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The Kerr–Newman metric is used to discuss the average radial speed of light from near to
far space surrounding the super-gravitational source like a black hole which can be
observed by a weak-gravitational reference frame such as an observer on the Earth. The
velocity equation of light near the black hole is represented by the Boyer–Lindquist
coordinates (t, r, θ, and ϕ), and the main parameters are the Schwarzschild radius RS,
the rotation term a, and the charged term RQ. From the calculations, the average radial
speed of light from r = RS to r = αRS with α> 1 is possibly observed exceeding c by an
observer on the Earth. The result can extend to the large r place when the rotation of the
black hole is high or the charge is very large. This average radial speed finally approaches c
far away from the black hole. We also propose a new explanation based on our results that
the observation of the faster-than-light particle is due to the light bending near the
Kerr–Newman black hole or supermassive star with very strong gravity. In addition,
two superluminal theories used to explain the speed of light in astronomy are
compared. One is the Doppler effect in special relativity, and the other is the change in
the photon speed due to the QED contribution of one-loop vacuum polarization to the
photon effective action. The former seems to mainly appear as the change of the observed
wavelength or frequency, while the latter is probably the random and irregular occurrences.
Our explanation is based on the Kerr–Newman metric in general relativity, and it extends
the discussion from the flat spacetime in special relativity to the curved spacetime which is
suitable for many superluminal observations near the super-gravitational sources like the
black hole. Our calculations are used to verify tangible observations like the M87 jet.

Keywords: Kerr–Newman metric, black hole, superluminal phenomenon, Schwarzschild radius, average radial
speed

1 INTRODUCTION

The black hole has been studied for more than one century. Its strong gravity attracts a lot of
scientists to study the physics of the black hole. Traditional thoughts treat the black hole with a
singularity, collecting all mass and charges there. The non-rotational and uncharged black hole is
defined by the Schwarzschild radius RS equal to 2GM/c2, where M is the mass of the black hole, c is
the speed of light in free space, and G is the gravitational constant. According to general relativity, its
spacetime structure is tremendously changed and much different from the flat one such as the
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Minkowski spacetime structure. It causes the curiosity to think
about what is the speed of light at the black hole measured or
observed by an observer in a reference frame like on the Earth if
possible?

Recently, the superluminal phenomena attract a lot of
researchers and, at the same time, some astronomical
observations have been reported, especially the places near the
black holes (Blandford et al., 1977; Mirabel and Rodríguez, 1994;
Rodríguez and Mirabel, 1995; Belloni et al., 1997; Orosz et al.,
2001; Cheung et al., 2007; Asada et al., 2014a). Thus, it also causes
our curiosity to discuss these phenomena by using the
Kerr–Newman metric (Newman et al., 1965; Wilkins, 1972;
Adamo and Newman, 2016) based on general relativity. On
the one hand, the time dilation in astronomical observations
has been observed for many years (Shapiro, 1964; Shapiro et al.,
1971; Tomislav Kundi’c Turner et al., 1997; Lovell et al., 1998;
Biggs et al., 1999; Demorest et al., 2010), and the speed of light is
indeed affected by gravity. According to the astronomical
observations on the Earth, the average speed of light can be
different from the speed in free space. They provide
phenomenological proof that the averagely observed speed of
light is changeable. On the other hand, the surface tangential
speed of a rotating black hole has been found close to c (Risaliti
et al., 2013), so the discussion about the rotating effect on the
speed of light is meaningful and to discuss the superluminal
phenomenon becomes reasonable. In this research, the
Kerr–Newman metric is used to discuss the averagely observed
radial speed of light near the black hole, and some special results
are given.

We still follow that light has a local speed limit of c in the
framework of general relativity. It does not affect our research
here because we strengthen the measured time to be the Earth
time. All our astronomical observations are from the viewpoints
of the Earth so the basic thing we have to know is that the so-
called faster-than-light phenomena are observed on the Earth and
the experienced time is recorded on the Earth. Therefore, our
discussions about the average speed of light equal to distance
divided by time are reasonable because we use the Earth time to
discuss these phenomena which still obey the principle of general
relativity. Such discussions match the criteria of the astronomical
observations on the Earth. All our derivations are obtained
rigorously according to the one solution of Einstein’s field
equation in general relativity, and the study focuses on the
rotating and charged super-gravitational source. We make sure
that the speed limit of light remains c in the local reference frame
without violating the causality.

