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Several machine learning algorithms and feature subsets from a variety of particle and
magnetic field instruments on-board the Cassini spacecraft were explored for their utility in
classifying orbit segments as magnetosphere, magnetosheath or solar wind. Using a list of
manually detected magnetopause and bow shock crossings from mission scientists,
random forest (RF), support vector machine (SVM), logistic regression (LR) and recurrent
neural network long short-termmemory (RNN LSTM) classification algorithms were trained
and tested. A detailed error analysis revealed a RNN LSTMmodel provided the best overall
performance with a 93.1% accuracy on the unseen test set and MCC score of 0.88 when
utilizing 60min of magnetometer data (|B|, Bθ, Bϕ and BR) to predict the region at the final
time step. RF models using a combination of magnetometer and particle data, spanning
H+, He+, He++ and electrons at a single time step, provided a nearly equivalent
performance with a test set accuracy of 91.4% and MCC score of 0.84. Derived
boundary crossings from each model’s region predictions revealed that the RNN
model was able to successfully detect 82.1% of labeled magnetopause crossings and
91.2% of labeled bow shock crossings, while the RF model using magnetometer and
particle data detected 82.4 and 74.3%, respectively.

Keywords: recurrent neural network (RNN) long short-term memory (LSTM), random forest, machine learning,
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1 INTRODUCTION

Preliminary to any detailed studies of space physics phenomena is the detection and statistical
quantification of large quantities of example “events” in data sets from orbiting spacecraft. At
present, the detection and cataloging of such events is done primarily by visual inspection of the data
sets by domain experts. Yet, as the current and near-future space missions continue to fly evermore
data-intensive sensors, the space physics community is rapidly approaching a point in which the data
volume vastly exceeds the analysis capacity of the domain experts (Azari et al., 2020). Additionally,
manual detection and cataloging of the events embeds the bias of the individual observer into the
curated catalog, consequently precluding the inter-comparison of results from two independent
observers. Semi-automation of the event detection by using, for instance, a set of explainable
threshold criteria to define an event, has helped to combat some of the inter-observer bias and reduce
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the time needed to build event catalogs relative to a purely manual
method. Yet, it can be the case that such rigid threshold criteria
fail to replicate the subtle event detection/inspection process of
the domain experts, or to appropriately account for the
complexities introduced by the varying observer (spacecraft)
position. Machine learning (ML) presents a viable alternative
to the current best practice of manual inspection or semi-
automated methodologies given the proven ability in other
fields to comb through vast data reserves to find events of
interest. In the space domain, with its exponentially increasing
data archives, ML is becoming a necessity.

A common feature to identify in spacecraft data sets is the
encounter of a spacecraft with magnetospheric boundaries such
as the bow shock or magnetopause. The regions adjacent to these
boundaries have very particular characteristics: the
magnetosphere is dominated by planetary field and plasma;
the magnetosheath is a region of turbulent, compressed,
heated, shocked solar wind plasma, and the solar wind
upstream of the bow shock can reflect a pattern of regular
corotating interaction regions as well as revealing the presence
of solar wind transients such as coronal mass ejections. There are
many physical phenomena which occur in these different
regions—e.g., from magnetic reconnection to wave-particle
interactions—and robust region identification (magnetosphere
vs magnetosheath vs solar wind) is often a necessary step prior to
doing focused event detection surveys. At Earth, various studies
have developed algorithms to detect magnetopause and bow
shock boundaries based on changes in the time-based variance
of the magnetic field, orientation of the magnetic field and the
composition and properties of the local plasma from in situ
spacecraft data (Ivchenko et al., 2000; Jelínek et al., 2012; Case and
Wild, 2013; Olshevsky et al., 2021). Similar studies have been
applied to splitting heliospheric measurements into categories
based on in situ solar wind observation and using techniques such
as Gaussian process classification (Xu and Borovsky, 2015;
Camporeale et al., 2017). On the sun-ward side of the bow
shock there is also a foreshock region, which displays
properties similar to the magnetosheath. This is especially
prominent at Earth where the orientation of interplanetary
magnetic field (IMF) drives a quasi-parallel bow shock over a
large extent of the boundary, and the resulting foreshock
propagates shocked ions and magnetic field perturbations far
upstream, obfuscating the solar wind population. The distinct
characteristics of the quasi-parallel foreshock region at Earth has
prompted ML-based region classification algorithm approaches
to identify the foreshock as a fourth region in addition to the
magnetopshere, magnetosheath and solar wind (Olshevsky et al.,
2021). In contrast to Earth, the Parker spiral angle at Saturn is
found to be larger at approximately 86.8 ± 0.3° (Jackman et al.,
2008). Thus, Saturn’s bow shock is primarily quasi-perpendicular
to the IMF, and the foreshock will be pushed to the dawn side of
the planet. While some studies have found evidence of quasi-
parallel foreshocks at Saturn present in the Cassini data (Bertucci
et al., 2007), in general, quasi-perpendicular bow shock crossings
dominate (Sulaiman et al., 2016).

At Saturn, there are still large unknowns concerning physically
processes within Saturn’s magnetosphere as well as its interaction

with the solar wind. For example, the role of dayside reconnection
in controlling the magnetospheres of giant planets is still not fully
understood (Guo et al., 2018). Increasing the event list that can
enable detailed studies of physical phenomena, i.e., magnetic
reconnection, can have impactful results in our understanding
of physical drivers of magnetospheric dynamics such as particle
injections and auroral pulsations (Guo et al., 2018). Therefore, in

FIGURE 1 | Depiction of Cassini’s orbits spanning 1 November 2004
(the end of the first capture orbit) through 15 September 2017 along with
associated labeled boundary crossings in the X-Y KSM plane (A) and X-Z
KSM plane (B). The legend refers to the color denoting the four types of
crossings in the data set: bow shock inbound (BSI, cyan), bow shock
outbound(BSO, blue), magnetopause inbound (MPI, yellow) and
magnetopuase outbound (MPO, red). The magenta box and triangle highlight
case study MP and BS crossings, which were fully encapsulated in the test set
and occurred on 3 May 2008 and 8 March 2008, respectively. These case
studies are highlighted in Figure 2.
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this study, we will focus on observations from the Cassini-
Huygens mission, which orbited the Saturn system from
2004–2017, sampling Saturn’s dynamic magnetosphere from a
diversity of vantage points as highlighted in Figure 1. The
variable orbit design of the Cassini mission meant that while
most of the mission was spent taking measurements within the
planetary magnetosphere, the magnetosheath and upstream solar
wind was also frequently sampled. Each of the three regimes all
have uniquely identifying characteristics of field and plasma, with
transitions between the three regimes occasionally seen to occur
at different times depending on the identifying data set being used
(i.e., magnetometer data versus low-energy plasma or energetic
particle data). Early studies included the publication of lists of
boundary crossings (Pilkington et al., 2015), while other work
included the development of empirical models to describe the
shape and location of the magnetopause (Kanani et al., 2010) and
bow shock (Went et al., 2011).

Since the conclusion of the Cassini mission in 2017, the full
data set has been visually inspected and a list of bow shock and
magnetopause crossings has been made available (Jackman et al.,
2019). This list uses magnetometer data as the primary descriptor,
with augmentation from plasma data (electron spectrometer)
until the failure of the CAPS sensor in 2012. The list focuses on
clear crossings of the boundaries and does not consider very short
excursions (with duration < 2–3 min). It is a common issue that
the timing of boundary crossings may appear slightly different as
seen from different instrument platforms, due to the cadence of
the measuring instruments, or to physical reasons such as finite
gyroradius effects. The Jackman et al., 2019 list upon which we
base this work placed the crossings at the location most closely
aligned with the largest change inmagnetic field and this property
of the time labels must be remembered for subsequent analysis
and interpretation. The Jackman et al. (2019) list serves as a basis
for a supervised machine learning task in which we attempt to
classify whether the spacecraft is in the magnetosphere,
magnetosheath or solar wind. We explore the predictive value
of different sensor measurements sampling the in situ magnetic
and plasma environment versus the time-based variance of a
subset of features, and compare algorithms of varying
computational complexity. By utilizing an extensively verified
event list as our basis, we can thoroughly examine the context of
the algorithm predictions to elucidate whether ML-based
approaches can sufficiently “learn” the physics of the system
of interest.

