019),
and Sharma (Sharma et al., 2019), investigated the nature of the universe in f(R, T) gravity in different
cosmological models in various space times. Very recently, Arora (Arora et al., 2021) discussed the
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late-time viscous cosmology in f(R, T) gravity considering a bulk
viscous fluid with viscosity coefficient.

Bulk viscosity is particularly essential in current cosmology,
because it plays a key role in the inflationary expansion. Misner
(Misner, 1968) has mentioned that when neutrinos disconnect
from the viscosity of the cosmic fluid, an effective process of
entropy productionmay emerge during cosmic evolution. Barrow
(Barrow, 1986) and Padmanabhan (Padmanabhan and Chitre,
1987) have pointed out that in the FRW space time, the presence
of bulk viscosity causes inflationary solutions. Subsequently, Johri
(Johri and Sudharsan, 1989)have studied the inflationary
solutions in the presence of bulk viscosity in the Brans Dicke
theory. The presence of bulk viscosity institutes a number of
intriguing characteristics to the universe’s dynamics. It was once
thought that neutrino viscosity may smooth out primordial
anisotropies, resulting in the isotropic universe we see today.
The big-bang singularity can also be avoided if bulk viscosity is
present. A phenomenological process of particle production in a
strong gravitational field can also be explained by bulk viscosity.
A bulk viscous fluid can be used to represent the back-reaction
consequences of string formation. The bulk viscosity
cosmological models have been discussed, and the model’s
nature has been discussed by Fabris (Fabris et al., 2006), Singh
(Singh and Baghel, 2009), Yadav (Yadav and Yadav, 2011), Singh
(Bali et al., 2012), Kiran (Kiran and Reddy, 2013), Mahanta
(Mahanta, 2014), Rao (Bhaskara Rao et al., 2015), Tiwari
(Tiwari and Tiwari, 2017), and Sahoo (Sahoo and Reddy,
2018). Very recently Goswami (Goswami et al., 2021) and
Kotambkar (Kotambkar et al., 2021) have investigated the
modeling of accelerating and the dynamical behaviours of
Chaplygin gas, cosmological and gravitational “constants” with
cosmic viscous fluid in different contexts.

The expansion of the universe, which is considered to be due
to large scale recession of galaxies, was uknown during that
period, and for that reason Einstein had to include the
cosmological constant into the field equations when discussing
cosmological solutions. Not only has the theory proved successful
in describing gravitational phenomena, but it has also served as
the foundation for cosmological models of the universe. Classical
physics does not, however, describe gravity as the only force.
Electromagnetic forces are also important, and they are not
explained as geometric phenomena by general relativity. Many
attempts to unify electromagnetic and gravitation have been
made. Weyl proposed a modified Riemannian geometry theory
to unify electromagnetic and gravitation in 1918. However, due to
the non-integrability of length transfer, this hypothesis was later
dismissed. By inserting a gauge function into the structureless
manifold and removing the non-integrability of length transfer,
G. Lyra (Lyra, 1951) introduced a new sort of alternative theory.
Sen (Sen, 1957); Sen (Sen and Dunn, 1971) suggested a scalar-
tensor theory of gravity based on this theory, which was an
analogue of the Einstein field equations. Later, Halford (Halford,
1972)concluded that the constant displacement vector used in
Lyra’s geometry acts as a cosmological constant in the typical
general relativistic interpretation. Within observational
constraints, the scalar-tensor theory based on Lyra’s geometry
predicts the same result as the Einstein theory. Subsequently,

Soleng (Soleng, 1987) looked into cosmological models based on
Lyra geometry and discovered that the displacement field
contains either a creation field equal to a specific vacuum field
that can be regarded as a cosmological term when combined with
a gauge vector. A lot of authors have looked into cosmological
theories based on Lyra geometry as Pradhan (Pradhan and
Vishwakarma, 2004), Singh (Singh, 2008), Singh (Singh and
Kale, 2009), Ram (Ram et al., 2010), Adhav (Adhav, 2011),
Kumari (Kumari et al., 2013), Singh (Singh and Rani, 2015),
Maurya (Maurya and Zia, 2019), Ram (Ram et al., 2020), Hegazy
(Hegazy, 2020), where they have investigated the different nature
of the model in different cosmological models so far. Recently
Brahma (Brahma and Dewri, 2021)has investigated the f(R, T)
gravity for Bianchi type–Vmetric in Lyra geometry and to get the
deterministic solution of the model one special form of Harko
et al. (2011) is used with linearly varying deceleration parameter
to investigate the myterious nature of the dark energy. Here, in
this study we are interested in Bianchi type-v cosmological model,
because it describes homogeneous and anisotropic universes with
various scale factors along each spatial direction, which is a
natural generalisation of the FRW model of the universe. The
above exclusive analysis and investigation encourage us to study
the Bianchi type V cosmological model with f(R, T) gravity in the
presence of viscous fluid based on Lyra geometry.

