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Forecasting ground magnetic field perturbations has been a long-standing goal of the
space weather community. The availability of ground magnetic field data and its potential
to be used in geomagnetically induced current studies, such as risk assessment, have
resulted in several forecasting efforts over the past few decades. One particular community
effort was the Geospace Environment Modeling (GEM) challenge of ground magnetic field
perturbations that evaluated the predictive capacity of several empirical and first principles
models at both mid- and high-latitudes in order to choose an operative model. In this work,
we use three different deep learning models-a feed-forward neural network, a long short-
term memory recurrent network and a convolutional neural network-to forecast the
horizontal component of the ground magnetic field rate of change (dBH/dt) over 6
different ground magnetometer stations and to compare as directly as possible with
the original GEM challenge. We find that, in general, the models are able to perform at
similar levels to those obtained in the original challenge, although the performance
depends heavily on the particular storm being evaluated. We then discuss the
limitations of such a comparison on the basis that the original challenge was not
designed with machine learning algorithms in mind.
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1 INTRODUCTION

Horizontal magnetic field variations (dBH/dt) derived from ground magnetometer recordings have been
utilized commonly as a proxy for evaluating the risk that geomagnetically induced currents (GIC) present
in different regions (e.g., Viljanen et al., 2001; Pulkkinen et al., 2015; Ngwira et al., 2018). GICs occur in
ground-level conductors following an enhancement of the geoelectric field on the ground, usually in
association with active geomagnetic conditions (Ngwira et al., 2015; Gannon et al., 2017), and have been
known to cause damage to power transformers, corrode pipelines, and interfere with railway signals
(Pirjola, 2000; Boteler, 2001; Pulkkinen et al., 2017; Boteler, 2019). As our society continues to become
more “technology dependent” and as we enter a new cycle of intense geomagnetic activity during the
ascending and maximum phases of solar cycle 25, having the appropriate tools to assess the risk GICs
pose to different regions becomes urgently relevant (Oughton et al., 2019; Hapgood et al., 2021).
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GIC levels are dependent on the characteristics of the system
they affect as well as the environmental conditions, and
unfortunately, measured GIC data are rarely available to the
scientific community as they are either not monitored or the
measurements restricted by power operator and therefore not
made public. For this reason, variations of the measured ground
magnetic field are commonly used as proxy to estimate the risk of
GIC occurrence (Viljanen, 1998; Viljanen et al., 2001; Wintoft,
2005; Dimmock et al., 2020). These variations can be utilized to
calculate the geoelectric field in regions where the ground
conductivity profile is available (Love et al., 2018; Lucas et al.,
2020; Gil et al., 2021).

In the past, many attempts have been made to forecast dBH/dt
with different degrees of success, using first-principles and
empirical models (e.g., Tóth et al., 2014; Wintoft et al., 2015).
However, comparisons are rarely made between models, in part
because most models are not meant to be deployed for
operational purposes, but also because models have different
general forecasting objectives. The Geospace Environment
Modeling (GEM) challenge (Pulkkinen et al., 2013) that ran
during the years 2008–2012 tried to provide a direct
comparison between models and to choose a model for real-
time forecasting. It involved the entire space weather community
in order to come up with a standardized method to test models
against each other, and from there select a model to be
transitioned into operation at NOAA (Pulkkinen et al., 2013).

Recently, machine learning empirical models have become
more common thanks in part to the increased availability of data
for training and the improvement of open-source machine
learning tools (e.g. Keesee et al., 2020). Machine learning
models present the advantage that, once trained, execution
time is extremely low, and as such, they are able to deploy for
real-time forecasting with extremely low computational cost. But
while machine-learned models are able to forecast dBH/dt or even
GICs when data is available to different degrees of success, few
attempts have been made to evaluate them on the grounds of
established benchmarks. It is within that framework that we
attempt to evaluate a series of machine learning models with
the same metrics used by the GEM Challenge. In Section 2 we
describe the GEM challenge in detail as well as the datasets we
utilized and the models we developed. Section 3 presents the
results of our models in the context of the GEM challenge metrics.
In Section 4 we discuss the main challenges and lessons from our
model development and comparisons. Finally, Section 5 presents
our summary and conclusions.