2 METHODS

2.1 Data Sets and Problem Setting
In an effort to explore whether machine learning (ML) algorithms
may be able to replicate the selection processes of the scientists,
we explored classifying segments within Cassini’s orbit according
to one of three regions - the solar wind (upstream of the bow
shock), magnetosheath (between the bow shock and
magnetopause) or the magnetosphere (inside of the
magnetopause). There are four possible types of crossings as
identified by Jackman et al. (2019) - bow shock out (BSO;

spacecraft is moving across the bow shock boundary from the
magnetosheath to the solar wind), bow shock in (BSI; spacecraft is
moving from the solar wind into the magnetosheath),
magnetopause in (MPI; spacecraft is moving across the
magnetopause from the magnetosheath into the
magnetosphere) and magnetopause out (MPO; spacecraft is
moving from the magnetosphere into the magnetosheath).
Despite the long length of the Cassini mission, there were
relatively few crossings - in total Jackman et al. (2019) found
approximately 3,300 crossings over a span of twelve years (see
Figure 1 for a depiction of Cassini’s orbit path and the locations
of the boundary crossings). Structuring the ML approach to
identify the three distinct regions in lieu of directly identifying
crossings ensured much larger data sets were available for
training, validation and testing, enabling a much greater
variety of ML algorithms to be utilized. However, as a
consequence of this approach, algorithm performance is
optimized for identifying the bulk region (i.e., the mean
conditions for each region) and can be expected to suffer in
the vicinity of boundary transitions.

To identify the regions, we explored various combinations of
data from four sensors: 1) the Cassini magnetometer (MAG)
(Dougherty et al., 2005); 2) the Ion Mass Spectrometer (IMS) of
the Cassini Plasma Spectrometer (CAPS) (Young et al., 2004)
instrument suite; and two sensors from the Magnetospheric
Imaging Instrument (MIMI) (Krimigis et al., 2004) suite: 3)
the Low Energy Magnetospheric Measurement System
(LEMMS) and 4) the Charge Energy Mass Spectrometer
(CHEMS). For completeness, we briefly describe the
instruments and the associated data products used for this
study below but more detailed descriptions can be found in
the instrument papers.

MAG: MAG consists of a fluxgate magnetometer (MAG) and
vector helium magnetometer (VHM) also capable of operating in
a scalar mode. For this study, we utilize MAG data interpolated to
a one-minute sampling cadence in the KRTP coordinate frame.

CAPS/IMS: The Ion Mass Spectrometer (IMS), measures
energy and mass resolved fluxes over an energy-per-charge
range of 1 eV/q to 50 keV/q and consists of eight look
directions. In this study, we use the ion singles data product
averaged over a ten-minute window, and utilize directional data
specifically from anode four spanning an energy range
of ≈ 0.06 eV − ≈ 46.3keV

MIMI/LEMMS: LEMMS is a particle detector with two
separate telescopes, a low-energy telescope (LET) and a high-
energy telescope (HET). We utilize both LET and HET data as
well as pulse height analyzed (PHA) data. The selected subset
of LET and HET data capture proton fluxes spanning energy
ranges of 27–158,700 keV, while the PHA data spans
25.7–67.7 keV, over which the dominate species present will
be protons.

MIMI/CHEMS: CHEMS is an instrument designed to
characterize the suprathermal ion population in Saturn’s
magnetosphere by measuring the charge state, energy, mass
and angular distributions of ions (Krimigis et al., 2004).
Double and triple count incidence data is utilized for H+, He+

and He++ over energy ranges of 2.81–220.2 keV.
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Figure 2 shows two example 24-h periods from 8 March 2008
and 3 May 2008, in which the spacecraft crossed through a bow
shock and magnetopause crossing, respectively, with only the
selected subsets of data from the MAG, CHEMS, LEMMS and
CAPS instruments used in the later algorithm approaches shown.
Note that LEMMS data below 35 keV is not shown in Figure 2
due to known spurious instrument artifacts in those channels,
however that data was included in the ML data sets to avoid
embedding bias of known instrument performance issues in the
training, validation and test data sets. Immediately evident is the
rapidity with which the transitions into and out of regions can
occur, with the spacecraft briefly transitioning into the solar wind
over the span of just an hour (Figure 2A, at approximately 04:30)
and likewise moving rapidly between the magnetosheath and
magnetosphere (Figure 2I). We also see that the changes in the
running mean and variance in the magnetic field magnitude
closely align with the observed crossings as to be expected since

the MAG data was used predominately by the scientists when
discerning boundary crossings. In addition to the total field
magnitude, the components of the magnetic field (shown in
Figure 2B) can reveal particular characteristics of the regions.
For example, the magnetosphere will primarily reflect the
orientation of the planetary field, while the solar wind may
reveal features such as field rotations associated with the
crossings of the heliospheric current sheet (Jackman et al.,
2004). Bow shock crossings are generally much clearer in the
magnetometer data than magnetopause crossings as the character
of the solar wind is typically vastly different to the character of the
magnetosheath. In contrast, crossings of the magnetopause may
be more or less clear in the magnetometer data depending on the
relative orientations of the planetary field (inside the
magnetosphere) versus the shocked interplanetary magnetic
field (IMF; in the magnetosheath). From the perspective of ion
observations, regions can generally be identified based on

FIGURE 2 | Detailed view of MAG, MIMI CHEMS & LEMMS data, and CAPS/IMS data from two example 24-h periods on 8 March 2008 (left column) and 3 May
2008 (right column) in which the spacecraft passed through the BS and MP, respectively. The regions (magnetosphere, magnetosheath and solar wind) are denoted by
shaded bands (A) and (I), with vertical lines in panels (B–H) and (J–P) denoting the labeled crossings. The MAG data are shown on a 1-min interpolated sampling rate,
while all other data are shown on a 10-min interpolated sampling rate. The only data shown from CAPS, CHEMS, and LEMMS are those utilized by the ML
algorithms, and specifically spans targeted energy ranges of H+, He+ and He++ ions.
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different characteristic energies, spectral profiles, and
composition. For example, the bulk solar wind ion populations
are typically in a narrow range of 1–2 keV and thus below the
minimum energy bin of CHEMS. However, the solar wind bulk
ion population becomes heated while crossing the bow shock
such that H+ and He++ ions are within the energy range of the
CHEMS instrument (a few to 10’s keV). For magnetosphere to
magnetosheath transitions, boundary transitions tend to appear
most clearly in magnetometer data (Figure 2). For populations
near the magnetopause, suprathermal and energetic ions and
electrons have much larger gyroradii and lower densities, and so
consequently will not always move in the direction of the bulk
plasma flow. This can at times result in boundary transitions that
appear “fuzzier” (Liou et al., 2021) as compared to low-energy,
bulk species (particularly electrons) or the magnetometer data
which can demonstrate sharp discontinuities between the various
regions.