2 THE KERR–NEWMAN METRIC AND THE
VELOCITY OF LIGHT AT THE BLACK HOLE

When we discuss the propagation of light from outer space
through the event horizon into the black hole, the spacetime
structure for the black hole is needed. There are three basic
parameters to describe a black hole, the mass term RSwith its total
mass M, the rotation term a with angular momentum J, and the
charged term RQwith the total chargeQ. There are several metrics

to discuss Einstein’s spacetime structure, and the Kerr–Newman
metric (Newman et al., 1965; Wilkins, 1972; Adamo and
Newman, 2016) is the one that can simultaneously include
these three parameters. Some other metrics (Newman et al.,
1965; Cheung et al., 2007; Asada et al., 2014a) or alternative
coordinates describing the spacetime structures for the black hole
have been revealed many years ago. The expression for the
Kerr–Newman metric in the Boyer–Lindquist coordinates (t, r,
θ, ϕ) (De Felice and Clarke, 1990) is

ds2 � −c2dτ2

� (dr2Δ + dθ2)ρ2 − (cdt − asin2 θdϕ)2Δ
ρ2

+ ((r2 + a2)dϕ − acdt)2sin2 θ
ρ2

, (1)

where τ is the proper time and t is the coordinate time,

ρ2 � r2 + a2cos2 θ, (2)
Δ � r2 − rRS + a2 + R2

Q, (3)
a = J/Mc and RQ

2 = KQ2G/c4, where K is the Coulomb’s
constant and Q is the total charge. The propagation of light is
along the geodesic with guvdx

udxv = ds2 = 0 (Schutz, 1985; De
Felice and Clarke, 1990; Hans, 1994), and it has been used to
deduce the velocity of light in the Schwarzschild metric (Schutz,
1985; Hans, 1994) and Kerr metric (Schutz, 1985; De Felice and
Clarke, 1990; Hans, 1994). Then, Eq. 1 gives an equation to
describe three velocity components of light (dr/dt, rdθ/dt, and
rsinθ dϕ/dt)

ρ4

Δ(Δ − a2sin2 θ)(drdt)2

+ ρ4

r2(Δ − a2sin2 θ)(r dθdt)2

− (Δa2sin2 θ − (r2 + a2)2)
r2(Δ − a2sin2 θ) (r sin θ dϕ

dt
)2

− 2ac( − Δ + (r2 + a2)) sin θ
r(Δ − a2sin2 θ) (rsin θ dϕ

dt
)

� c2. (4)
The relationship between each velocity component and the

coordinate (r, θ, ϕ) is given in Eq. 4, and each velocity
component must be real by observation. This way to derive
the light velocity has been used to deal with that in the
Schwarzschild metric by an observer at infinity (Schutz, 1985;
De Felice and Clarke, 1990; Hans, 1994). Because ds2 � −c2dτ2 �
0 for light, calculating (dr/d τ, rdθ/dτ, and rsinθdϕ/dτ) is
inappropriate for light. It is also pointed out that τ = 0 in the
light reference frame (De Felice and Clarke, 1990). Recently, the
observations of the massive particles entering the black hole at the
speed of 0.3c have been reported, and it proves that the particle
can fall into the black hole at a very high speed (Pounds et al.,
2018). In order to satisfy the truth that light can propagate into
the black hole, the radial speed of light at the event horizon must
be nonzero and the speeding time must be finite by the
observations. However, the Kerr–Newman metric has a
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mathematical singularity at r = 0 and θ � π/2 due to a physical
singularity with infinite mass density at the center. Such
singularity is possibly removed. The finite-size nucleus in the
black hole is a way to avoid this mathematical singularity.

