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Anisotropic cloud string cosmological models has been investigated in the

context of five dimensional Kaluza- Klein space time. In this paper the energy

momentum tensor is generated by rest energy density and tension density of

the string with particle density attached to them. To obtained the exact

solutions of the Einstein field equations we assumed a scale factor a(t) �
e

1
β

����
2βt+c

√
where β and c are positive constant, which yields a variable

deceleration parameter (DP) q � −a€a
_a2
� βH + α. The physical and geometrical

behavior of the models is also discussed in detail.
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Introduction

Now a day, string cosmology has attracted lots of attention, because of its significant

role in the study of the origin and evaluation of the Universe before the creation of

particles. It is a fascinating field for cosmologists to study and discover the mysterious

phenomena that have yet to be observed and explore the unseen information of our

Universe. As a result, cosmologists are extremely interested in learning more about the

past, present, and future evolution of the Universe. But, as of now, we lack strong evidence

to make a conclusive statement about its origin and evolution. So, further investigation is

required to discover the mysterious phenomena of the entire universe. Stachel (1980) and

Letelier (1983) was started the study of string in the context of general relativity. Because

the string is extremely appropriate in describing the early phase of the evolution of our

Universe. Many eminent authors are interested to work in the field of cosmic strings

within the context of general relativity (Kibble, 1976; 1983), and it is thought that strings

cause density perturbations that lead to the formation of massive scale structures in the

Universe (Zel’dovich et al., 1974; Zel’dovich, 1980).

Strings are stable topological structures that formed during the early universe phase

transition due to a drop in temperature below certain critical temperatures. Observations

of our universe using contemporary technical tools also suggest that in the early stages of

our Universe, there existed a massive scale network of strings. Geometric strings and

massive strings are two types of strings that contain stress-energy. The presence of strings
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is responsible for the universe is anisotropy; nevertheless, strings

are no longer visible. These strings are not damaging the

cosmological models, instead, they can lead to a variety of

fascinating astrophysical results. Strings can also be used to

describe the nature and essential arrangement of the early

Universe. String theory describes the early stage of evolution

of the Universe in terms of (vibrating) strings instead of particles

and gives us a single theoretical structure in which all matter and

forces are unified. Because strings play such an important role in

describing the evolution of the early stages of our Universe.

Several authors have recently focused their attention on string

cosmological models. According to GUT (grand unified

theories), after the big-bang explosion, there is a symmetry

flouting during the phase transition of the early stages of the

Universe, and these strings appear when the cosmic temperature

descends below certain critical temperatures (Everett, 1981; A.

Vilenkin, 1981a,b).

The study of Kaluza-Klein (KK) (Kaluza, 1921; Klein, 1926)

theory is a model that sought to integrate Einstein’s theory of

gravity and Maxwell’s electromagnetism theory, which revolves

around the concept of the fifth dimension, beyond the four

dimensions of space and time. The study of KK cosmology

became popular because of its illustrious history and some

interesting features to revolutionize the study of the universe.

This allows the universe to expand early and study its evolution

and behavior, adding extra dimensions to Einstein’s field

equations as seen nowadays. It is becoming very fascinating to

study string cosmology in higher-dimensional space-time in the

context of general relativity. Several researchers like Chodos and

Detweiler (1980), Appelquist et al. (1987) have investigated a

homogeneous higher dimensional cosmological model with

massive string in general relativity. Naidu et al. (2013) and

Reddy and Lakshmi (2014) have explored the possibility of

higher dimensional space-time in the field of cosmology. Jain

and Shyamsunder (2015), Khadekar and Patki (2008), Sharif and

Khanum (2011), Venkateswarlu and Kumar (2006), Khadekar

and Vaishali (2010), Samanta and Dhal (2013), Raut et al. (2015)

have discussed five-dimensional KK cosmological models with

different matters. Adhav et al. (2008) and Yilmaz (2006) have

investigated KK cosmic solutions are examined in higher

dimensions for quark matter along with string cloud and

domain walls in the context of general relativity. Reddy et al.

(2007) and Reddy and Naidu (2007) have investigated a higher-

dimensional string cosmological model in different theories of

gravitation. Khadekar et al. (2008) investigated string dust

cosmological models with particles attached to them by

considering three different forms of variable Λ in the context

of five-dimensional KK space-time. Khadekar et al. (2007)

studied a string cosmological model with bulk viscosity in

higher dimensional space-time. Nimkar (2017) discussed

String cosmological model with the electromagnetic field in

general relativity. Pawar et al. (2018) discussed KK string

cosmological model in f (R, T) theory of gravity. Krori et al.