2.2 Data Set Preprocessing
Initial preprocessing of the data set consisted of applying
background subtraction and calibration factors to convert
instrument voltages to physical units. Data gaps which were
noted in the reference crossing list from Jackman et al. (2019)
were excluded from contention. Being sampled at a much higher
cadence, the MAG data was interpolated to a 1-min sampling
rate, with the other data features (CAPS/IMS, MIMI LEMMS and
CHEMS) being interpolated to a 10-min sampling rate. MAG
data were formatted in the Kronian Radial-Theta-Phi (KRTP)
coordinates, a spherical polar coordinate system. BR (the radial
component) is positive radially outward from Saturn to the
spacecraft, Bθ (the meridional component) is positive
southward, and Bϕ (the azimuthal component) is positive in
the direction of corotation. Specific combinations of the features
were then considered to elucidate feature importance in model
prediction capability. Those subsets included (and their
abbreviated name):

1) MAG at 1 min cadence
2) MAG at 10 min cadence
3) MAG with subset of CAPS/IMS and MIMI/LEMMS/CHEMS

at 10 min cadence (MAG & subset particle)
4) Subset of CAPS/IMS and MIMI/LEMMS/CHEMS at 10 min

cadence (Subset particle)
5) All CAPS/IMS and MIMI/LEMMS/CHEMS data at 10 min

cadence (Full particle)
6) MAGwith all CAPS/IMS andMIMI/LEMMS/CHEMS data at

10 min cadence (MAG & full particle)

For the MAG data, the features used consisted of the MAG
field components in the KRTP system (BR, Bθ, and Bϕ) as well as
the total magnitude of the magnetic field (|B|), giving a total of
four total features. The specific “subset” of CAPS/IMS andMIMI/
LEMMS/CHEMS data chosen were:

1) CAPS/IMS 8.002 eV ions
2) CAPS/IMS 107.654 eV ions
3) CAPS/IMS 16.387 keV ions

4) MIMI/CHEMS 3.78 keV protons
5) MIMI/CHEMS 6.75 keV protons
6) MIMI/LEMMS 44.27 keV protons

With this list of features specifically chosen due to their
significantly divergent behavior from one another, and ability
to provide the minimum set of representative channels. The “full
particle” data set refers to the entire set of species and energy
levels—specifically H+, He+ and He++ ions—as previously
mentioned in the instrument descriptions. When all of the
MIMI CHEMS, LEMMS and CAPS/IMS data were made
available to the machine learning algorithms there were a total
of 194 features. When combined with the magnetic field data,
there were a total of 198 features. Given that CAPS data is
included in all subsets of data featuring particle data, and that
the CAPS sensor failed in 2012, all “particle” data sets only span
through 2012, while MAG-only data sets span the entirety of the
mission.

Spacecraft position data were never used as features within any
of the ML approaches, given the sparsity of the space around
Saturn through which Cassini flew relative to the entire region
under the influence of Saturn’s magnetic field. However,
spacecraft position data were used to correct for sample
imbalance within the three regions, ensuring that there was
not an orbit bias to the training, validation or test data sets,
and finally to interpret model results. The spacecraft position was
calculated in the Kronocentric Solar Magnetospheric (KSM)
coordinate system. In KSM coordinates, the X axis is the line
from Saturn’s center to the Sun, with positive X pointing in the
direction of the Sun. The Y axis is the cross product of Saturn’s
magnetic axis with the X axis, and Z completes the triad. The XYZ
KSM coordinates were then converted to spherical polar
coordinates (R, θ, and ϕ) and θ was converted to magnetic
local time, with noon along the line from Saturn’s center to
the Sun.

Initial data exploration revealed that there were far more data
present within the magnetosphere than within either the solar
wind or magnetosheath once the data from before the end of the
first capture orbit (i.e., data collected before 1 November 2004)
were removed. To correct for the sample discrepancy, regions
within the orbit regime that were exclusively within the
magnetosphere (and therefore the likelihood of a boundary
crossing were zero), were removed from consideration. Those
magnetosphere-exclusive regions were restricted to radial
locations less than 15.1 Saturn radii (RS = 60,268 km) and
local time regions less than 2.81 h and greater than
20.8 h—corresponding exclusively to the nightside of the
planet, far from the flanks and deep in the center of the
magnetotail. The radial and magnetic local time thresholds
were the location of the minimum radial and minimum/
maximum local time positions of magnetopause crossings
from our labeled crossings list. While removing these orbit
regimes vastly improved the sample imbalance present in the
data set, the resulting data set still had more samples from the
magnetosphere than from within the magnetosheath or solar
wind. Additionally, orbit locations in close proximity to Saturn’s
moon Titan were excluded. Titan orbits Saturn at a radial distance
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of ≈ 20RS which can take it very close to the nominal
magnetopause location at certain local times—and the
signatures of local field draping near Titan could be
misleading for the ML algorithms. A list of Titan close flybys
was used, with a buffer period 30 min before and after each event
removed from consideration (Simon et al., 2015).

2.3 Machine Learning Algorithms
Two fundamental approaches were undertaken with regards to
framing the ML classification problem: 1) classifying the region
based on a single time point or 2) using a time series of points to
classify the region the spacecraft was in at the last time step. The
time series approach was motivated by the observation that the
running mean and variance of a time series of features can
provide indication of the region the spacecraft is transiting.
For instance, in Figure 2, we see the total magnetic field
magnitude (|B|) varies significantly in amplitude and variance
in each of the three regions, with the magnetosheath having a very
large running variance in |B| while the magnetosphere has a
higher mean |B| but lower variance. Similarly, a single time step of
data, if rich in features, may provide sufficient information to
classify the region. Therefore, the two different approaches can be
viewed as assessing the predictive capability of the time-related
variance (i.e., gradients) of a small subset of features versus the
predictive capability of many features at a single snapshot in time.
The two approaches were also motivated by data availability, with
only MAG data available at a 1-min cadence, and therefore the
only set of features available in sufficient quantities for a deep
learning, time-series approach. In contrast, many more features
were available at a 10-min cadence, including data from MAG,
CAPS/IMS and MIMI CHEMS and LEMMS.

To classify a single time point, several different combinations
of algorithms and data sets were used. Algorithms that were
tested include the multi-class implementation of logistic
regression (LR), linear-kernel support vector machine (SVM),
and a random forest (RF). For the LR approach, the multi-class
implementation utilized a multinomial loss fit and a L2 norm
penalization (Pedregosa et al., 2011). For the SVM model, the
multi-class implementation utilized a one-versus-rest
methodology in which 3 different one-versus-rest classifiers
were trained (one classifier for each region) (Pedregosa et al.,
2011). For the RF approach, hyperparameter tuning consisted of
iterating on the number of trees in the forest and the minimum
number of samples to define a leaf node. All combinations of the
data mentioned in Section 2.2 at a 10-min cadence were utilized.
By varying the features that were used in the algorithm
development, it was possible to assess whether certain sensor
data (or combinations of sensor data) provided more predictive
capability.

To classify the last time-point in a time series, a recurrent
neural network (RNN) with long short-term memory (LSTM)
cells was utilized. Because of the quantities of data required to
appropriately train a RNN algorithm, only the 1-min MAG data
was utilized with a total of four features—total magnetic field
magnitude (|B|), and the magnetic field components in KRTP
coordinates (BR, Bθ, and Bϕ). Variations in the number of LSTM
layers (1–4) and the number of neurons per layer were explored,

with a dropout layer (with a 50% drop rate) utilized after every
LSTM layer. All neural network approaches were implemented
via the TensorFlow module (Abadi et al., 2015). For multiple
RNN layers, the full sequence (i.e., the output from all the
neurons in the layer) was returned and passed along to the
next layer. The output of the final neuron of the last RNN
layer was passed to a dense fully-connected network with
three neurons and a softmax activation. The Adam optimizer
(Kingma and Ba, 2017) was used to train all variations of the RNN
network, with the categorical cross entropy loss function and
unweighted classification accuracy used to assess algorithm
training progress. An early stopping criteria was implemented
to prevent over-fitting, with training stopped if validation loss
failed to achieve a minimum decrease of 0.001 over a period of
two epochs.