2 DATA AND METHODOLOGY

The Geospace Environment Modeling (GEM) ground magnetic
field perturbations challenge (“the GEM challenge”) consisted of
a multi-year community effort that ran roughly between 2008 and
2011 with the objective of testing, comparing, and eventually
delivering a model to be used at National Oceanic and
Atmospheric Administration (NOAA) Space Weather
Prediction Center (SWPC). The final results, description and
evaluations of the different models that participated in the

challenge are described in depth by Pulkkinen et al. (2013).
The purpose of this study is to evaluate our machine learning
based models using the same conditions and test on the same
benchmarks, only deviating when an exact replication is not
possible. The GEM challenge (and therefore the work presented
here) consisted of forecasting the 1-min resolution of the
horizontal component of ground magnetic field perturbations
at several mid- and high-latitude stations. The horizontal
component H is defined by

dBH

dt
�

����������������
dBN

dt
( )2

+ dBE

dt
( )2

√√
(1)

where E represents the east-west component, and N the north-
south component in magnetic coordinates. The choice of
forecasting the horizontal fluctuations is based on the
assumption that it is the most important component for GIC
occurrence (Pirjola, 2002). Although the GEM challenge involved
a total of 12 different ground magnetometer stations during its
different stages, the final evaluation presented in Pulkkinen et al.
(2013) was performed only on 6 of them. Because the published
scores are only available for those six stations, they will be the
focus of this study. Table 1 lists the ground magnetometer
stations, their code name and their magnetic latitude and
longitude. Note that SNK replaced PBQ after 2007, so those
data serve as a single location.

The GEM challenge proposed a unique and interesting
evaluation mechanism. The models forecast four known
geomagnetic storms during the testing period, and two
extra storms were added as “surprise events” during the
final evaluation. Table 2 presents the six storms used in the
evaluation of the models. Our first deviation from the original
challenge is that we are not evaluating our models on unknown
storms—we have only calculated the final scores of the six
storms after our training of the models was complete, and
therefore we did not perform tuning of the models after the
evaluation. The model output is the 1-min resolution
horizontal component dBH/dt predicted 1 minute ahead of
time. This is counted from the time of arrival of the solar
wind to the bow-shock nose, which involves a propagation
from the L1 monitors. Once the forecast is done, the 1-min
resolution predictions are reduced to obtain the maximum
dBH/dt value every 20 min. Each 20-min window prediction is
then evaluated against four different thresholds set up at 18,
42, 66, and 90 nT/min. This approach turns the challenge into
a classification problem, and a contingency table can be made
for each of the thresholds counting true positives (hits), true
negatives (no crossings), false positives (false alarms) and false
negatives (misses). From this contingency table the values of
probability of detection, probability of false detection, and the
Heidke Skill Score are calculated. The definitions can be found
in Pulkkinen et al. (2013). To obtain each model performance,
the contingency tables are added by grouping the mid-latitude
stations together (NEW, OTT, WNG) and the high-latitude
stations together (ABK, PBQ/SNK, YKC) for each of the events
and each of the thresholds.
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2.1 Datasets and Pre-processing
For our study we have used the OMNI dataset obtained from the
CDAWeb repository (https://cdaweb.gsfc.nasa.gov/pub/data/
omni/omni_cdaweb/) at 1-min resolution. The OMNI
database provides solar wind measurements obtained mostly
from spacecraft located at the L1 Lagrangian point (~ 235RE

sunward of Earth) and then time-shifted to the magnetosphere’s
bow shock nose (King and Papitashvili, 2005). We train our
models to forecast 1-min ahead of the current time on the OMNI
dataset, however, this is equivalent to a 20–40 min lead time if we
were using real-time data, depending on the solar wind speed.
The benefits of using the OMNI dataset for training is that it is a
well validated dataset that is readily available for anyone to use
with minimal work involved, and as such, it increases the
reproducibility of the results. For our study, we used data
between (and including) January 1995 and December 2019.

The OMNI dataset provides both plasma and magnetic field
parameters, as well as some derived physical quantities. It suffers
from having significant gaps which amount to around 20% of
missing data in the plasma parameters and around 7% of missing
data in the magnetic field. Further exploration of the data shows
that most of the gaps are relatively small, and therefore we have
performed a linear interpolation in the magnetic field parameters
for gaps of up to 10 min, and we have performed a linear
interpolation with no limit on time of the plasma parameters,
to fill any possible gap. The remaining gaps, as determined by the
missing magnetic field data, are dropped from the training
dataset.

The ground magnetic field perturbations from the six different
stations were obtained from the SuperMAG 1-min resolution
database (https://supermag.jhuapl.edu/) with baseline removed
(Gjerloev, 2012). The data availability is high for all the studied

stations, although there are some significant gaps in the SNK/
PBQ set around the time of the replacement in 2007–2008. We
have decided not to perform any interpolation in the magnetic
field components and therefore all missing data points are
excluded from the training. For training, we use the N and E
components to obtain dBH/dt (Eq. 1) and also the MLT position
of the observatories from the SuperMAG data.

