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Editorial on the Research Topic

Coupling Processes in Terrestrial and Planetary Atmospheres

Welcome to the Research Topic “Coupling Processes in Terrestrial and Planetary Atmospheres”
in Frontiers in Astronomy and Space Sciences. This research topic has been motivated by the
recent developments in modeling and observation of interaction processes in the atmospheres of
Earth and other Solar System planets. The atmosphere-ionosphere system on Earth and also on
other studied planets is controlled by lower atmospheric effects, e.g., by upward propagating
waves of various spatiotemporal scales from below (e.g., Forbes et al., 2006; Chau et al., 2012;
Yiğit and Medvedev, 2015; Vadas and Becker, 2018), and by space weather effects from above
(e.g., Yiğit et al., 2016). The nature of these effects is highly variable, which makes studying
vertical coupling in the atmosphere-ionosphere a challenging endeavor. An increasing number
of numerical studies demonstrate a significant amount of thermospheric and ionospheric effects
of small-scale waves of the lower atmospheric origin (e.g., Heale et al., 2014; Miyoshi et al., 2014;
Hickey et al., 2015; Yiğit and Medvedev, 2017; Yu et al., 2017; Gavrilov et al., 2020). Waves are
routinely observed in the terrestrial atmosphere, for example, by ground-based lidars (e.g., Yang
et al., 2008; Baumgarten et al., 2015), radars (e.g., Pramitha et al., 2019), airglow imagers (e.g.,
Pautet et al., 2019; Vargas et al., 2021), space-borne instruments (Park et al., 2014), and balloon
flights (Hertzog et al., 2008). Satellite observations on Mars demonstrate that the Martian
thermosphere is continuously populated by waves of the lower atmospheric origin (e.g., Jesch
et al., 2019; Siddle et al., 2019; Yiğit et al., 2021b). The influence of these waves is increasingly
appreciated in planetary atmospheres as well (e.g., Medvedev and Yiğit, 2019, and the references
therein).

In order to better understand the structure and evolution of the middle and upper atmospheres,
coupling processes both from below and above should be taken into account (Ward et al., 2021). Our
Research Topic includes contributions from topics on various processes spanning a wide altitude
range from the lower atmosphere to the thermosphere-ionosphere, especially regarding multi-scale
wave coupling phenomena. Utilized methods of analysis include three-dimensional general
circulation models (GCMs), TEC data from GNSS receivers, magnetometers, Doppler sounding
systems, satellites, and ionosondes.
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After an extensive review process, six papers contributed in
total by 30 authors from six different countries have been
accepted to this Research Topic. Lilienthal et al. present
simulations of the middle atmosphere dynamics using the
MUAM GCM, in which they implement for the first time the
whole atmosphere gravity wave parameterization (Yiğit et al.,
2008). They confirm that small-scale gravity waves (GWs) can
penetrate into the thermosphere, as has been shown by a number
of previous GCM simulations. Additionally, they study the effects
of GWs on the terdiurnal tide. They find that, compared to the
Lindzen-type GW scheme used in the earlier version of the GCM,
the nonlinear wave-wave interactions in the whole atmosphere
scheme lead to breaking levels lower in the atmosphere with
smaller zonal GW drag, which is a more realistic feature of the
mesosphere and the lower thermosphere (MLT). Their
simulations show that the MLT wind reversals are sensitive to
the initial GWmomentum flux assumed in the lower atmosphere.
Overall it is concluded that subgrid-scale GWs play a crucial role
for circulation patterns and temperature distribution as well as for
the terdiurnal tidal amplitude and phases.