For the time-series-based approach, it was necessary to sample
from continuous segments of data, particularly because time-
series ML approaches such as the RNNs used here have no
concept of time other then the ordering of the samples fed to
the algorithm (i.e., time stamps are not supplied). Within
continuous segments of data, care was taken to sample the
data such that the training, validation and test splits were not
biased with regards to orbit location. It was found that reserving
large continuous segments of data—such as an entire year—for
the validation or test set produced an algorithm that was
significantly biased. This is due to the large year-to-year
variation in Cassini’s orbit, which results in some years being
biased towards an orbit scheme that was closer to Saturn (i.e., low
R) or a more equatorial orbit scheme (i.e., low latitude). To reduce
the bias between the three sets as much as possible, a weekly split
was used (depicted in Figure 3) in which one week of continuous
data was split into 105 h of training data, and 22.5 h each for the
testing and validation data sets. A 6 h buffer between each of the
sets was then discarded (18 h of data in total), which ensured that
there was no overlap between the training, validation or test sets.
When splitting the continuous data for the time-series-based
approach, different sample lengths (20 versus 40 versus 60 min)
were explored. A 5-sample “stride”, where “stride” refers to the
number of samples skipped over before the next sample is
indexed, was used for all iterations. As an example, using a
20 min sample length with a five sample stride, sample one
would utilize the data indexed from 0 to 19, while sample two
would utilize the data indexed from 5 to 24. Offsetting the
samples in this way ensured that there were still enough
samples to attempt more data-intensive methods such as
RNNs, but that samples were not so closely overlapped that
over-fitting was a concern. By analyzing the distribution of
spacecraft positions in KSM coordinates for the overall data
set as well as across the training, validation and test sets, it
could be deduced whether the time-based splicing induced any
bias. Figure 4 shows the spacecraft position histograms for the 1-
min-interpolated MAG data that was utilized by the RNN (a—c)
and the 10-min-interpolated data used in the SVM/LR/RF
algorithms (d—f). Generally, the time-based splitting produced
a relatively equal distribution across the overall sets and the three
subsets for the 1-minute-interpolated data. There does appear to
be some slight aliasing in the local time for the three sets (Figures
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4B,E) which is may be related to the periodicity of Cassini’s orbit
and the week period chosen to do the time splitting.

While all iterations of the RNN approach used the same four
features derived from the MAG data, the SVM, LR and RF
approaches used solely the 10-min interpolated data sets
(previously mentioned in Section 3.2) since even at a lower
sampling cadence there were still sufficient amounts of training
and test data. Both approaches used the time-based splitting
procedure previously described, with the sets spanning the same
intervals whether at a 1-min or 10-min cadence to allow
comparisons across the algorithms. In other words, the same
time span used for training a RNN algorithm with the 1-min-

interpolated data was used to train the SVM/LR/RF algorithms
with 10-min-interpolated data. One deviation between the two
approaches was to ignore the validation data for the SVM/LR/RF
algorithms since these algorithms do not require epoch-based
training.

The final pre-processing step that was completed prior to ML
algorithm development was to standardize and scale each of the
features independently. This was done using the python scikit-
learn “Robust Scaler” algorithm, which operates on each feature
independently, removing the median and scaling the data to the
range of the 1st (25%) and 3rd quartiles (75%) (Pedregosa et al.,
2011). After scaling the features, the training, validation and test

FIGURE 3 | Depiction of time-based splitting of data set into training, validation and test splits. 105 h of continuous data from each week were reserved for the
training set, and 22.5 h each for the validation and test sets. A 6 h buffer period between each of the three sets was discarded, ensuring that there was no overlap
between the sets.

FIGURE 4 | Histogram of spacecraft position in KSM coordinates for Saturn radius [R; (A) and (D)], local time [(B,E)] and latitude [(C,F)] for the 1-min interpolated
MAG-only data used in the RNN approaches (left panels) and 10-min interpolated MAG and full particle data set used in the RF/SVM/LR approach. For the RNN
approach the data is split across the overall data set (black line), training set (red), validation set (cyan) and test set (blue). For the RF approach, a validation set was not
used but the time periods of the test and training sets were matched as closely as possible to the RNN data sets for the sake of comparison. The histograms are
scaled relative to the total number of samples in each set (for the 1-min interpolated data: Ntrain = 504,338, Nval = 109,582, and Ntest = 109,259; for the 10-min
interpolated data Ntrain = 103,665 and Ntest = 32,475).
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sets were randomly shuffled. The final breakdown of the number
of samples in each region for the training, validation and test sets
is shown in Table 1. As is evident in Table 1, there remained
approximately three times as many samples from within the
magnetosphere than either the magnetosheath or the solar wind
even after removing samples within a low radial or near midnight
local time position.

2.4 Error Metrics
The algorithms report a confidence in each of the three regions,
the maximum of which was taken as the prediction and compared
to the accompanying label for the sample. We measured the
effectiveness of the variousMLmodels on the unseen test samples
using four different metrics: accuracy, balanced accuracy,
Matthew’s Correlation Coefficient (MCC) and the F1 score.
Accuracy is simply the ratio of the number of correct samples
to the total number of test samples, where no weighting has been
applied to any samples from a particular class. Balanced accuracy,
in contrast, accounts for the sample imbalance in the test set and
weights samples from a particular class according to the
occurrence of that class within the test set. The weighting for
a sample from a particular class is simply the fraction of test
samples which belong to that class. In this instance, in which
magnetosphere samples outnumber the magnetosheath and solar
wind samples by a factor of roughly three, it can be expected that
the balanced accuracy will give a more appropriate depiction of
the model’s performance across all the classes.

In the binary case, the F1 score is the harmonic mean of the
precision and recall:

F1 � 2 × precision × recall

precision + recall
(1)

where precision is defined as:

precision � TP

TP + FP
(2)

and can be interpreted as the ability of the model to maximize the
detection of true events while minimizing the detection of false
events. Recall is defined as:

recall � TP

TP + FN
(3)

and can be interpreted as the ability of the model to correctly
identify all the events in the test set. The subcomponents for

precision and recall are also best described in the binary case:
True Positives (TP) are positive-class samples that have been
correctly identified as positive by the model, False Positives (FP)
are negative class samples that have been incorrectly identified as
positive by the model, with True Negatives (TN) and False
Negatives (FN) defined similarly for the negative samples. In
the multi-class setting, the F1 score was calculated for each class
independently, and then combined into a single metric using a
weighted average. The “weight” of a class’s F1 was scaled as the
ratio of the samples from a particular class to the total number of
test samples.

Matthew’s Correlation Coefficient (MCC) was derived in the
binary case as a means of encompassing the confusion matrix
within a singular number (Matthews, 1975). The MCC in the
binary case is described by the following equation:

MCC � TP × TN − FP × FN
�������������������������������������
TP + FP( ) TP + FN( ) TN + FP( ) TN + FN( )√ (4)

For a model which has predictions which are perfectly anti-
correlated with the labels, MCCwill return a value of −1, while for
a model in which the predictions are perfectly correlated with the
labels MCCwill return a value of +1. For a model in which there is
no relationship evident between the predictions and the labels
(i.e. predictions are equivalent to a random guess), MCC will
return a value of 0. MCC was extended to the multi-class setting
by Gorodkin (2004), and in such cases the lower limit for anti-
correlation may range between 0 and −1, but the maximum
remains +1 for perfect correlation. For the sake of brevity, the
equation for MCC in the multi-class setting which was used in
our model evaluation is not shown here (see (Gorodkin, 2004) for
details). Recent evidence has pointed to MCC being a more
informative and less misleading metric than F1 or accuracy
(Chicco and Jurman, 2020). All of the classification metrics
were implemented via scikit-learn (Pedregosa et al., 2011).

3 RESULTS

3.1 Single Time Step Classification Results
Table 2 provides a breakdown in the performance of the SVM,
LR, and RF models for different combinations of feature sets. We
find that across all feature sets, the RF model, when appropriately
tuned, performs the best. Figure 5 illustrates the accuracy of the
RF models at predicting the three regions when utilizing different

TABLE 1 | Number of samples in each region for the training, validation and test sets. Note that for the 10-min interpolated data sets, which were only used by the SVM, RF,
and LR classifier, a validation data set was not used. The time spans of the training, validation and test sets remained as close as possible across the different sets to allow
for intracomparison of the model results.