Given the nature of the system we are trying to predict, one of
the issues we have encountered is that the magnetic field
fluctuations are heavily biased towards 0 nT/min. That is,
during quiet times, the fluctuations are relatively low, and they
amount for a sizable portion of the available dataset. On the
contrary, during active times, the fluctuations can easily go up to
the hundreds of nT/min at least for high-latitude stations. To
reduce the bias, we have decided to reduce our training samples to
only those times in which a geomagnetic storm is occurring. To
do this, we have identified all geomagnetic storms in the
1995–2018 period with SYM-H < − 50 nT and we have
selected for training the period between ±12 h around the
minimum SYM-H value. Figures 1A,B show a visual
representation of the effect of using only storm-time data. As
can be appreciated for both the mid-latitude NEW station and the
high-latitude YKC station, the restriction to storm-time only
reduces the training dataset to ~ 10% of its original size
eliminating mostly small fluctuations. From the histogram, it
can also be observed that—especially at high-latitudes—some
strong fluctuations do occur outside of the storm-time. Those
cases can prove interesting for analysis in the future, but will not
be further discussed in the context of this work. It is important to
note that the six storms considered for testing have been removed
from the storm dataset. A list with the storm dates can be found in
the Supplementary Material.

To train the models we have decided to use the following
solar wind parameters: solar wind speed (Vx, Vy, Vz),
interplanetary magnetic field (BT, By, Bz), proton density,
solar wind dynamic pressure, reconnection electric field
(-VBz), and proton temperature. Figure 1C shows the
absolute value of the maximum correlation coefficient
between dBH/dt and the different solar wind parameters for
the previous 60 min (i.e., max correlation of dBH/dt(t) with
param(t), param (t-1), etc). The symbol corresponds to the
average correlation over the six stations used in this study, and
the bar corresponds to the range of correlations. Here it is
important to note that some parameters are most likely
contributing significantly more to the training process than
others. We have decided to keep them all on the basis that the
models can support the amount of input parameters.

2.2 Models
For the evaluation of the GEM Challenge scores we used three
different deep learning models: a feed-forward fully connected
artificial neural network (ANN), a long short-term memory
recurrent neural network (LSTM) and a convolutional neural
network (CNN). The election of those particular models offers a
continuation to our previous modelling attempts of dBH/dt using
neural networks (ANN + LSTM) (Keesee et al., 2020) as well as to
test the capabilities of convolutional neural networks after they

TABLE 1 | Ground magnetometer stations used in this study and their location.
Stations PBQ and SNK (in bold) are complementary as one replaces the other
after the year 2007.

Station name Code Geomagnetic
latitude

Geomagnetic
longitude

Abisko ABK 65.74 101.7
Newport NEW 54.65 −54.82
Ottawa OTT 54.98 2.52
Poste-de-la-
Baleine

PBQ 65.01 0.2

Sanikiluaq SNK 66.31 −1.92
Wingst WNG 50.15 86.75
Yellowknife YKC 69.42 −56.85

TABLE 2 | Storms used for model evaluation.

Storm
start date (UT)

Storm end date (UT) Minimum Dst (nT)

2001-08-31 00:00 2001-09-01 00:00 −40
2003-10-29 06:00 2003-10-30 06:00 −353
2005-08-31 10:00 2005-09-01 12:00 −131
2006-12-14 12:00 2006-12-16 00:00 −139
2010-04-05 00:00 2010-04-06 00:00 −73
2011-08-05 09:00 2011-08-06 09:00 −113
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have shown promise for time series forecasting in different Space
Weather applications (e.g., Collado-Villaverde et al., 2021;
Siciliano et al., 2021; Smith et al., 2021). The development and
training of the models was done using the TensorFlow-Keras
framework for Python (Abadi et al., 2016) as well as the scikit-
learn toolkit (Pedregosa et al., 2011). All models used in this study
were trained by minimizing the mean square error. This
optimization was done in each case using the Adam
optimization algorithm. Further description of each model is
given in the next sections.

2.2.1 Artificial Neural Network
Fully-connected feed-forward neural networks can capture
temporal behavior (similar to a recurrent neural network) if
the time history is embedded as a set of new features. In our
case, we have built a 50-min time history of the selected solar
wind parameters by creating new features (columns) in our
dataset corresponding to the time-history of each parameter
t − 1, . . . , t − 50 min. The time history length was
determined purely by our maximum computational
capabilities. This has resulted for our final model in an input
array of 513 features. The network architecture contains four
layers of 320–160–80–40 nodes. The activation function is the
rectified linear unit (ReLU). To avoid overfitting, a dropout rate
of 0.2 was added between the first and the second, and then
between the second and third layers. The training ran for 300
epochs with the possibility of early stopping after 25 epochs of no
improvement.

A consequence of embedding the time-history as extra
features is that an independent array exists for each training
point, and therefore we have trained our ANN model using a
random 0.7/0.3 split, as opposed to the sequential split of the
data that would be needed with a recurrent neural network. We
have reasonably determined that the random split does not
introduce data leakage to the model in our testing and that it
resolves the bias introduced by the effect of different solar
phases in the system. In this case, a more complex manual split
of the data or a k-folds technique did not offer substantial
improvement over the random split, which increased
performance by ~ 20% compared to a sequential split.