Then, we briefly review some related discussions that have
already been in some textbooks. When we discuss the black hole,
the event horizon is defined as the speed of light being zero by
the observer far away from a black hole. The speed of light is
also not a constant observed by the far-away observers. For
example, the Schwarzschild metric (Schutz, 1985; De Felice
and Clarke, 1990; Hans, 1994; Mould, 2002) for a black hole of
mass M is

ds2 � −c2(1 − 2GM
c2r

)dt2 + (1 − 2GM
c2r

)−1dr2 + r2dθ2

+ r2sin2 θdϕ2. (5)
The coordinate time in a gravitational field is the time read by

the clock stationed at infinity because the proper time and
coordinate time become identical (Mould, 2002). The geodesic
of light obeys ds2 = 0, then we have the radial speed of light vr at
the black hole (Schutz, 1985; De Felice and Clarke, 1990; Hans,
1994)

dr

dt
� (1 − Rs

r
)c, (6)

observed by the far-away observer in the no gravitational field
where RS = 2GM/c2 is the Schwarzschild radius (Schutz, 1985; De
Felice and Clarke, 1990; Hans, 1994; Mould, 2002). The very weak
gravitational field like on the Earth is a very approximate place to
use this equation. It is obvious that the radial velocity is not a
constant in the varying gravity and zero at r = RS. In the
Schwarzschild metric, it also indicates that light as well as
other massive particles will spend infinite time at r = RS by an
observer in a reference frame far away from the black hole like on
the Earth. Considering a photon initially at place r0, the total
spending time t® when it reaches the place r along the radial
direction is (Landau and Lifshitz, 1975)

t(r) � ∫r

r0

1

c(1 − 2GM
c2r ) dr � r0 − r

c
+ 2GM

c3
ln(r0 − 2GM

c2

r − 2GM
c2
). (7)

This integration result tells us that at any initial place moving
radially toward the Schwarzschild black hole, the observed time
at the place far away from the Schwarzschild black hole is
infinitely long when the photon reaches the Schwarzschild
radius. On the other hand, from the perspective of the
proper time τ, the relation between the infinitesimal
coordinate time dt and the infinitesimal proper time dτ is
(Landau and Lifshitz, 1975; Schutz, 1985; De Felice and
Clarke, 1990; Hans, 1994; Mould, 2002)

dt � 1(1 − 2GM
c2r )1/2 dτ. (8)

The total proper time spent from r0 to r is (Landau and
Lifshitz, 1975)

τ(r) � ∫r

r0

1

c(1 − 2GM
c2r )1/2 dτ

� ⎡⎣r0
c
(1 − 2GM

c2r0
)1/2

− r

c
(1 − 2GM

c2r
)1/2⎤⎦

+ (2GM
c3
) ln⎡⎢⎢⎢⎢⎣r1/20 + (r0 − 2GM

c2 )1/2
r1/2 + (r − 2GM

c2 )1/2 ⎤⎥⎥⎥⎥⎦. (9)

This result tells us that the total time τ in the free-falling case
from the position r = r0 to r = RS is finite, unlike the total observed
timemeasured by the observers far away from the black hole, which
is infinite. Therefore, we see that the same event exhibiting different
observed times from the observers in the different reference frames
is one of the topics we want to discuss in this article.

Actually, the same discussions also appear in the Kerr metric.
The Kerr metric is

ds2 � −c2dτ2

� (dr2Δ + dθ2)ρ2 − (cdt − asin2 θdϕ)2Δ
ρ2

+ ((r2 + a2)dϕ − acdt)2sin2 θ
ρ2

, (10)

where

ρ2 � r2 + a2cos2 θ, (11)
Δ � r2 − rRS + a2. (12)

The definition of a is also the same as in Eqs. 3 and 4. Then, we
can calculate the velocity of light as follows (Orosz et al., 2001):

(dr

cdt
)2

� Δ
ρ2
{1 − (r2 + a2)[1 + RSra2

ρ2(r2 + a2)](dΦdt)2

− RSr

ρ2

+ 2RSra

ρ2
(dΦ
dt
)}.

(13)
Even if the frame-dragging effect is considered, it also gives a

solution that dΦ/dt = 0 (refer to Eq. 11.72, Schutz, 1985).
Discussion in our article is reasonable and defensible.
Therefore, our same discussions in the Kerr–Newman metric
are meaningful in the following.