The influence on the upper atmosphere of the variability of
GW sources is poorly explored. Yiğit et al. present simulations of
subgrid-scale GWs with the Coupled Middle Atmosphere
Thermosphere-2 (CMAT2) GCM, incorporating the whole
atmosphere subgrid-scale GW parameterization. They use this
modeling framework to study how variations of GW source
activity influence the middle and upper atmosphere winds and
temperature. For this, they incorporate a latitude-dependent GW
source activity that resembles the one observed by TIMED/
SABER observations in the lower atmosphere and explore the
upper atmospheric effects of upward propagating GWs. Their
study suggests that GW activity and associated dynamical and
thermal effects strongly depend on the vertical structure of the
horizontal momentum flux. While the GW parameterization
specifies the GW activity in terms of vector fluxes and phase
speeds, SABER observations provide GW activity in terms of
absolute momentum fluxes, which do not include directional
information. Additionally, it is noted that the various
formulations of GW activity, such as temperature fluctuations,
or (zonal) drag, characterize different aspects of the wave field.
While the wave activity is a measure of the magnitude of
harmonics in a given point, GW drag is related to their
dissipation and vertical decay. Overall, they conclude the
latitudinal variations of the GW source spectrum produce
second-order effects in the upper thermosphere. However, the
middle atmosphere is more sensitive to GW variability.

Via coupling to the ions, variations in the neutral atmosphere
can influence the ionosphere (e.g., Koucká Knížová et al., 2020).
Koucká Knížová et al. start their paper with a concise review of
vertical coupling between the atmosphere and ionosphere,
discussing the influence of the lower atmosphere on the
ionosphere. Later, they provide observational evidence of how
atmosphere-ionosphere coupling takes place. Their ground-
based ionosonde measurements demonstrate ionospheric
variability associated with meteorological processes. With the
multi-point continuous Doppler Sounding analysis they detect

clear GW propagation in the upper atmosphere and retrieve
propagation characteristics, which suggest that the wave energy
sources lie below the observational altitudes.

The global navigation satellite system (GNSS) is a
constellation of satellites that have a wide range of
applications: mapping, navigation, military, and atmospheric
and ionospheric research. Azeem uses total electron content
(TEC) data from GNSS to study traveling ionospheric
disturbances (TIDs), which are ionospheric signatures of
propagating atmospheric gravity waves. This study specifically
focuses on GWs generated by a convective thunderstorm that
took place on 28 April 2014 over North America. By analyzing the
TID and the background winds simultaneously Azeem is able to
characterize the behavior of the wave intrinsic frequency. In
agreement with previous modeling and theoretical studies, this
observational study shows that the intrinsic wave frequency
increases if the wave front and the wind are in opposite
directions and it decreases if they are in the same direction.

Total solar eclipses produce direct effects on the ionosphere
for a short amount of time by reducing the photoionization flux
due to the local shadow of the moon over the atmosphere. Meza
et al. study the response of the ionosphere and the geomagnetic
field to the 2020 Solar Eclipse in the South American sector. They
use magnetometers and GNSS receivers to probe the atmosphere-
ionosphere. They find that the Solar Eclipse produce a variation
in the maximum effective vertical total electron content (VTEC)
depletion up to 30%.

Sudden stratospheric warmings (SSWs) are known to
influence the upper atmosphere in a variety of ways
(Pancheva and Mukhtarov, 2011; Nayak and Yiğit, 2019;
Goncharenko et al., 2021b; Mošna et al., 2021), producing
long-range vertical coupling between the lower and upper
atmosphere. Goncharenko et al. investigate the effects of the
2013 Arctic SSW on the high-latitude Southern Hemisphere,
using a combination of ground-based and satellite data. Overall,
they provide observational evidence that mesospheric and
ionospheric anomalies observed above Antarctica can be
associated with the SSW. This is indicative of the global
nature of SSW effects.

These papers contribute to the ongoing efforts to characterize
the upward wave fluxes, the consequences of their dissipation and
the external drivers of the state of the ionosphere, and the
knowledge necessary to properly understand planetary
atmospheres/ionospheres. Our lack of knowledge regarding
these processes is now recognized as one of the primary
uncertainties impeding the development of whole atmosphere
models. These papers highlight the multi-dimensionality of this
effort, both in terms of the number of different phenomena
involved and the range of observational techniques necessary
to this investigation.
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