2.2.2 Long-Short Term Memory
The Long-Short Term Memory (LSTM) neural network
(Hochreiter and Schmidhuber, 1997) was developed as an
alternative to solve the gradient vanishing problem of
traditional recurrent networks by adding a “long memory.”
This “memory” refers to the network’s ability to “remember”
the state of previous cell states as well as previous outputs. The
LSTM does this by using a series of gates, the first of which is the
forget gate. The forget gate uses a sigmoid activation function,
which varies between 0 and 1, to decide how much of the output
from the previous cell output (t − 1) to feed to the next cell state
(t). The input gate follows the forget gate and, as its name implies,
determines what new information the cell state will receive. The
first part of this gate consists of a tanh function, which uses a
linear combination of the previous cell output and new input to
the current cell, as well as a weight and bias factor. Another
sigmoid function is then used to determine how much of the
information from the tanh function will be input to the current
cell state. The final gate used in the LSTM cell is the output gate,
which uses another sigmoid function to determine how much
information should be passed onto the next cell.

In our model, we used 100 cells in our LSTM layer, followed by
two hidden dense layers using 1,000 and 100 nodes respectively.
Each dense layer used ReLU activation. Dropout layers with weights
of 0.2 were placed in between the hidden layers, and in between the
final hidden layer and the output layer, to help prevent overfitting.
The training ran for 100 epochs with the possibility of early stopping
after 25 epochs of no improvement, and processed data with 60min
(determined by computational limitations) of time history
embedded using the method described in Section 2.2.1.

2.2.3 Convolutional Neural Network
Convolutional Neural Networks (CNNs) were initially proposed
as a method of detecting handwritten digits. They have since
proved extraordinarily successful in a variety of image analysis
problems (LeCun et al., 2015), and in recent years have shown
promise in space weather forecasting (e.g., Collado-Villaverde
et al., 2021; Siciliano et al., 2021; Smith et al., 2021). The CNN
reads in a matrix all at once, and thus is not explicitly fed the time
series information like the LSTM. The dimensions of CNN input

FIGURE 1 | Histogram of dBH/dt for all data between 1995 and 2019 (blue) and storm-only data (orange) for (A) the mid-latitude station NEW and (B) the high-
latitude station YKC. (C)Correlation coefficient between different solar wind parameters and dBH/dt for all data (blue) and storm-only data (orange). The symbol indicates
the average of all six stations, and bars represent the range of the individual stations.
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array are (N, height, width, channels), where N is the number of
sequences available for training, the height corresponds to the
time history, and the width, the number of input features. The
CNN is capable of analyzing multiple arrays in the same step. The
channels dimension corresponds to the number of arrays to be
analyzed at the same time, typically three for RGB color images.
For this study we just have the CNN analyze one array per time
step, so we set the number of channels equal to one. To keep some
consistency between the LSTM and the CNN we used the same
input parameters, time history, training data, and training/
validation splits, so the input array has dimensions of (N,
60, 13, 1).

The CNN layer functions by using a matrix window called a
kernel, which is smaller in size than the 2D input array being
analyzed by the layer at step t. The kernel performs a matrix
multiplication between a weight matrix the size of the kernel and
a segment of the input array of the same size. The output is then
put through the activation function (here ReLU), and the kernel
window repeats the operation after moving to the next segment of
the image. The length that it moves is defined by the stride. In this
study, a kernel of size (1,2) and stride of one were used, resulting
in overlapping kernel windows between parameters, but not
between t and t − 1 for the same parameter. Padding, which is
the process of adding columns of zeros to the ends of the array
image to retain the initial image size, was used. A Pooling layer
was used to reduce computational time in the models. The
Pooling layer is a method of using a kernel window to move
over the output of a CNN layer. Unlike the CNN layer, it does not
perform a matrix multiplication using a weight matrix, it only
extracts the maximum value in the kernel for the MaxPool, or the
average in the kernel for the AveragePool. In this case a
MaxPooling layer was used, the maximum value in the kernel
window is taken, and the dimensions of the resulting image are
reduced. In our case, the output of the CNN layer was of size (60,
13, 1). A 2 × 2 kernel window and a stride of (2,2) were used, and
the resulting dimensions of the output array were (30, 6, 1). The
flatten layer was used, which stacks the resulting 2D output from
the Pooling layer into a 1D array that can be used as input to the
Dense layers. Following the MaxPooling layer were two Dense
Layers with 1,024 and 128 nodes, respectively, and dropout of 0.2
in between to help prevent overfitting. The model was trained for
100 epochs and early stopping was used after 25 epochs of no
improvement.