3 THE CONDITIONS FOR USING THE
KERR–NEWMAN METRIC AT THE BLACK
HOLE
According to Eq. 4, it permits one to calculate the speed of light at
the black hole. A good star for discussions is choosing the
geodesic of light only along the radial direction. Once an
incident direction at certain θ is chosen, the velocity
component dr/dt of light can be the only function of r.
According to the equivalence principle in general relativity, the
time dilation is more explicit as light is closer to the center of the
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black hole because of the stronger gravity. Using Eq. 4, we can
then calculate how much time light spends in or out of the black
hole along the radial direction and its average speed from the
measurement of an observer in a reference frame far away from
the black hole like on the Earth. In such a case, the geodesic is
along the radial direction, and it gives the relation between dτ2

and dt2, that is,

dτ2 � (Δ − a2sin2 θ)
ρ2

dt2. (14)

However, as we know, there are some singularities in the
Kerr–Newman metric (Adamo and Newman, 2016). In order to
really describe a physically reasonable black hole and avoid two
event horizons (Adamo and Newman, 2016), some conditions are
required. Because we deal with a physical world and not pure
mathematics, it has to describe the black hole more reasonably.
The gravitational energy as well as the electric energy are both
proportional to 1/r, and all mass and charges collected at the
singularity at the center of the black seem to be very unreasonable.
After all and theoretically speaking, the black hole in most cases is
evolutional from the previous star that only has finite total energy.

Then, the transformation between the proper time and the time of
the reference frame far away from the black hole in Eq. 14 is positive,
and it requires both the denominator and numerator satisfying

ρ2 > 0, (15)(Δ − a2sin2 θ)> 0. (16)
From Eq. 16, it can be expanded as

r2 − rRS + R2
Q + a2cos2 θ > 0. (17)

At r = RS/2, Eq. 17 requires the condition

R2
S ≤ 4(a2cos2 θ + R2

Q). (18)
It is the condition at r = RS/2 but not for other places r > 0. Like

at r = RS, it only requires

R2
Q + a2cos2 θ > 0, (19)

and when r > RS, Eq. 17 automatically satisfies. The other
requirement is for the dr2 term in Eq. 1, that is,

Δ> 0. (20)
It also gives a condition at r = RS/2

R2
S ≤ 4(a2 + R2

Q). (21)
However, similar to Eq. 19 at r = RS, it only requires

R2
Q + a2 > 0. (22)

The results of Eqs. 18, 19, 21, and 22 seem to tell us the
charged structure of a black hole. If we replace the concept of
singularity with the finite-size nucleus in the black hole, then it
can be explained and become reasonable. It means that the totally
enclosed charges Q is a function of r and has the expression Q =
Q(r) or

RQ � RQ(r). (23)
Equation 18 reveals that the totally enclosed charges have a

minimum requirement RQ >RS/2 at r = RS/2, and Eqs. 19 and 22
imply that the region between RS/2 can be occupied by the
opposite charges, so the totally enclosed charges at r > RS can
be possibly very small even close to zero.

According to the equivalence principle in general relativity,
time dilation gives the other condition from Eq. 14, that is,

r≥R2
Q/RS. (24)

As mentioned in Eq. 23, RQ is a function of r, and r
continuously satisfies condition Eq. 24 from r = 0, so the
correct condition for any place between r = 0 and r = RS is

r≥R2
Q/RS ≥ 0. (25)

This condition is physical and reasonable because the
Kerr–Newman metric should correctly exist everywhere and
not be bounded by some region or excluded by the singularity.
If the time dilation is held correctly everywhere and no other
physical mechanism limits this concept, then Eq. 25 gives the
right condition. Otherwise, r <R2

Q/RS would not be a well-defined
space. At r = RS, it further tells us that

R2
S ≥R

2
Q. (26)

4 THE AVERAGE RADIAL SPEED OF LIGHT
AND THE SUPERLUMINAL PHENOMENON
NEAR THE BLACK HOLE
After discussing the condition of RQ, then we can calculate the
spending time for light traveling from one place to another in or out
of the black hole along the radial direction. The results are reasonable
at least for the radial directions from two poles and the place in the
equatorial plane. According to the principle of equivalence, in those
places, the accelerating directions are along the radial directions.
Then, from Eq. 4, the square velocity (dr/dt)2 is

v2r � (drdr)2

� c2[Δ(Δ − a2sin2 θ)
ρ4

], (27)

or

v2r � (drdr)2

� c2
(r2 − rRS + a2 + R2

Q)(r2 − rRS + a2cos2 θ + R2
Q)

(r2 + a2cos2 θ)2 .