2 OVERVIEW AND THE FIELD EQUATIONS
OF f(R, T) GRAVITY

Here we consider Bianchi type -V space time in the following
form

ds2 � −dt2 + A2dx2 + e−2mx B2dy2 + C2dz2( ) (1)
where A, B, C are functions of cosmic time t and m is a constant.

The action of f(R, T) gravity, where we have obtained the
various field equations and modification of f(R, T) gravity with
observational constraints in Lyra geometry by Harko et al.(Harko
et al., 2011) [Taking G = 1] as

S � 1
16π

∫f ~R, T( ) ��−√
g d4x + ∫ Lm

��−√
g d4x (2)

where

~R � R + 3∇iϕ
i + 3

2
ϕiϕi (3)

In which ~R, T, and Lm respectively denote the function of Ricci
scalar R, the trace of the stress tensor, and the Lagrangian density
of matter, where the stress- energy tensor of the matter is
defined as

Tij � − 2��−√
g

δ
��−√
gLm

δgij
(4)

such that its trace is given by T = gijTij
Consider that the matter Lagrangian Lm depends only on the

metric tensor components gij and does not depend on its
derivatives, thus it reduces to
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Tij � gijLm − 2
zLm

zgij
(5)

Now by varying the action S in Eq. 2 with respect to metric tensor
gij, the gravitational field equations of f(~R, T) gravity are
obtained as

f ~R
~R, T( )~Rij − 1

2
f ~R, T( )gij + gij∇

i∇i − ∇i∇j( )f ~R
~R, T( )

� −8π
c2
Tij − fT

~R, T( )Tij − fT
~R, T( )Θij

(6)

where

Θij � −2Tij + gijLm − 2glm z2Lm

zgijzglm
(7)

Here f~R(~R, T) � zf( ~R,T)
z~R

, fT(~R, T) � zf(~R,T)
zT , and ∇i denote the

covariant derivative.
If the matter is considered as a perfect fluid, then the stress

energy tensor of the matter Lagrangian is given by

Tij � ρ + �p( )uiuj + �pgij (8)
Here ρ denotes the energy density and ui = (0, 0, 0, 1) is the four
velocity vector in the co-moving co-ordinate system satisfying the
condition uiu

i = − 1 and ui∇jui = 0. Since there is no unique choice
for matter Lagrangian, we assume a perfect fluid matter as Lm �
−�p and the trace of the total energy momentum tensor [Debnath
(Debnath, 2019)] is given by T � ρ − 3�p, so that Eq. 7 reduces as
follows:

θij � −2Tij − �pgij (9)
As we know that the physical nature of the matter field depends
on the metric tensor Θij for the field equations of f(~R, T) gravity.
So among the three cases of Harko et al.(Harko et al., 2011), we
can obtain so many theoretical results by the choice of different
explicit forms of f(~R, T) as

f ~R, T( ) �
~R + 2f T( )
f1

~R( ) + f2 T( )
f1

~R( ) + f2
~R( )f3 T( )

⎧⎪⎪⎨⎪⎪⎩ (10)

But, in this paper the second case is considered to describe the
behaviour of the model in f(~R, T) gravity as

f ~R, T( ) � f1
~R( ) + f2 T( ) (11)

where f(~R, T) is an arbitrary function of the trace of the stress
tensor.

Now, using Eq. 11 in Eq. 6, we obtain

f1′ ~R, T( )~Rij − 1
2
f1

~R( )gij + gij∇
i∇i − ∇i∇j( )f1′ ~R( )

� −8π
c2
Tij + f2′ T( )Tij + f2′ T( )�p + 1

2
f2 T( )[ ]gij (12)

The field equations of f(~R, T) gravity, for a perfect fluid matter
source, by assuming f1 � μ~R and f2 = μT, where μ is taken as
arbitrary constant and with this condition the above Eq. 12
reduces to

~Rij − 1
2
~Rgij � − 8π − μc2

c2
( )Tij + �p + 1

2
T[ ]gij (13)

Applying Eq. 3 in Eq. 13, we obtain the field equations in Lyra
geometry [Maurya (Maurya, 2020)] as given by

Rij − 1
2
Rgij + 3

2
ϕiϕj −

3
4
gijϕiϕ

j � −hTij + �p + 1
2
T[ ]gij (14)

Here the displacement vector field is ϕi � (0, 0, 0, β(t)) and h �
(8π−μc2μc2 ) is taken as unity.