3 RESULTS

The results presented in this section correspond to those obtained
with the “best” version of each model. Our process of
optimization involved testing the use of different solar wind
parameters, lengths of the solar wind time series, scalers,
splits, loss functions, etc. However, a formal hyper-parameter
tuning process such as a Grid Search was not performed. Since
model optimization is a never-ending task, we expect to continue
it in the future.

Each model (for each station) was trained to output 1-min
resolution dBH/dt values. The final evaluation of those models

was done on the six different storms listed in Table 2. Figure 2
shows two of the six storms: 14 December 2006 (left) and 5 April
2010 (right). The rest of the storms can be found in the
Supplementary Material. Panels (a-d) in Figure 2 show the
main parameters of the solar wind for each storm: SYM-H index,
solar wind speed (Vx) component, proton density and
interplanetary magnetic field (IMF) Bz. Both geomagnetic
storms are driven by interplanetary coronal mass ejections,
with a sharp increase in solar wind speed associated with the
arrival. It is somewhat expected that most chosen storms
correspond to coronal mass ejections as the sudden storm
commencement has been associated with larger fluctuations
on the ground (e.g., Kappenman, 2003; Fiori et al., 2014;
Rogers et al., 2020; Smith et al., 2021). Beyond that, both
storms are significantly different in strength and in their
proton density and IMF profiles. Figures 2E–J panels show
the 1-min dBH/dt measurement from the six different stations
considered for this study (black). The three top stations (e-g)
correspond to the mid-latitude stations while the bottom three
(h-j) are the high-latitude stations. It can be seen that, in general,
dBH/dt spikes tend to scale with the strength of the storm,
although peaks can significantly differ in timing and
magnitude for stations at similar latitudes depending on their
magnetic local time (MLT).

The predictions in the lower panels are shown in red for the
ANN, blue for the CNN and green for the LSTM. Those colors
will remain associated with the respective models throughout the
text. A quick overview of the predictions shown in Figure 2
indicates that the models are able to somewhat follow the trend of
the enhanced activity, while missing most of the variability and
spikes in dBH/dt. A consequence of this is that all models severely
under-predict the values unless the real measurements are
relatively low. All three models do capture some of the spikes,
or the overall increase of dBH/dt during the storm-period. This is
somewhat promising and let us speculate that the models can
indeed follow the general evolution of the disturbance strength.
At the moment, this is only true for certain stations and certain
storms and further studies would be required to improve and
evaluate the timing accuracy of the predictions.

Figure 3 shows the root mean square error (RMSE; smaller
is better) and the coefficient of determination (R2; bigger is
better) for each of the stations for the same storms shown in
Figure 2. The rest of the storms can be found in the
Supplementary Material. By itself, RMSE doesn’t allow us
to evaluate the quality of the predictions. As can be clearly
seen, different stations present markedly different results, with
mid-latitude stations having lower RMSE than high-latitude
stations due to the significantly lower magnetic fluctuations
measured during geomagnetic storms. We can see in Figure 3
that RMSE values for the different models tend to obtain
similar scores at mid-latitudes. At high-latitudes the CNN
model performs slightly better than the other two models (by
up to 10% depending on the station and the storm). The LSTM
tends to perform similarly to the ANN in most of the stations
for both storms, although the LSTM performance is slightly
better, approaching and even surpassing the CNN
performance on a few evaluations. The coefficient of
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determination (R2) parameter is less dependent on the
magnitude of the fluctuations, and the results are relatively
similar across all stations, suggesting that the models may have
similar performance based on their solar wind inputs. From

the figure, LSTM scores slightly better at mid-latitudes, while
CNN performs better at high-latitudes. Still, the overall R2

values are relatively low (0.1–0.3) and thus is hard to speculate
on which model is better just from the pair of metrics shown.

FIGURE 2 | Solar wind parameters (A–D) and ground magnetometer dBH/dt fluctuations as well as our model predictions (E–J) for all selected stations during the
14 December 2006 (left) and the 5 April 2010 (right) geomagnetic storms. Panels show (A) SYM-H index, (B) Vx, (C) proton density, (D) IMF Bz. Panels (E–J) show for
each of the labeled stations the 1-min dBH/dt fluctuations (black), and predictions from the ANN (red), CNN (blue) and LSTM (green) models.