(1994) have investigated a higher dimensional Bianchi type-I

cosmological model with string and they found that matter and

string coexist throughout the evolution of the universe. Mohanty

et al. (2002), Sahoo et al. (2017) have investigated the anisotropic

cosmological model universe in Bianchi type-I space-time.

Venkateswarlu and Pavankuma (2005) have investigated a

string cosmological model in higher dimensional space-time

with scale covariant theory of gravitation. Rahaman et al.

(2003) obtained the exact solutions of the field equations for

the higher dimensional space time in the framework of Lyra

manifold when the source of gravitational field is a massive

string. Kandalkar et al. (2012) constructed Bianchi type-III string

cosmological models in presence of magnetic field in the context

of general relativity and obtained exact solution of the field

equations by using the condition that the sum of the energy

density and tension density is zero. Mohanty and Samanta (2009)

have investigated a five dimensional axially symmetry string

cosmological models in general theory of relativity in presence

of bulk viscous fluid. Samanta and Debata (2011) constructed

Bianchi type-I five dimensional string cosmological model in the

framework of Lyra manifold. Choudhury (2017), Tripathi et al.

(2021), Dubey et al. (2018), Tiwari et al. (2019), Ram and Verma

(2019), Mollah et al. (2019) and Singh and Baro (2020) are some

of the eminent authors who studied different string cosmological

models in higher dimensional space time in the contexts of the

general relativity. Recently Mollah and Singh (2021) and Baro

et al. (2021) constructed higher dimensional Bianchi type-III

string cosmological in the framework of general relativity.

In this article, we discuss anisotropic cloud string cosmological

models with particles attached to them in the five-dimensional KK

space-time. This article is prepared as follows: Sec.2 is devoted to the

metric and Einstein’s field equations. In Sec. 3 we presented the

solutions of the field equations. The geometrical and physical

interpretation of the results is given in sec. 4. In the last section,

we give the conclusions.

Metric and field equations

The five-dimensional KK metric is given by

ds2 � dt2 − A2 dx2 + dy2 + dz2( ) − B2dϕ2 (1)

where A and B are functions of cosmic time t only and the

fifth coordinate ϕ is taken to be extended space like coordinate.

Einstein’s field equation is given by

Rij − 1
2
Rgij � −Tij (2)

where Rij is the Ricci tensor R is the Ricci scalar gij is the

metric tensor and Tij is the energy-momentum tensor for a cloud

string respectively.

Thus the energy-momentum tensor for a cloud string is

given by
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Tij � ρ]i]j − λxix
j (3)

where ]i and xi satisfy the conditions

]i]i � −xixi � −1, ]ixi � 0 (4)

Here ρ is the rest energy density for a cloud of strings with

particles attached to them. ρ = ρp + λ, ρp being the rest energy

density of particles attached to the strings and λ the tension

density of the strings. Here p and ρ are a function of cosmic time t

only. xi is a unit space-like vector instead of the direction of

strings so that x2 = x3 = x4 = 0 and x1 ≠ 0.

The energy-momentum tensor Tij in co-moving coordinates

for could string is given by

T0
0 � ρ, T1

1 � λ, T2
2 � T3

3 � T4
4 � 0 (5)

The field Eq 2 for the line-element (1) with the help of Eqs.

3–5 can be written explicitly as

3
_A
2

A2
+ 3

_A _B

AB
� ρ (6)

2
€A

A
+ €B

B
+ 2

_A _B

AB
+ _A

2

A2
� λ (7)

2
€A

A
+ €B

B
+ 2

_A _B

AB
+ _A

2

A2
� 0 (8)

3
€A

A
+ 3

_A
2

A2
� 0 (9)

An over dot indicates a derivative with respect to cosmic

time t.