(28)
Then, it gives dr/dt

vr � dr

dt
� ± c

���������������
r2 − rRS + a2 + R2

Q

√ ��������������������
r2 − rRS + a2cos2 θ + R2

Q

√
r2 + a2cos2 θ

.

(29)
The sign “±” means that light can propagate forwardly and

backwardly. It must be correct in the outer of the black hole. Here,
we choose the positive (+) expression in Eq. 29 for convenient
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discussion. To calculate the spending time from r = α1RS to r =
α2RS for non-negative α1 and α2 and different θ, it needs to
integrate the time t and the radial distance r by moving dr and dt
to different sides of Eq. 29. The spending time TMeasure is the time
measured by an observer in a reference frame like on the Earth or
the center of the black hole where the gravitation is zero for a
black hole with a finite-size nucleus. Then, the integrals are

∫α2RS

α1RS

r2 + a2cos2 θ���������������
r2 − rRS + a2 + R2

Q

√ ��������������������
r2 − rRS + a2cos2 θ + R2

Q

√ dr

� c∫Tmeasure

0
dt. (30)

Setting

y � r2 − rRs + R2
Q � (r − Rs

2
)2 − R2

S

4
+ R2

Q, (31)

it gives

y≥ − R2
S

4
+ R2

Q, (32)

and y > 0 when we consider r> Rs. Then, the expression of r is

r � RS ± 2
����������
y + R2

S
4 − R2

Q

√
2

. (33)

Substituting Eq. 31 into Eq. 33, the square-root term is non-
imaginary, and + is for r > RS/2 and – is for r ≤ RS/2 in Eq. 33.
From this expression, we have

dy � 2(r − Rs

2
)dr, (34)

or

dr � ±
dy

2
����������
y + R2

S
4 − R2

Q

√ . (35)

Substituting Eq. 34 into Eq. 30 and considering + for r > RS/
2 and – for r ≤ RS/2, then we have the measurement time Tmeasure

cTmeasure � ∫(α22−α2)R2
S+R2

Q

(α21−α1)R2
S
+R2

Q

(y + R2
S

2
− R2

Q + RS

����������
y + R2

S

4
− R2

Q

√
+ a2cos2 θ⎞⎠

2
������
y + a2
√ ����������

y + a2cos2 θ
√ ����������

y + R2
S

4
− R2

Q

√ dy

� ∫(α22−α2)R2
S+R2

Q

(α21−α1)R2
S
+R2

Q

����������
y + R2

S

4
− R2

Q

√
2
������
y + a2
√ ����������

y + a2cos2 θ
√ dy

+

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(R2

S

4
+ a2cos2 θ)

× ∫(α22−α2)R2
S+R2

Q

(α21−α1)R2
S
+R2

Q

1

2
������
y + a2
√ ����������

y + a2cos2 θ
√ ����������

y + R2
S

4
− R2

Q

√ dy

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
+∫(α22−α2)R2

S+R2
Q

(α21−α1)R2
S
+R2

Q

RS

2
������
y + a2
√ ����������

y + a2cos2 θ
√ dy

� I1 + I2 + I3. (36)

These three parts of the total integral, I1, I2, and I3, show the
different forms of the elliptical integrals. Then, we set {ζ, ω, η} =
{(−a2), (−a2cos2 θ), (−R2

S/4 + R2
Q)} with the condition ζ>ω>η in

integrals. Without considering cos θ � 1, it gives three possible
situations and corresponding parameters μ1, μ2, and q
(Gradshteyn and Ryzhik, 2007).