Data Set Total (Ntrain/Nval/Ntest) Magnetosphere Magnetosheath Solar Wind

1-Minute MAG 504300/109500/109200 290692/63265/63851 130017/29821/28024 83591/16414/17325
10-Minute MAG 265300/-/62400 152646/-/36262 68553/-/16195 44101/-/9943
10-Min. Some Particle 142925/-/33245 86584/-/20229 33173/-/8532 23168/-/4484
10-Min. Full Particle 139665/-/32475 84714/-/19795 32484/-/8307 22467/-/4373
10-Min. MAG & Some Particle 142925/-/33245 86584/-/20229 33173/-/8532 23168/-/4484
10-Min. MAG & Full Particle 139665/-/32475 84714/-/19795 32484/-/8307 22467/-/4373
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combinations of feature sets. We find generally that utilizing the
CAPS/IMS and MIMI/CHEMS/LEMMS data alone, without any
magnetic field data, leads to a model which over-predicts the
magnetosphere region. This is particularly the case when utilizing
only the small subset of features (6 total) from the CAPS/IMS and
MIMI/LEMMS/CHEMS data set (see Section 3.2 for a list of
features). In contrast, using the magnetic field data alone provides
some physical interpretation of the different regions, since the
magnitude of the magnetic field acts as a proxy for the radial
distance from the planet. However, we see there is still confusion
between the adjoining regions - solar wind being confused for
magnetosheath or magnetosheath being confused for
magnetosphere, and vice versa. The best performance is found
when the MAG and full particle data set is used as shown in
Figure 5E. While the model using this feature set still confuses
magnetosheath samples for magnetosphere, we generally see a
much improved performance over the models using either only
the magnetometer data or only the CAPS/IMS and MIMI/
CHEMS/LEMMS data. In contrast to the RF models, the SVM
and LRmodels fail to approach the same accuracy level on the test
set predictions, except for when the MAG data is used alone.

When comparing the performance of different input sets it
needs to be considered that boundaries and regions can appear
different in different measurements. Boundaries can appear
generally more gradual in energetic particle data (Mauk et al.,
2019; Liou et al., 2021) and show dependencies on particle energy
and direction that are still under scientific investigation (Mauk
et al., 2016, 2019). Results from particle measurements that
disagree from magnetic measurements are therefore not
necessarily wrong from the scientific perspective but are a
signature of physical processes such as particle escape that
effectively soften up boundaries. However, our goal here is not
to understand the underlying physics but to find the best defined
boundaries, which can be found through magnetic field
measurements. We therefore calculate our error measures
relative the manually derived list that relied on magnetic field data.

3.2 Time Series Classification Results
Table 3 shows the RNN model performances for varying time
sequence lengths along with the hyperparameters for the best-
performing model at each time segment length. As mentioned in
the Methods section, the number of layers and number of
neurons per layer was iterated on to find the best performing
model without overfitting. An exhaustive search for the optimal
number of layers and neurons per layer was not performed due to
the limitations on time and computational resources. However,
general trends in test accuracy and test loss were observed by
iterating over various combinations of neurons and layers.
Overall, it can be observed that the 60-min RNN model
provides the best performance on the test set. There was some
slight overfitting (as can be seen by comparing the training loss
with the validation and test set loss), however, stopping criteria
were implemented to prevent substantial over-fitting. It also
should be noted that the number of samples for the training,
validation and test sets changed slightly between the 20-, 40-, and
60-min models due to the length of the time sample and allowed
overlap between samples.

As the length of the time segment increases from 20 to
40–60 min, we see overall accuracy slightly increases, as
indicated in Table 3. Therefore, it can be reasonably
concluded that the gradients of the individual features and
amount of variance in the features over the selected time
frame is important for correctly classifying the region.
Essentially, the longer the time segment, the more contextual
information is provided to the model which allows for correct
prediction of the region at the last time step. This is even more
noticeable when we consider the samples which contain a
boundary transition, which are a very small subset of the
overall sample set. As shown in Figure 6, there is a drastic
improvement in the model’s accuracy for the small subset of
samples containing a listed boundary transition as we increase the
length of the sample. The improvement in accuracy is most
drastic when moving from a 20-min sample to a 40-min

TABLE 2 |Comparison of SVM, Logistic Regression and RFmodels using various feature sets as described in the Methods section. Depending on the feature sets used, the
amount of training and test data available will change, however all the time intervals used for training and testing are consistent across the different feature sets.

Feature Set Model Type Accuracy Balanced Accuracy F1 MCC

MAG SVM 78.45% 72.77% 0.766 0.623
Logistic 78.35% 73.86% 0.778 0.620
RF 82.21% 77.22% 0.820 0.686

Some Particle SVM 69.18% 45.88% 0.625 0.370
Logistic 66.03% 41.32% 0.575 0.282
RF 73.99% 56.69% 0.710 0.484

Full Particle SVM 68.60% 56.82% 0.682 0.409
Logistic 41.14% 37.10% 0.426 0.054
RF 86.11% 81.49% 0.858 0.740

MAG & Some Particle SVM 84.02% 78.97% 0.835 0.708
Logistic 81.78% 73.91% 0.806 0.657
RF 87.08% 82.08% 0.869 0.760

MAG & Full Particle SVM 78.41% 72.81% 0.777 0.603
Logistic 43.82% 37.68% 0.449 0.053
RF 91.38% 88.83% 0.912 0.840
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FIGURE 5 | Normalized confusion matrices for different combinations of data, all using the RF model which was the best performing model across all feature sets
[(A) MAG-only, (B) Some particle, (C) Full particle, (D) MAG & some particle, and (E) MAG & full particle]. The comparisons here are shown as normalized confusion
matrices in which each row is divided by the number of “true” samples in the class. A perfect model would have all ones on the diagonal and all zeros on the off-diagonal.

TABLE 3 | Comparison of RNN model performance for differing time sequence lengths as well as relevant model parameters.

Parameter 20-Minute Model 40-Minute Model 60-Minute Model

Accuracy 92.25% 93.08% 93.14%
Balanced Accuracy 91.69% 92.76% 93.08%
F1 0.923 0.931 0.932
MCC 0.863 0.877 0.878
Number Layers 2 2 1
Number Neurons 120 120 180
Trainable Parameters 176043 176043 133743
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sample, but incremental improvements are also observed as we
increase the sample length from 40 to 60 min. Most notably, the
confusion between the magnetosphere and magnetosheath
regions decreases, which is where most of the confusion lies
for the 20-min model. The number of samples containing a
boundary transition is only approximately 1.5% of the total
samples in the test set (1,619 samples out of 109,200 test
samples for the 60-min model), however we see the
improvement in accurately predicting the sample jumps from
62.28% for the 20-min model to 81.03% for the 40-min model to
84.25% for the 60-min model.

3.3 Spatial Errors
All remaining analysis is focused on three models in particular—RF
MAG, RF MAG & full particle, and RNN 60-min MAG model.
These models were chosen as the best performers for time series
classification (RNN 60-min) and single time point classification (RF
MAG & full particle). The results from the RF MAG model are
shown given that they are the closest comparison in feature space to
the RNN model. Figure 7 shows the spatial discrepancies between
the model predictions and the labeled data for three models in
particular—the RFmodel with onlyMAG data [predictions (b) and
difference from actual (c)], the RF model with MAG and full
particle data set [predictions (d) and difference from actual (e)]
and the RNN 60-min model with only MAG data [predictions (f)
and difference from actual (g)]. The data has been binned according
to local time and R, with the total number of predictions or labels of
a particular region (magnetosphere, magnetosheath or solar wind)
in a particular polar bin scaled to the total number of observations
across all regions in that bin. The discrepancy plots have been scaled
to highlight differences between the actual fraction of a region in a
polar bin to the predicted fraction exceeding +/− 0.25. Despite
having no information about the spacecraft position, we see in all
cases that the models are generally able to correctly discern the
physical layering of the problem, with the magnetosphere most
commonly predicted radially close to the planet, the solar wind
farthest from the planet, and the magnetosheath sandwiched in
between.