The spatial volume for the model (1) is given by

V � a4 � A3B (10)

The generalized signify Hubble parameter for Kaluza-Klein

space time is given by

H � 1
4

3 _A

A
+ _B

B
( ) (11)

The directional Hubble parameters Hx, Hy, Hz and Hϕ in the

direction of x, y, z and ϕ respectively for the Kaluza-Klein

metric are

Hx � Hy � Hz �
_A

A

and

Hϕ �
_B

B

The scalar expansion θ and shear scalar σ2 are given by

θ � 4H � 3 _A

A
+ _B

B
(12)

σ2 � 1
2

∑4
i�1

H2
i − 4H2⎡⎣ ⎤⎦ � 4

2
ΔH2 (13)

The expansion of signify anisotropic parameter (Δ) is

given by

Δ � 1
4
∑4
i�1

ΔHi

H
( )2

(14)

where ΔHi = Hi − H and Hi = 1, 2, 3, 4 represent the

directional Hubble parameters in Hx, Hy, Hz and Hϕ directions

respectively.

Solutions of the field equations

The set of linearly independent field Eqs 6–9 with five

unknown A, B, ρ, λ and ρp.

To solve the system of equations we consider deceleration

parameter (q) as a linear function of hubble parameter (Tiwari

et al., 2015; Tiwari et al., 2018; Sharma et al., 2019):

q � −a€a
_a2

� βH + α (15)

Here α and β arbitrary constants.

For α = −1 in Eq 15

q � −a€a
_a2

� −1 + βH

which yields the following differential equation

a€a

_a2
+ β

_a

a
− 1 � 0 (16)

After integration Eq 16 we get

a t( ) � e
1
β

����
2βt+c

√
(17)

where c is an integrating constant.

Collins et al. (1980) have exposed that for a spatially

homogeneous metric, a large class of solutions that can

satisfy the condition σ
θ is constant, where θ is the expansion

in the model. So we assume the shear scalar σ is proportional to

the expansion scalar θ. This gives the relation between scale

factor A and B as,
A � Bn (18)

where n is constant and n ≠ 1.

From Eqs. 10, 17, 18 the metric component are

A t( ) � e
4n

β 3n+1( )
����
2βt+c

√
(19)

and

B t( ) � e
4

β 3n+1( )
����
2βt+c

√
(20)

Therefore the metric (1) reduce to

ds2 � dt2 − e
4n

β 3n+1( )
����
2βt+c

√
dx2 + dy2 + dz2( ) − B t( )

− e
4

β 3n+1( )
����
2βt+c

√
dϕ2 (21)
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Eq. 21 represents Five-Dimensional KK Cosmological

Models with variable deceleration parameter.

Physical properties of the model

We have obtained the cosmological model (21), the

directional Hubble parameters Hx, Hy, Hz and Hϕ, the

physical quantities such as Hubble parameter H, spatial

volume V, signify anisotropy parameter Δ, expansion

scalar θ, shear scalar σ2, energy density ρ, particles

density ρp and tension density of the string λ are

obtained as follows:

The directional Hubble parameters Hx, Hy, Hz and Hϕ are

Hx � Hy � Hz � 4n

3n + 1( ) ������
2βt + c

√
and

Hϕ � 4

3n + 1( ) ������
2βt + c

√
For Kaluza-Klein space-time, the signify Hubble

parameter(H) is given by

H � 1������
2βt + c

√ (22)

The spatial volume(V) is given by

V � e
4
β

����
2βt+c

√
(23)

The expansion of signify anisotropic parameter (Δ) is

given by

∴Δ � 3 n − 1( )2
3n + 1( )2 � constant ≠ 0 where n ≠ 1( ) (24)

The expansion scalar (θ) is given by

θ � 4������
2βt + c

√ (25)

The shear scalar (σ2) is given by

σ2 � 3 n − 1( )2
2 3n + 1( )2 2βt + c( )2 (26)

From Eqs 25, 26 we obtain

lim
t→∞

σ2

θ2
� 3 n − 1( )2
8 3n + 1( )2 � constant ≠ 0 where n ≠ 1( ) (27)

The energy density ρ is given by

ρ � 48n n + 1( )
3n + 1( )2 2βt + c( ) (28)

The tension density λ for the string is given by

λ � 16 3n2 + 2n + 1( )
3n + 1( )2 2βt + c( ) − 4β 2n + 1( )

3n + 1( ) 2βt + c( )32 (29)

The particles density ρp is obtained by

ρp � 16 n − 1( )
3n + 1( )2 2βt + c( ) + 4β 2n + 1( )

3n + 1( ) 2βt + c( )32 (30)

The deceleration parameter (q) is given by

q � −1 + β������
2βt + c

√ (31)

It can be seen that from Eqs. 22, 25, both the Hubble parameter

(H) and expansion scalar (θ) is a positive and decreasing function of

cosmic time t. The Hubble parameter (H) and expansion scalar (θ)

tend to infinity as t→ 0 and tend to a finite value as t→∞ are shown

in Figures 1, 3 which are agrees with established theories. Figure 2

FIGURE 1
The plot of Hubble parameter H versus time t.