Situation 1(ζ � −R2
S/4 + R2

Q, ω � −a2cos2 θ, η � −a2):
( − R2

S/4 + R2
Q)> (−a2cos2 θ)> (−a2), (37)

and

μ1 � arcsin

������������������������(α2
1 − α1 + 1

4)R2
S[(α2

1 − α1)R2
S + R2

Q + a2cos2 θ]
√√

, (38a)

μ2 � arcsin

������������������������(α2
2 − α2 + 1

4)R2
S[(α2

2 − α2)R2
S + R2

Q + a2cos2 θ]
√√

, (38b)

q �
��������������
a2(1 − cos2 θ)( − R2

S
4 + R2

Q + a2)
√√

, (38c)

Situation 2(ζ � −a2cos2 θ,ω � −R2
S/4 + R2

Q, η � −a2):
(−a2cos2 θ)> ( − R2

S/4 + R2
Q)> (−a2), (39)

and

μ1 � arcsin

������������������������[(α2
1 − α1)R2

S + R2
Q + a2cos2 θ](α2

1 − α1 + 1
4)R2

S

√√
, (40a)

μ2 � arcsin

������������������������[(α2
2 − α2)R2

S + R2
Q + a2cos2 θ](α2

2 − α2 + 1
4)R2

S

√√
, (40b)

q �

��������������( − R2
S
4 + R2

Q + a2)
a2(1 − cos2 θ)

√√
. (40c)

Situation 3(ζ � −a2cos2θ, ω � −a2, η � −R2
S/4 + R2

Q):(−a2cos2 θ)> (−a2)> ( − R2
S/4 + R2

Q), (41)
and

μ1 � arcsin

������������������������[(α2
1 − α1)R2

S + R2
Q + a2cos2 θ][(α21 − α1)R2

S + R2
Q + a2]

√√
, (42a)

μ2 � arcsin

������������������������[(α2
2 − α2)R2

S + R2
Q + a2cos2 θ][(α2

2 − α2)R2
S + R2

Q + a2]
√√

, (42b)

Frontiers in Astronomy and Space Sciences | www.frontiersin.org August 2022 | Volume 9 | Article 8781565

Pei Average Radial Speed of Light

https://www.frontiersin.org/journals/astronomy-and-space-sciences
www.frontiersin.org
https://www.frontiersin.org/journals/astronomy-and-space-sciences#articles


q �

�����������������(R2
S
4 − R2

Q − a2)(R2
S
4 − R2

Q − a2cos2 θ)
√√√

. (42c)

Supposing ylower = max {(−a2), (−a2cos2 θ), (−R2
S/4 + R2

Q)},
then the first two integrals become

I1 � ∫(α22−α2)R2
S+R2

Q

ylower

��������������
y − ( − R2

S
4 + R2

Q)√
2
��������
y − (−a2)√ �������������

y − (−a2cos2 θ)√ dy

−∫(α21−α1)R2
S+R2

Q

ylower

��������������
y − ( − R2

S
4 + R2

Q)√
2
��������
y − (−a2)√ �������������

y − (−a2cos2 θ)√ dy , (43)

I2 � (R2
S

4
+ a2cos2 θ) × ∫(α22−α2)R2

S+R2
Q

ylower

1

2
��������
y − (−a2)
√ �������������

y − (−a2cos2 θ)
√ ���������������

y − ( − R2
S

4
+ R2

Q)√ dy

−(R2
S

4
+ a2cos2 θ) × ∫(α21−α1)R2

S+R2
Q

ylower

1

2
��������
y − (−a2)
√ �������������

y − (−a2cos2 θ)
√ ���������������

y − ( − R2
S

4
+ R2

Q)√ dy. (44)

The third integral has the solution as

I3 � RS

2
ln[2 �������������������������

y2 + a2(1 + cos2 θ)y + a4cos2 θ
√

+ 2y + a2(1 + cos2 θ)]∣∣∣∣∣∣∣(α22−α2)R2
S+R2

Q

(α21−α1)R2
S
+R2

Q

.