The discrepancy polar histograms (Figures 7C,E,G) show the
differences between the binning of the model predictions of
particular regions and the binning of the labeled data (a),
revealing where the model has under-predicted (in blue) or
over-predicted (in red) a particular region. It is clear the RF
model utilizing only MAG data performs the worst (as is also
evident in comparing it’s test accuracy with that of the RFMAG&
full particle model and the RNN 60-min model). Utilizing only
the MAG data set at a single time step, the model has much
greater confusion on the spatial location of the magnetosphere
and magnetosheath regions. We see a strong tendency to over-
predict the magnetosphere and under-predict the magnetosheath
on the dawn side of the planet. This confusion between the
magnetosheath and the magnetsphere is then reversed on the
dusk side of the planet, where there is a preference to under-
predict the magnetosphere and over-predict the magnetosheath.
Dawn-side errors could be due to the presence of the foreshock,
which, as previously mentioned, causes large perturbations in the
solar wind magnetic field. When the full particle data set is added
to the RF model, we see that the spatial discrepancies are
drastically improved as compared to the MAG data alone.
Figure 7E shows that instead of the strong dawn/dusk
preferences in the model predictions that we see with the
MAG-only RF model (c) for the magnetosphere and
magnetsheath predictions, that generally the MAG & full
particle RF model tends to over-predict the magnetosphere
and under-predict the magnetosheath at all radial and local
time bins. Finally, the RNN 60-min model demonstrates the
best spatial accuracy of the three (Figure 7G), with the least
amount of spatial discrepancy from the true labels. It can be
observed, however, that the 60-min RNN model, using the same
feature set as the RF MAG model, again shows the dawn/dusk
confusion between the magnetosphere and magnetosheath
regions, though to a much lesser degree than the RF MAG
model. In particular, there appears to be a very spatially
narrow (14:00 to 16:00 h LT and 20–40 RS) but discernible
preference to over-predict magnetosheath and under-predict
magnetosphere. Outside of this spatially-narrow region,

FIGURE 6 | Comparison of length of the time sample used with overall prediction performance on samples containing a boundary transition for the 20-min (A), 40-
min (B) and 60-min (C) RNN models. The comparisons here are shown as normalized confusion matrices.
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FIGURE 7 | Comparison on the spatial distribution of predictions for the magnetsophere (left column), magnetosheath (middle column) and solar wind (right
column), for the true labels (A), RF MAG-only model (B), RF MAG & full particle model (D) and RNN 60-min MAG-only model (F). The predictions for a particular region
have been binned by local time (0.5 h increment) and radial distance (5 RS increment), with bins in gray indicating where there is no data. The discrepancy polar
histograms (C,E,G) shows the difference between the observed fraction of a bin labeled as a particular region (A) and the predicted fraction (B,D,or,F), highlighting
model errors. Discrepancy bins trending toward red indicate where the model has over-predicted a region, while blue indicates where a model has under-predicted a
region. Panels (B,D,F) share the colorbar in panel (A), while panels (E,G) share the colorbar for panel (C).
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however, we find that the RNNmodel tends to underestimate the
magnetosheath and overestimate the magnetosphere across all
areas, similar to the Mag & full particle RF model. Confusion at
low radial positions does not appear to be driven by traversals of
the cusp region (see Supplemental Material and Figure ??),
though previous studies have shown that Saturn’s cusp shows
a depressed magnetic field relative to the surrounding
magnetosphere (Jasinski et al., 2017) and contains
magnetosheath plasma (Arridge et al., 2016; Jasinski et al.,
2016). In the case of the MAG-only models, a depressed
magnetic field may cause the algorithm to predict
magnetosheath in lieu of magnetosphere, while the RF MAG
& full particle model would likewise predict magnetosheath due
to the presence of magnetosheath plasma. The 60-min RNN
model demonstrates by far the best spatial accuracy in predictions
of the solar wind (Figure 7G, right), with virtually no discrepancy
from the label set with the exception of a few large radial, dawn
side bins where the solar wind is over-predicted. It is important to
note that the RF model utilizing the MAG & full particle data set
has far fewer samples than the MAG-only RF and RNN models
due to the failure of the CAPS sensor in 2012.

3.4 Temporal Errors
To investigate temporal consistency in the model predictions,
each continuous segment of testing data (22.5 h of data per week)
was individually analyzed. Example segments demonstrating a
bow shock andmagnetopause crossing are shown in Figure 8 and
are directly corollary to the crossing shown in Figure 2, showing
the temporal evolution of the predictions for the three models in
particular. Within each continuous segment of data the time
points in which predictions changed from one region to another
can be used to derive the model’s predicted crossings. Counting

the number of predicted crossings in the continuous time frame
and comparing with the labeled crossings over the same segment
can thus provide an indication of the temporal consistency of the
model’s output. The example test segments shown in Figure 8 is
one such example of how a worse-performing model will have
much less consistency in its predictions, with the RF models
predicting far more transitions than the RNN 60-min model, as
well as being largely incorrect in the case of the BS crossing. The
numbers of predicted and actual transitions in each weekly test
period were counted and summed up to the encompassing month
for ease of comparison across the entire length of the mission. The
results are shown in Figure 9 for RF MAG (b), RF MAG & full
particle (c) and RNN 60-min MAG (d). Here there are four
possible types of transitions (as defined earlier)—BSI, BSO, MPI,
and MPO. It is important to note, however, that these inbound/
outbound notations simply refer to the spacecraft direction of
travel at the time of the boundary encounter, and there is no
expectation that the character of the regions on either side of the
transition would be biased by the travel direction of the
spacecraft.

All the models analyzed drastically over-predicted the
number of transitions occurring, with the RF models
demonstrating more false boundary transitions than the
RNN 60-min model. The MAG-only RF model performs
the worst of all, with significantly higher numbers of false
transitions predicted at every time interval. Of all the RF
models analyzed (see the appendix for all possible feature
combinations), we find that the MAG & full particle data
set (Figure 9C) produces the greatest consistency in region
prediction (i.e., least false transitions). The RNN 60-min MAG
model performs better yet (Figure 9D), while still predicting
vastly more transitions than present in the labeled data set.

FIGURE 8 | An example BS crossing is shown from 8 March 2008 (left column) and an example MP crossing is shown from 3 May 2008 (right column), coincident
with the transitions shown in Figure 2. Magnetic field magnitude and KRTP components are shown (A,F) along with regions as denoted by the labeled MP and BS
crossings (B,G) and the model predictions from three selected models - RF MAG (C,H), RF MAG & full ion (D,I), and RNNMAG 60-min model (E,J). Time periods which
do not have any predictions due to a lack of data are denoted by white. Ideally the time periods of the model-predicted regions would coincide directly with the
labeled regions. Here, we see that the RNN 60-minmodel comes closest to the labeled test set, while the RFmodels predict significantly more transitions, and particularly
with the BS crossing, they are incorrect in their prediction of the solar wind region.
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FIGURE 9 | For the bow shock transitions, comparison of the numbers of crossings from the labeled data set (A) and those predicted by the RFMAGmodel (B), RF
MAG & full particle model (C) and RNN 60-min model (D) are shown in the top grouping of panels. The numbers of crossings were computed per each continuous
segment of test data and grouped by month. Panels (E–H) show the corollary for the magnetopause crossings, with the number of actual magnetopause crossings
shown in (E). The number of actual crossings is then compared with predicted crossings from the RF MAG model (F), RF MAG & full ion (G) and RNN 60-min
models (H). The vertical scaling of panels (A,E) are significantly smaller than the other panels to allow for ease of comparison. All models over-predict the number of
crossings, however we find of the three shown that the RNN 60-min model has the best performance, with the least amount of crossings predicted and closest crossing
type alignment to the true crossings shown in (A) and (E).
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However, comparisons between the labeled transitions and the
RNN-predicted transitions qualitatively reveal that the general
trends of BSI/BSO-dominant periods (such as 2011–2012)
versus MPI/MPO-dominant periods (2010) seen in the
labeled data set are echoed in the model results, giving
confidence that the model is capturing the underlying
physics of the system. We also note that the Jackman et al.
(2019) list, upon which this supervised learning approach is
based, was formulated to capture the clearest and longest
duration boundary crossings, and was not optimised to
select multiple short-duration (2–3 min) crossings. While
the aim of our ML approach is to determine what method
best classifies the bulk of the regions, and the models
demonstrate proficiency at doing so, the multiple short-
duration “false” crossings predicted by the models could be
actual phenomena (e.g. boundary-layer dynamics) that are not
fully labeled and thus require further investigation (see
Supplemental Material). In our investigation, the
prediction for a particular sample was taken as the
maximum of the algorithm confidence in the three regions,
as is standard practice in the machine learning community.
However, examining the algorithm confidence in the three
regions rather than the maximum, as well as the inter-sample
variance in the confidence, could eliminate many “false”
crossings as well as highlight the need for SITL-intervention
in the case where confidence in any one particular region is
not high.