For the metric (1), the Einstein field Equation 14 reduces to
the form as

€B

B
+ €C

C
+ _B _C

BC
− m2

A2
+ 3
4
β2 � −�p + ρ − �p

2
( ) (15)

€A

A
+ €C

C
+ _C _A

CA
− m2

A2
+ 3
4
β2 � −�p + ρ − �p

2
( ) (16)

€A

A
+ €B

B
+ _A _B

AB
− m2

A2
+ 3
4
β2 � −�p + ρ − �p

2
( ) (17)

_A _B

AB
+ _B _C

BC
+ _C _A

CA
− 3m2

A2
− 3
4
β2 � ρ + ρ − �p

2
( ) (18)

_B

B
+ _C

C
− 2

_A

A
� 0 (19)

3 SOLUTIONS OF THE FIELD EQUATIONS

The spatial volume (V) and the scale factor a(t) are given by

V � a3 � ABC( ) (20)
The generalized Hubble’s parameter (H) and the scalar expansion
(θ) are defined as

H � _a

a
� H1 +H2 +H3( ); θ � 3H (21)

where H1 � _A
A, H2 � _B

B, H3 � _C
C are the directional Hubble’s

parameters in the directions of the X, Y, and Z axes respectively.
Integrating Eq. 19, we get

A2 � k1BC (22)
where k1 is an integrating constant and without loss of generality,
the constant of integration k1 can be chosen as unity as

A2 � BC (23)
In the field Equations 15–19, we found that there are five
equations involving seven unknowns. As the field equations
are highly non-linear differential equations, we need some
other condition to complete the field equations such as.

• we consider the shear scalar (σ) is proportional to the
expansion scalar (θ) [Collins et al. (Collins et al., 1980)]

B � Cn (24)
where n is a non zero constant.
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• Let us consider the combined effect of the proper pressure
and the bulk viscous pressure, for a barotropic fluid can be
expressed as follows:

�p � p − 3ξH � ερ ; p � ε0ρ (25)
Such that ε = ε0 − η(0 ≤ ε0 ≤ 1) and ϵ, ε0, and η are constant. The
symbols ξ and p are respectively known as the coefficient of bulk
viscosity and proper pressure of the model.

Let us consider a time dependent displacement field scale
factor [ Pradhan et al. (Pradhan et al., 2006)] as given by

a t( ) � αeα1t (26)
where α and α1 are constants.

From Eqs 23, 24, 26, we get the metric potentials of the model
which are

A � αeα1t, B � αeα1t( ) 2n
n+1, C � αeα1t( ) 2

n+1 (27)

Then Eq. 1 reduces to

ds2 � −dt2 + αeα1t( )2dx2 + e−2mx αeα1t( ) 4n
n+1dy2 + αeα1t( ) 4

n+1dz2[ ]
(28)

4 PHYSICAL PROPERTIES OF THE MODEL
IN f(R, T) GRAVITY

The Physical Parameters of the model are obtained as follows:
Spatial Volume:

V � a3 t( ) � αeα1t( )3 (29)
Hubble’s Parameter:

H � αα1 (30)

FIGURE 1 | Variation of density (ρ) vs. time (t).

FIGURE 2 | Variation of total pressure (�p) and proper pressure (p) vs.
time (t).

FIGURE 3 | Variation of coefficient bulk viscosity (ξ) vs. time (t).

FIGURE 4 | Variation of displacement vector (β2) vs. time (t).
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The Expansion Scalar:

θ � 3αα1 (31)
The Shear Scalar:

σ2 � n − 1
n + 1

( )2

αα1( )2 (32)
Anisotropy parameter:

Am � 2
3

n − 1
n + 1

( )2

(33)
Deceleration parameter:

q � −1 (34)
Adding Eqs 15–17 and applying in Eq. 18, we have the energy
density given by

ρ � 1
2ϵ − 1

−6 αα1( )2 + 4m2

αeα1t( )2[ ] (35)

Also the total pressure, proper pressure, the co-efficient of bulk
viscosity and the displacement vector are given by

�p � ϵ
2ϵ − 1

−6 αα1( )2 + 4m2

αeα1t( )2[ ] (36)

p � ϵ0
2ϵ − 1

−6 αα1( )2 + 4m2

αeα1t( )2[ ] (37)

ξ � ϵ0 − ϵ
3 2ϵ − 1( ) αα1( ) −6 αα1( )2 + 4m2

αeα1t( )2[ ] (38)

3
4
β2 � −3 αα1( )2 − m2

αeα1t( )2 +
1 − 3ϵ

2 2ϵ − 1( ) −6 αα1( )2 + 4m2

αeα1t( )2⎡⎣ ⎤⎦
+ n − 1

n + 1
( )2

αα1( )2

(39)
The Trace (T � ρ − 3�p), function of Ricci-Scalar(~R) and the
f(~R, T) gravity are given by

T � 1 − 3ϵ
2ϵ − 1

−6 αα1( )2 + 4m2

αeα1t( )2[ ] (40)