(45)

According to these three situations, the total integrals are also
divided into three results accompanying three parameters μ1, μ2,
and q. These results are suitable for

(α2
2 − α2)R2

S + R2
Q > (α21 − α1)R2

S + R2
Q >ylower. (46)

However, it automatically exists for any non-negative α1 and
α2. When α1 = 0, Eq. 46 gives R2

Q >ylower and situations 2 and
3 satisfy it because ylower < 0 and R2

Q ≥ 0.When we check situation
1, it gives

ylower � −R
2
S

4
+ R2

Q <R2
Q. (47)

It is based on the factor that R2
S > 0. Then, these three results

are listed as follows:
Results 1 for situation 1:

I1 + I2 + I3 � −2
���������������( − R2

S

4
+ R2

Q) + a2

√ (E(μ2, q) − E(μ1, q))
+2

��������������������������������(α2
2 − α2 + 1

4)R2
S[(α2

2 − α2)R2
S + R2

Q + a2][(α2
2 − α2)R2

S + R2
Q + a2cos2 θ]

√√
−2

��������������������������������(α2
1 − α1 + 1

4)R2
S[(α2

1 − α1)R2
S + R2

Q + a2][(α2
1 − α1)R2

S + R2
Q + a2cos2 θ]

√√

+(R2
S

4
+ a2cos2 θ) 1��������������( − R2

S
4 + R2

Q) + a2
√ (F(μ2, q)

− F(μ1, q))+
RS

2
ln{2 ������������������������������������������������������[(α2

2 − α2)R2
S + R2

Q]2 + a2(1 + cos2 θ)[(α2
2 − α2)R2

S + R2
Q] + a4cos2 θ

√
+ 2[(α22 − α2)R2

S + R2
Q] + a2(1 + cos2 θ)}−

RS

2
ln{2 ������������������������������������������������������[(α2

1 − α1)R2
S + R2

Q]2 + a2(1 + cos2 θ)[(α2
1 − α1)R2

S + R2
Q] + a4cos2 θ

√
+ 2[(α21 − α1)R2

S + R2
Q] + a2(1 + cos2 θ)}, (48)

where E(μ, q) and F(μ, q) are the incomplete elliptic integrals of
the first and second kinds, respectively.

Result 2 for situation 2:

I1 + I2 + I3 �
2(a2cos2 θ + R2

S
4 − R2

Q)�����������
a2(1 − cos2 θ)√ (F(μ2, q) − F(μ1, q))

−2 �����������
a2(1 − cos2 θ)√ (E(μ2, q) − E(μ1, q))

+2
��������������������������������������������[(α2

2 − α2)R2
S + R2

Q + a2cos2 θ][(α22 − α2)R2
S + R2

Q + a2](α2
2 − α2 + 1

4)R2
S

√√
−2

��������������������������������������������[(α2
1 − α1)R2

S + R2
Q + a2cos2 θ][(α21 − α1)R2

S + R2
Q + a2](α2

1 − α1 + 1
4)R2

S

√√
+(R2

S

4
+ a2cos2 θ) 1�����������

a2(1 − cos2 θ)√ (F(μ2, q) − F(μ1, q))+
RS

2
ln{2 ������������������������������������������������������[(α2

2 − α2)R2
S + R2

Q]2 + a2(1 + cos2 θ)[(α2
2 − α2)R2

S + R2
Q] + a4cos2 θ

√
+2[(α22 − α2)R2

S + R2
Q] + a2(1 + cos2 θ)}−

RS

2
ln{2 ������������������������������������������������������[(α2

1 − α1)R2
S + R2

Q]2 + a2(1 + cos2 θ)[(α2
1 − α1)R2

S + R2
Q] + a4cos2 θ

√
+2[(α21 − α1)R2

S + R2
Q] + a2(1 + cos2 θ)}. (49)

Result 3 for situation 3:

I1 + I2 + I3 � 2

��������������������
a2cos2 θ − ( − R2

S

4
+ R2

Q)√ [(F(μ2 , q) − F(μ1 , q)) − (E(μ2 , q) − E(μ1 , q))]
+2

������������������������������������[(α2
2 − α2)R2

S + R2
Q + a2cos2 θ](α2

2 − α2 + 1
4)R2

S[(α2
2 − α2)R2

S + R2
Q + a2]

√√
−2

������������������������������������[(α2
1 − α1)R2

S + R2
Q + a2cos2 θ](α2

1 − α1 + 1
4)R2

S[(α2
1 − α1)R2

S + R2
Q + a2]