FIGURE 3 | Root mean square errors (bars, left axis) and coefficient of determination R2 (symbols, right axis) for each model and each station for the 14 December
2006 (left) and the 5 April 2010 (right) geomagnetic storms.
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The 1-min resolution forecast proves similarly difficult for our
models as it did in the original GEM challenge for the models that
were evaluated (Pulkkinen et al., 2013). Therefore, a risk-
assessment approach was introduced to evaluate whether the
models would predict crossing at different thresholds using the
maximum value of the predicted and real data every 20 min.
Figure 4 shows the result of that transformation, with black
indicating the real values, and colors indicating the prediction of
the different models. Thresholds are drawn at 18, 42, 66 and
90 nT/min (dashed lines) and were selected following the
requirements imposed on the models during the GEM
Challenge (Pulkkinen et al., 2013). In the figure, the constant
under-prediction of the models gets magnified by the drawing of
the “upper envelope” of the fluctuations. This can be clearly seen
in the 14 December 2006 results where the peak values at most
stations are a factor of 10 or more higher than the predictions.
This figure, however, does not necessarily indicate that the
models perform poorly in the risk-assessment approach; as
with the threshold evaluation, it is only important whether or
not both the model and the original measurement cross a certain
value. The relevant question for the metrics is whether both
model and measurements are on the same side of the threshold or
not. To do this, a contingency table is created for each storm,

station, and threshold and the true positives (hits, H), true
negatives (no crossing, N), false positives (false alarms, F),
false negatives (missed crossing, M) are recorded.

Following Pulkkinen et al. (2013) we transform the
contingency table into probability of detection POD = H/(H +
M), probability of false detection POFD = F/(F + N) and the
Heidke Skill Score given by

HSS � 2 HN −MF( )
H +M( ) M +N( ) + H + F( ) F +N( ). (2)

The Heidke Skill Score weights the proportion of correct
predictions obtained by the model against those that would be
obtained purely by randomness. A positive score therefore
indicates that the model performs better than chance. Figure 5
and Figure 6 show the probability of detection, probability of
false detection and Heidke skill scores obtained at each station
for the storms discussed in the previous figures. Figure 5
shows the values for the threshold of 18 nT/min. Despite
the general under-prediction of the models, the probability
of detecting the crossings at high-latitudes (ABK, PBQ, YKC)
is > 0.5 for all models in the 2006 storm and only slightly lower
in the 2010 storm. At mid-latitudes the probability of detection
is significantly lower for all stations, yet we see again a

FIGURE 4 | Maximum ground magnetic fluctuations every 20 min (black) and maximum predictions every 20 min for ANN (red), CNN (blue) and LSTM (green).
Dashed black lines indicate the thresholds of prediction at 18, 42, 66, and 90 nT/min. From top to bottom, SYM-H index and the six magnetometer stations. The 14
December 2006 storm is shown to the left and the 5 April 2010 storm is shown to the right.
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dominance of the CNN model for these particular cases. The
probability of false detection is generally low at all stations and
storms, although it is not quantified in this figure if that occurs
because of the lack of real crossings over the threshold in that
particular storm or not. Still, given the models’ consistent
under-prediction problem, it is not reasonable to expect a
significant number of false positives to contribute to this score.

The Heidke Skill Score shows a larger spread even at the same
station for different models, but consistently with the other
metrics it seems to indicate a better performance of the models
at high latitudes. A particularly interesting result is the
extremely poor performance of the models in the station
WNG, where none of the three models can get a single
correct detection. This seems to be at least in part driven by

FIGURE 5 | Top panels: Probability of detection (bars, left axis), probability of false detection (symbols, right axis). Bottom panels: Heidke skill score, calculated for
the 18 nT/min threshold for each model and each station for the 14 December 2006 (left) and the 5 April 2010 (right) geomagnetic storms.

FIGURE 6 | Top panels: Probability of detection (bars, left axis), probability of false detection (symbols, right axis). Bottom panels: Heidke skill score, calculated for
the 42 nT/min threshold for each model and each station for the 14 December 2006 (left) and the 5 April 2010 (right) geomagnetic storms.
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the very small dBH/dt values measured at that station for those
storms.

Figure 6, which shows the values for the threshold of 42 nT/
min, shows a similar trend as Figure 5. The performance at high
latitudes is varied depending on the station and the model, with
the CNNmodel still outperforming the other two, but with results
that are (at the very best) moderately good. The lack of a
significant number of real crossings of the 42 nT/min
threshold at mid-latitude stations makes evaluation of the
models very difficult. Though a few crossings do occur, the
models miss them. For that same reason we are not showing
the individual results for the 66 nT/min and the 90 nT/min
thresholds, although they are included in the Supplementary
Material for the sake of completeness.

To properly compare with the GEM Challenge, we calculated
the Heidke Skill Score by aggregating all the geomagnetic storms
for all mid-latitude stations (WNG, NEW, OTT) and doing the
same for the high-latitude stations (ABK, YKC, PBQ/SNK). This
results in two scores for each threshold, one at high latitudes and
one at mid-latitudes. Figure 7 shows the results obtained by each
of the models at mid-latitudes (top panel) and high latitudes
(bottom panel). From the figure, we can note that the final scores
are generally consistent with the individual scores obtained in the
previous figures (and with those not shown in the manuscript). It
is clear that the model that uses a CNN outperforms the other two
consistently at high-latitudes, for the first three thresholds.
However, at mid-latitudes it is the LSTM model that performs
the best, even holding some predictive power (i.e., HSS positive)
at the 90 nT/min threshold. A comparison against the models
shown by Pulkkinen et al. (2013) would indicate that the CNN
and LSTM models outperform all the GEM challenge models at

high latitudes for the lowest two thresholds but do a bit worse
than the top performer (Space Weather Modeling Framework-
SWMF) for the highest two. At mid-latitudes, however, even the
LSTM model is outperformed by most of the GEM Challenge
models, indicating that our models do present a different
behavior at mid-latitudes and high latitudes, even beyond the
differences in the scores which can be attributed to many causes.