3.5 Derived Boundary Crossings
To understand whether the boundary crossings identified by the
temporal error analysis aligned with those in our labeled data set,
we analyzed each of the model’s boundary crossings shown in
Figure 9 to see if they were a “matched” event (coincided with a
boundary crossing of the same type identified in the labeled data
set), an “unmatched” event (a labeled boundary which did not
have a corresponding match in the model’s boundary crossings),
or a “False Boundary,” (FB) i.e., a model boundary without a
corresponding match in the labeled boundary list. A model-
identified boundary crossing would be considered a “match” if
it occurred within an hour before or after a list boundary crossing

of the same type. In the case that the model identified multiple
boundary crossings of the same time within the +/− hour span
surrounding a labeled event, we chose the model crossing that
was closest in absolute time. Table 4 shows the results for the RF
MAG, RF MAG & full particle and RNN 60-min MAG model.
For labeled boundaries which were matched to a model
prediction, the time difference between the model-predicted
boundary and the true boundary was calculated, with a
positive difference indicating that the model transition
occurred after the list transition (i.e., the model was delayed).

In general, we find that all themodels perform relatively well at
identifying the crossings manually identified by Jackman et al.
(2019), however, there were a high number of FBs across all
models and all boundary types. The number of FBs was especially
pronounced for the RF MAGmodel, echoing the large amount of
spatial and temporal variability in model predictions seen in
Figures 7,9, respectively. The RNN MAG model, which covers
the same duration of the mission as the RF MAG model
(2004–2016), observes much fewer FBs, particularly of BSO
and BSI transitions. The RF MAG & full particle model
observes much fewer FBs than the MAG-only RF model, likely
as a consequence of the addition of the CAPS/IMS and MIMI/
CHEMS/LEMMS data. Relative to the total number of test
samples provided to the respective models, the RNN model
shows the least FBs by far, indicating it has far more temporal
accuracy and consistency than the RF approach. Investigating the
RNN performance more closely, an interesting observation is the
greater lag observed on outward transitions (BSO and MPO) as
opposed to inward transitions (BSI and MPI), as well as a greater
lag observed at the magnetopause transitions as opposed to the
bow shock transitions. The lag suggests that the model needs at
least a few minutes of data from the new region before it is able to
shift its prediction, with the running variance and mean of the
features within the new region “learned” by the model. Therefore,
it can be assumed that RNN-based approaches for predicting
region transitions may lag on their exact prediction of the
boundary crossing, particularly when the boundary between
the regions is only subtly hinted at by the behavior of the
features. This is especially the case at the magnetopause
boundary, where the transition between the magnetosheath

TABLE 4 | Performance of the RF MAG, RF MAG & full particle, and 60-min RNN model at correctly detecting labeled boundary crossings. A boundary crossing was
considered “matched” if there was the same type of boundary in the model predictions within one hour of the labeled crossing. The mean time offset of the matched
boundaries is positive if the detected boundary crossing occurred after the labeled boundary (i.e., the model was delayed in its prediction). Noted is the shorter length of the
RF MAG & full particle test set (extending only through 2012) and fewer labeled boundary crossings.

Parameter Model Type BSO BSI MPO MPI

Matched Boundaries (% Total) RF MAG 76 (79.2%) 72 (75.8%) 120 (81.1%) 126 (84.0%)
RF MAG & Full Part. 25 (73.5%) 30 (75.0%) 91 (85.0%) 87 (79.8%)
RNN 60-Min 77 (90.6%) 78 (91.8%) 102 (78.5%) 114 (85.7%)

Unmatched Boundaries (% Total) RF MAG 20 (20.8%) 19 (20.0%) 28 (18.9%) 24 (16%)
RF MAG & Full Part. 9 (26.5%) 10 (25.0%) 16 (15.0%) 22 (20.2%)
RNN 60-Min 8 (9.4%) 7 (8.2%) 28 (21.5%) 19 (14.3%)

Mean time offset to matched boundary
(median) (min)

RF MAG + 7.33 ± 14.62 ( + 7) − 0.58 ± 13.67 ( + 3) + 5.24 ± 18.34 ( + 6.5) + 2.97 ± 18.05 ( + 5)
RF MAG & Full Part. + 6.52 ± 10.44 ( + 7) + 5.03 ± 9.69 ( + 5) + 3.75 ± 14.70 ( + 5) + 1.67 ± 15.70 ( + 4)
RNN 60-Min + 11.41 ± 15.23

( + 8.5)
+ 3.55 ± 13.00

( + 3.5)
+ 13.93 ± 17.54

( + 11.5)
+ 7.18 ± 17.48 ( + 7)
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and magnetopause can be somewhat ambiguous when using the
MAG data alone for times of small magnetic shear and/or highly
turbulent boundary layers. In contrast, a sharp difference between
the solar wind and the magnetosheath is typically observed,
particularly in the enhancement of the running variance across
all MAG field components as we move into the magnetosheath.
We see that consequently the BSI transition appears to be the
easiest transition for the RNNmodel to discern, with a lag of only
≈3.6 min.

It should also be noted that the five-minute stride present
within the test sample data for the RNN to prevent over sampling
means that the “labeled” boundary may be slightly offset from the
“true” boundary depending on whether the timing of the “true”
boundary falls on the same sample cadence of the test data. In
cases where the true boundary timing does not directly coincide
with a test sample, the nearest following sample was indicated as
the location of the boundary, which was at most 4 min away from
the true boundary location. For the RF models, the sampling
cadence of 10 min results in the model’s first sample within a new
region being at most 9 min away from the true boundary. A
secondary point to note is how the model results are interpreted,
which impacts the determination of predicted boundary
crossings. The output of the models is a three component

vector, representing the model’s confidence in each of the
three regions; the maximum of these three components is
interpreted as the model’s predicted region. The confidence in
a particular region would have to exceed 0.33 before it is
interpreted as the current region, yet the model’s confidence
in a region would increase prior to it becoming the dominant
region. Therefore, the lag in recognizing a transition may not be
as severe as suggested when we only interpret the maximum as
the model’s prediction, since investigating the individual
confidence levels may reveal an increasing trend in a
particular region before it overtakes the confidence levels of
the other regions and becomes the maximum.