~R � ϵ
1 − 2ϵ( ) 4m2

αeα1t( )2 − 6
3ϵ − 2
2ϵ − 1

( ) + 18�
3

√ αα1( )Z1

+2 �
3

√
m2 8ϵ − 3

2ϵ − 1
( ) αα1e

α1t

αα1e
α1t( )3( )Z2

(41)

1
μ
f ~R, T( ) � ϵ

1 − 2ϵ( ) 4m2

αeα1t( )2 − 6
3ϵ − 2
2ϵ − 1

( ) + 18�
3

√ αα1( )Z1

+2 �
3

√
m2 8ϵ − 3

2ϵ − 1
( ) αα1e

α1t

αα1e
α1t( )3( )Z2

+1 − 3ϵ
2ϵ − 1

−6 αα1( )2 + 4m2

αeα1t( )2⎡⎣ ⎤⎦
(42)

where Z1 � [ 3ϵ
2ϵ−1(αα1)2 + 1−8ϵ

2ϵ−1
m2

(αα1eα1 t)2]
−1
2 and Z2 �

[ 3ϵ
2ϵ−1(αα1)2 + 1−8ϵ

2ϵ−1
m2

(αα1eα1 t)2]
1
2 are functions of cosmic time t.

FIGURE 5 | Variation of strong energy condition vs. time (t).
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From Eqs 28, 31, we obtain the statefinder parameters, which
is defined as r � a

ṫ

aH3 and s � r−1
3(q−1

2), exactly gives the value 1 and 0
respectively.

Energy Conditions
The energy conditions are constructed from the Raychaudhuri
equation, which are very important tools to describe the behavior
of the compatibility of timelike, lightlike, or spacelike curves and
singularities. Very recently Alvarenga (Alvarenga et al., 2013),
Moraes (Moraes and Sahoo, 2017), Zubair (Zubair et al., 2018),
and Ahmed (Ahmed and Abbas, 2020) have tested the energy
conditions in f (R, T) theory of gravity and to check the energy
conditions for the present model, they defined the weak energy
conditions (WECs), dominant energy conditions (DECs), and the
strong energy conditions (SEC) as given by

1) ρ ≥ 0, ρ + p ≥ 0 2) ρ − p ≥ 0 (iii)ρ + 3p ≥ 0
To observe the absolute observational data, we have plotted

the graphs for energy conditions in terms of ρ and �p, and we
extensively observe from the graph that all the three energy
conditions are satisfied in the present model.

5 CONCLUSION

In this study, a completely spatially homogeneous and anisotropic
Bianchi type-V cosmological model has been discussed in the
presence of a bulk viscous fluid based on Lyra geometry, with an
exponential form of scale factor. We employed a barotropic
equation of state for pressure and energy density to determine
the nature and deterministic solution of the highly non linear
differential equation. Furthermore, we assumed that bulk viscous
pressure is proportional to energy density [Naidu et al. (Naidu
et al., 2013)]. As per recent observational data in combination with
Baryonic Acoustic Oscillations (BAO), Cosmic Microwave
Background (CMB), from Type Ia Supernova (SN Ia), the
model found in this paper is in conformative. The model 28)
found here is shearing, expanding, and anisotropic which is similar
to [Zia (Zia et al., 2018), Tiwari (Tiwari et al., 2020), and Desikan

(Desikan, 2020)]. At t = 0, we found that the model has no
singularity. Subsequently, we can see from Eqs 30, 31 that the
Hubble’s parameter (H) and the expansion scalar remain
constant throughout the expansion, implying that model 28)
represents a uniform expansion. It is evident from Eq. 29 that
the volume (V) of the universe rises with cosmic time (t), and
that as V approaches infinity, for t → ∞. We observed from Eq.
38 that the bulk viscosity coefficient increases with time and
approaches infinity as t approaches infinity. The model’s energy
density, total pressure, coefficient of bulk viscosity, and
displacement vector all rise positively, but they all yield a
constant value for t tending to infinity (Figures 1–4). The
model predicts an accelerating phase of the universe for q =
− 1, which is given by Eq. 34. In the current model of the
universe, there is a dark energy due to negative pressure in the
presence of bulk viscous fluid based on Lyra geometry with f (R,
T) gravity, as shown in Figure 2. All the three energy conditions
are satisfied as in Figure 5. The Trace and the Ricci scalar are
always positive throughout the cosmic time t, and for t → ∞, it
offers a constant value, as shown in Eqs 40, 41. Furthermore, r
and s tend to 1 and 0 respectively, indicating that the current
universe model approaches the ΛCDM model. There have been
many works done by researchers in the area of Lyra geometry,
but Lyra geometry with f(R, T) gravity is a very new concept and
there is scope for the continuation of work.
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