4 DISCUSSION

The development of machine-learning models to forecast 1-min
ground magnetometer fluctuations (dBH/dt) and our benchmark
against the set of metrics previously used in similar models during
the GEMChallenge for ground magnetic perturbations presented
several interesting challenges, and therefore we have learned
important lessons from the process. In the next sections we
discuss a few of the most important points regarding the
evaluation of the models and the improvements that need to
be made moving forward.

4.1 The 30 October 2003 Storm
Out of the events selected for evaluation, perhaps the most
interesting is the storm that occurred on 30 October 2003.
This storm is the third largest storm recorded in the high
resolution OMNI dataset (1995-present). It is reasonable to
expect modelers to test the models on such extreme event.
This storm, however, presents a series of challenges for our
models, the most important being that there are no high
resolution plasma parameters available during most of the
storm due to a saturation of the instrument on-board the ACE

FIGURE 7 | Cumulative Heidke Skill Score “GEM score” calculated by adding the contingency tables of all storms and all stations at mid (top) or high (bottom)
latitudes for all three models and four thresholds.
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spacecraft (Skoug, 2004). For our model evaluation of the 2003
storm, we used a procedure similar to that described by Pulkkinen
et al. (2013) which involved the use of low-resolution (1-h) ACE
data to reconstruct the plasma parameters and 4-s resolution data
for the interplanetary magnetic field. The data was then
propagated to the bow-shock nose to make it consistent with
OMNI data. Figure 8 (left) shows the reconstructed solar wind
data re-sampled at 1-min resolution. The only data that could not
be reconstructed are solar wind speed Vy and Vz which are shown
as straight lines connecting last known values (linear
interpolation).

Figure 8 (right) shows the prediction of the models for the
different stations during the 30 October 2003 storm. Here, one of
the main difficulties when training machine-learning models
becomes evident: their poor ability to extrapolate to unseen
data. It can be seen that the models behave in strange
different ways. All three of the models respond to the sudden
increase in proton density at the beginning of the evaluated
timespan, but the models’ predictions differ significantly
afterwards. For example, the ANN predictions go to zero
following the initial spike, thus missing most of the strong
fluctuations. The CNN model, although troubled to produce a
strong prediction, seems to at least be robust enough to follow a

pattern of prediction similar to what it would predict in different
storms. Finally, the LSTM model predicts huge spikes in at least
two stations. Fine-tuning a model to get good predictions on
extreme (and unseen) data was not among the goals we set for this
work, but it is something that we will consider moving forward.

4.2 Metrics
The Heidke Skill Score (HSS) was the main metric used here for
comparison with the GEM challenge. The main reason for its use
was that it was also their metric of choice, and as such was the
simpler choice. We believe that the use of only one metric to
evaluate a model is restrictive, as it provides only a glimpse into
the strengths and weaknesses of that model. For example, the HSS
(Equation 2) contains a series of products or sums between
elements of the contingency table. This requires a variety of table
elements to produce a meaningful score. During the process of
model evaluation, the most intense storm in the testing suite, the
2003 Halloween storm, had a large percentage of missing data,
meaning the model evaluation was only done on a portion of the
storm where data was available. This portion of storm data was
completely above the lowest (18 nT/min) threshold. The model,
recognizing the intensity of the storm, predicted over the
threshold for the same time period. This resulted in the H

FIGURE 8 | Solar wind parameters (left) and 20-min window ground magnetometer data and predictions (right) for the 30 October 2003 geomagnetic storm. From
top to bottom (left) SYM-H index, IMFBz, proton speed, proton density, dynamic pressure, temperature and electric field. From top to bottom (right) SYM-H index, and all
six ground magnetometer stations showing 20-min window maximum values of real measurements (black), ANN model (red), LSTM model (green), and CNN model
(blue).
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(hits) element of the table being the only one populated, as all of
the predictions and real data were over the lowest threshold,
ideally a perfect model. However, because only one element of the
table was nonzero, we get zeros in both the numerator and
denominator of the HSS, producing a NaN value in our
evaluation. Similarly, in the evaluation of the 2003 storm, the
PBQ station had an almost perfect prediction in terms of being all
hits for the 18 nT/min threshold. However, while the proportion
of hits was very high, there was one false negative. Because there
were only two elements of the table represented, but they are in
different terms of the numerator, we get a result of zero for the
HSS. A score of zero is supposed to be akin to 50–50 random
chance model; however, with a hit-to-false-negative proportion of
13:1 for this particular storm, that is obviously not the case,
showing that the HSS does not do justice to the skill of the model.
Thus, it is important to consider multiple metrics when validating
or comparing models. Liemohn et al. (2021) provides an overview
of numerous metrics, and Welling et al. (2018) recommends
adding a Frequency Bias metric to those used by Pulkkinen et al.
(2013) for assessment of ground magnetic field perturbations.