FIGURE 2
The plot of spatial volume V versus time t.

Frontiers in Astronomy and Space Sciences frontiersin.org04

Ray and Roy Baruah 10.3389/fspas.2022.869020

https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org
https://doi.org/10.3389/fspas.2022.869020


shows variation of spatial volumew.r.t. time.We have also noticed that
dH
dt is negative which indicates that our universe is expanding rapidly.

From Eq. 23 shows that at t = 0 the spatial volume is finite

and thereafter increases continuously when cosmic time t is

increasing. Figure 3 depicts the nature of variations of V versus t.

From Eq. 31 it is observed that the deceleration parameter q >
0 for t< β2−c

2β which indicates that our model universe is a

decelerating phase. It is also observed that the deceleration

parameter q < 0 for t> β2−c
2β which indicates that our model

universe is a accelerating phase, which agrees with present day’s

observations (Riess et al., 1998; Perlmutter et al., 1999).

The expansion of signify anisotropic parameter Δ ≠ 0

(constant) for n ≠ 1 and Δ = 0 for n = 1. We also observed

from Eq. 27 that limt→∞σ2

θ2
≠ 0 (constant) for n ≠ 1 and

limt→∞σ2

θ2
� 0 for n = 1, which means that our model is

anisotropic when n ≠ 1 and it is isotropic when n = 1.

From Eq. 28 it is seen that the expansion for rest energy

density ρ is a decreasing function of cosmic time t. This

shows that the rest energy density is positive and satisfies the

condition of energy ρ ≥ 0 for all n ≥ −1. Also from Figure 4, it

is seen that the rest energy density ρ is decreasing when time t

is increasing and initially ρ → ∞ when t → 0, thus has an

initial singularity.

It is seen from Figures 5, 6 that both the string tension

density λ and particle density ρp are positive, decreasing function of

cosmic time t, and become zero as t → ∞. Also, we observed that

initially both the string tension density λ and particle density ρp tend to

infinity when t tends to zero which suggests that the universe began

with big bang and as time progresses, both the string tension density λ

and particle density ρp decreases with the expansion of the universe.

FIGURE 3
The plot of expansion scalar θ versus time t.

FIGURE 4
The plot of energy density ρ versus time t.

FIGURE 5
The plot of tension density of the string λ versus time t.

FIGURE 6
The plot of the particles density ρp versus time t.
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Conclusion

In the present article, we have investigated the behavior of

anisotropic cloud string cosmological models in five-dimensional

KK space-time to describe the mysterious phenomena of the

entire universe. To get the exact solutions of the Einstein field

equations, we assumed a scale factor a(t) � e
1
β

����
2βt+c

√
where β and c

are positive constant, which yields a variable deceleration parameter

(DP) q � −a€a
_a2
� βH + α. Our model depicts to have an anisotropic

phase for n ≠ 1 throughout the evolution of the universe as it does

not depend on the cosmic time t. According to present day’s

observations, there is a disparity in measuring microwave

intensity from different directions of the sky. This motivated us

to investigate the universe using the anisotropic five dimensional

Kaluza-Klein space-time in order to better describe our universe.

Several cosmological observations such as Cosmic Background

Explorer (COBE) and the Wilkinson Microwave Anisotropic

Probe (WMAP) are also evidence that we live in a globally

anisotropic universe. In order to produce any significant amount

of shear in recent periods, one must cause anisotropy in space-time

and WMAP, where they found small anisotropy in microwave

background radiation. Also, the models represents an exponentially

expanding Universe that begins with the big bang at cosmic time t =

0 with finite volume and extends at an accelerating rate. The

deceleration parameter “q” of the universe has certainly changed

its sign frompositive to negative (signature flipping), which indicates

that the universe has decelerated expansion in the past and

accelerated expansion at present day’s observations (Amendola,

2003; Padmanabhan and Choudhury, 2003; Kandalkar and

Samdurkar, 2015). Our model satisfies the condition of energy

density ρ ≥ 0 and ρp ≥ 0. The particle density and string tension

density are equivalent, but the string tension density vanishes faster

than the particle density, so our model reflects a matter-dominated

universe that accords with current observational data in the late time

period.
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