3.5.1 Epoch Analysis
Again focusing only on the RNN 60-min model, Figures 10,11
show the corresponding behavior of the magnetic field features at
the bow shock and magnetopause boundary crossings,
respectively for both the matched and unmatched boundaries.
Outward transitions (i.e., the spacecraft is encountering the
boundary on an outward trajectory) and inward transitions
are overlaid in the figures, such that all transitions are
oriented to be inwards. The sharp division between the solar
wind and magnetosheath is present in Figure 10, with the cross

FIGURE 10 | Comparison of the bow shock crossings in the labeled data set which were matched to a predicted crossing (A-E), versus those which were not
matched (F–J) in the RNN 60-min model predictions. Panels (A–D) and (F–I) show the magnetic field conditions in a 1-h vicinity surrounding the labeled crossing, with
individual instances plotted as transparent black lines. The average conditions ± the standard deviation are shown as thick black solid and dotted lines, respectively.
Panels (E,J) show the prediction confidence of the model surrounding the labeled crossing for matched (E) and unmatched (J) crossings, with the average ± the
standard deviation shown in the shaded region. Here the inwards and outwards crossings have been overlaid, such that all crossings are oriented in a inwards trajectory.
In total there were 155 matched crossings and 15 unmatched crossings (see Table 4).
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over into the magnetosheath resulting in a much more variable
and higher magnitude magnetic field. As indicated in Table 4, we
see that the RNN 60-min model is easily able to detect the BS in
most cases as revealed by the high confidence levels in the solar
wind and magnetosheath before and after the transition,
respectively (Figure 10E). In the few cases (N = 7 for BSI,
N = 8 for BSO) when the BS was missed, we see that it was
because the model failed to register it was in the solar wind before
the transition, seemingly due to elevated Bθ values.

The boundary between the magnetosheath and the
magnetosphere is much more subtle than that between the
solar wind and magnetosheath as revealed in Figure 11. The
subtle nature of the boundary is underscored by the greater
percentage of missed MPI (14.3%) and MPO (21.1%)
transitions relative to the BSI (9.1%) and BSO (10.4%)
transitions (see Table 4), and the greater delay in the matched
transitions from the timing of the actual boundary crossing and
the model detection of the new region. The MP crossings that
were successfully identified demonstrate a sharp increase in |B| as
the spacecraft moves into the magnetosphere, which is principally
driven by an increase in Bθ. The missed MP transitions show a
slightly more gradual increase in |B| and particularly in Bθ, with

the model failing to recognize the magnetosheath is present
before the transition. For all four boundary transition types,
we see that the missed transitions exhibit confusion mainly
between the magnetosphere and the magnetosheath, even for
bow shock boundaries.

4 CONCLUSION

Here we have found that a variety of ML algorithms are capable of
producing relatively accurate classifications of the region the
spacecraft is inhabiting using only instrument data as the
model input. Architecting the problem as a region-
classification task instead of attempting to directly classify the
boundary crossings afforded a much larger data set for both
training and testing, enabling a broader swath of algorithms to be
explored. However, as a consequence, assessment of where and
how well the model predicted boundary crossings required a
more-complicated post processing methodology and ultimately
led to a large number of FBs. Daigavane et al. (2020) performed a
complementary study in which they attempted to directly detect
magnetopause and bow shock crossings in the CAPS-ELS data set

FIGURE 11 | Comparison of the magnetopause crossings in the labeled data set which were matched to a predicted crossing (A–E), versus those which were not
matched (F–J) in the RNN 60-min model predictions. Panels (A–D) and (F–I) show the magnetic field conditions in a 1-h vicinity surrounding the labeled crossing, with
individual instances plotted as transparent black lines. The average conditions ± the standard deviation are shown as thick black solid and dotted lines, respectively.
Panels (E,J) show the prediction confidence of the model surrounding the labeled crossing for matched (E) and unmatched (J) crossings, with the average ± the
standard deviation shown in the shaded region. Here the inwards and outwards crossings have been overlaid, such that all crossings are oriented in a inwards trajectory.
In total there were 216 matched crossings and 47 unmatched crossings (see Table 4).
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using an anomaly detection methodology. Similar to the results
contained herein, they found that bow shock crossings were
substantially easier to detect than magnetopause crossings.

Comparing the predictive value of different feature sets, as was
possible with the simpler and less data-intensive RF models, we
find that the inclusion of more features clearly increases the
predictive capability of the model, as expected. It should be noted
that the specific subset of features from the plasma data chosen is
important for this type of classification scheme. Ultimately, the
best models will have inputs derived from the most physically
relevant measurements, which given the architecture of this
problem would be those features showing distinctly different
characteristics in the bulk regions. We find that ultimately a time-
series-based approach, as is possible with the RNN LSTM
algorithm, produces a model with the greatest accuracy and
temporal consistency, indicating that the temporal trends and
variances of the MAG data alone provides sufficient predictive
capability. This is further underscored by the improvement in the
model performance as the length of the time sample fed to the
RNN models is increased from 20 to 40 and, finally, 60 min.
Though outside the scope of this study, we urge future studies to
consider algorithm approaches which can leverage the benefits of
both time-variance of the features and a richer feature set
encompassing multiple instruments. While the scope of the
algorithms explored in this study was relatively limited, other
algorithms such as 1-D Convolutional Neural Networks (CNNs)
or hybrid CNN-LSTM architectures should be explored given
their utility in other sequence classification tasks, such as natural
language processing and speech recognition (Sainath et al., 2015;
Yin et al., 2017).

We have also shown the necessity of doing a full error analysis of
the results and expand beyond the scope of analysis typically done in
multi-class ML classification tasks. Blanket accuracy metrics fail to
measure the algorithm prediction consistency over temporal or
spatial scales. Nor do such metrics capture the feature context
leading to model errors, or attempt to elucidate whether model
predictions are tied to particular physical phenomena. By
investigating the errors on spatial and temporal scales, we have
found that models only slightly different in their overall accuracy
metrics have demonstrably different performance in terms of
temporal or spatial cohesion. The RF models in particular are
only slightly worse than the RNN 60-min model in terms of
their overall accuracy, and yet their predictions exhibit much
more temporal volatility and undesirable patterns in spatial errors.

4.1 Implication for On-Board AI Utilization
on Future Space Missions
Given that there was an intentional decision to not apply
filtering or smoothing techniques such as a centered running
mean to the data prior to implementing the ML methods, the
algorithms presented here could be run in a real-time scenario
(ignoring the computational limitations of current
spacecraft). As such, the instability of the model output
could be addressed in real-time by implementing a
persistence counter, i.e., a prediction of a different region
would have to persist for a set number of continuous samples

before the model were to shift its predictions. Such persistence
measures are already widely used in spacecraft fault
management autonomy systems to prevent outlier
measurements from driving operational fault containment
measures to the detriment of science or broader mission
objectives (Fesq, 2009). Similarly, a threshold on the
model’s confidence in a particular region needed before
shifting the region prediction from one region to another,
as would be the case in a boundary crossing, could be
implemented. Both of these measures would reduce the
rapid, and likely incorrect, false boundary crossings
observed here—reducing risk with the side effect of
potentially lengthening the lag between the true boundary
crossing and the model’s recognition of the boundary
crossing.

As noted by several studies (Azari et al., 2020; Hook et al.,
2020; Theiling et al., 2021; Vandegriff et al., 2021), current
missions are already facing severe downlink constraints and
more data-intensive sensors. Without increased capabilities in
on-board storage and deep space communications, missions
may ultimately require the use of on-board autonomy to sift
through the deluge of collected data to prioritize the most
relevant observations for downlink or optimize the science
collection of the sensors for the environment the spacecraft or
lander is currently inhabiting. Examples of automated
decisions the spacecraft could complete with on-board AI
could be changing the sampling rate of an instrument or
changing the binning scheme of plasma data. Already,
research is being done to optimize data downlink using AI
on earth-orbiting missions such as MMS, where only 4% of the
high-rate data collected daily can be sent to the ground (Argall
et al., 2020). In these cases, where predictions from an on-
board AI system could contribute to mission operations,
model stability becomes critical else undue risk is embedded
in the mission. The results shown here illustrate that while
simpler algorithms such as a RF can replicate the overall
accuracy of more complicated RNNs and are more apt for
on-board application due to their ability to operate in low-Size,
Weight and Power (SWaP) embedded applications, they fail to
replicate the accuracy and temporal stability of neural network
approaches. Therefore, assessments of candidate algorithm
performance must not only assess model performance using
an unbiased, representative test set but also fully evaluate the
context of the predictions.
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