It is also important to consider that out of the six storms
evaluated for the six ground magnetometer stations, the 30
October 2003 storm is the only storm that provides a high
number of crossings above the higher three thresholds. This is
also discussed in Pulkkinen et al. (2013) because it heavily
impacts the overall HSS score of a model depending on
whether the model can effectively predict fluctuations that are
large enough to cross over those thresholds. In our case, the ANN
model that fails to predict the 2003 storm at all, sees its HSS
tremendously affected when compared against the other two
models, even if they are all similar in performance for the
remaining of the geomagnetic storms evaluated.

4.3 Training and Testing
One of the reasons to replicate an existing community effort is
that we wanted to benchmark our model results against known
baseline models. In doing so, we have made choices that may or
may not be the optimal choices for a machine learning model. A
good example is the 2003 storm, which would be ideally used for
training instead of for testing given its unique nature in the
existing dataset (and that we will use when the models move into
operational real-time forecast). As mentioned before, it is
understandable that modelers may want to test using extreme
events, as opposed to machine-learning practices where extreme
events can help models perform better. However, in the future, it
may be worth exploring new events for testing, such as those
already proposed by Welling et al. (2018).

Another important aspect not addressed in detail here is the
choice of the target parameter. Following the GEM challenge we
focused on the 1-min resolution dBH/dt values, and then
reprocessed those predictions to obtain the maximum value
every 20-min, which is what was finally used for the actual
evaluation. While a 20 or 30 min window of prediction is
probably a reasonable timespan in which to raise warnings
when a model is operational, the way the model was
proposed, it is not actively creating predictions that far into
the future but rather 1-min ahead (plus the time of

propagation from L1), which can lead to confusion. In the
future, we plan to try different types of forecasts, such as
doing a direct prediction of the maximum value of the
fluctuations over a determined time window.

5 SUMMARY AND CONCLUSION

We have revisited the ground magnetic field perturbations
challenge “GEM Challenge” using deep learning models for
our evaluation: a feed forward neural network (ANN), a
convolutional neural network (CNN) and a long short-term
memory recurrent network (LSTM). We followed the same
procedure set by the original challenge, including the forecast
of 1-min resolution dBH/dt values, followed by a conversion to a
“maximum of” in 20-min windows. We then evaluated our
models by creating a contingency table for thresholds of 18,
42, 66 and 90 nT/min. The metrics created from these
contingency tables were probability of detection, probability of
false detection and the Heidke Skill Score, which we used to
evaluate our models at six ground magnetometer stations, three
mid-latitude and three high-latitude, over six different
geomagnetic storms. We finally calculated an overall score by
aggregating storms at mid-latitude stations and also at high-
latitude stations.

Overall, we found that the machine-learning models we
developed tend to perform similarly or slightly worse compared
against the models presented by Pulkkinen et al. (2013), with scores
that would situate them roughly in the middle of all the models they
tested. Pulkkinen et al. (2013) does not present exact numbers, so
those need to be inferred from their figures. For example, ourmodels
perform poorly for the 18 nT/min threshold at mid-latitudes
compared to all models discussed there. On the other hand, two
of our models (CNN, LSTM) outperform all but the two top models
at high-latitude for the same threshold. At the 42 nT/min threshold,
our models (LSTM at mid-lat, CNN at high-lat) would outperform
all but the top model presented there. There are several reasons for
such results, including difficulties in predicting the 30 October 2003
geomagnetic storm, which is a unique and extreme case that causes
machine learning training to predict poorly. Out of the three models
we tested, the CNN did consistently better than the other two.

The machine-learning models we used here have a few
advantages over traditional simulations such as the minimal
computational requirements they need for training, and to be
run in real-time. Most of our models have been trained in
machines of moderate computational power, and more
importantly can provide real-time predictions on a desktop
computer. This allows for great flexibility in the design of
models and quick iteration between different algorithms as
they become available. Here we used an LSTM, CNN, and
even an ANN model for their capability to capture the time-
history of the time series used as an input. We consider that any
machine learning model capable of capturing the temporal
evolution of the target parameter is worth exploring and could
be used in the future. We plan in the future to continue exploring
models of this type, with the intention of moving into real-time
forecasting.
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