√√
+(R2

S

4
+ a2cos2 θ) 1�������������������

a2cos2 θ − ( − R2
S
4 + R2

Q)√ (F(μ2, q)
− F(μ1, q))+

RS

2
ln{2 ������������������������������������������������������[(α2

2 − α2)R2
S + R2

Q]2 + a2(1 + cos2 θ)[(α2
2 − α2)R2

S + R2
Q] + a4cos2 θ

√
+2[(α22 − α2)R2

S + R2
Q] + a2(1 + cos2 θ)}−
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RS

2
ln{2 ������������������������������������������������������[(α2

1 − α1)R2
S + R2

Q]2 + a2(1 + cos2 θ)[(α2
1 − α1)R2

S + R2
Q] + a4cos2 θ

√
+2[(α21 − α1)R2

S + R2
Q] + a2(1 + cos2 θ)}. (50)

Results 1 to 3 mean the measurements of the average radial
speed of light at different orders of {ζ, ω, η} from a reference frame
far away from the black hole like on the Earth. Because we only
consider the inequalities between ζ, ω, and η, we have to further
consider two of them or all of them that are equal. Considering
η = ζ, we have R2

S/4 � R2
Q + a2 in Eq. 36, and the integral I1 + I2 +

I3 for |cos θ|< 1 is

∫(α22−α2)R2
S+R2

Q

(α21−α2)R2
S
+R2

Q

1

2
����������
y + a2cos2 θ
√ dy+

(R2
S

4
+ a2cos2 θ)∫(α22−α2)R2

S+R2
Q

(α21−α1)R2
S
+R2

Q

1

2(y + a2) ����������y + a2cos2 θ
√ dy+

∫(α22−α2)R2
S+R2

Q

(α21−α1)R2
S
+R2

Q

RS

2
�����
y + a2
√ ����������

y + a2cos2 θ
√ dy

�
����������
y + a2cos2 θ
√ ∣∣∣∣∣∣(α22−α2)R2

S+R2
Q

(α21−α1)R2
S+R2

Q

+

(R2
S

4
+ a2cos2 θ) 1

a sin θ
tan−1

����������
y + a2cos2 θ
a2sin2 θ

√ ∣∣∣∣∣∣∣∣∣∣(
α22−α2)R2

S+R2
Q

(α21−α1)R2
S+R2

Q

+

RS

2
ln[2 �������������������������

y2 + a2(1 + cos2 θ)y + a4cos2 θ
√

+ 2y + a2(1 + cos2 θ)]∣∣∣∣∣∣∣(α22−α2)R2
S+R2

Q

(α21−α1)R2
S
+R2

Q

�
�����������������������(α22 − α2)R2

S + R2
Q + a2cos2 θ

√
−
�����������������������(α2

1 − α1)R2
S + R2

Q + a2cos2 θ
√

+

(R2
S

4
+ a2cos2 θ) 1

a sin θ
⎡⎢⎢⎢⎢⎣tan−1

������������������������[(α2
2 − α2)R2

S + R2
Q + a2cos2 θ]

a2sin2 θ

√
− tan−1

������������������������[(α2
1 − α1)R2

S + R2
Q + a2cos2 θ]

a2sin2 θ

√ ⎤⎥⎥⎥⎥⎦+
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2
ln{2 ������������������������������������������������������[(α2

2 − α2)R2
S + R2

Q]2 + a2(1 + cos2 θ)[(α2
2 − α2)R2

S + R2
Q] + a4cos2 θ

√
+2[(α22 − α2)R2

S + R2
Q] + a2(1 + cos2 θ)}−

RS

2
ln{2 ������������������������������������������������������[(α2

1 − α1)R2
S + R2

Q]2 + a2(1 + cos2 θ)[(α2
1 − α1)R2

S + R2
Q] + a4cos2 θ

√
+2[(α21 − α1)R2

S + R2
Q] + a2(1 + cos2 θ)}. (51)

Then, considering η = ω, we have R2
S/4 � R2

Q + a2cos2 θ in Eq.
36, and the integral I1 + I2 + I3 for |cos θ|< 1 is

∫(α22−α2)R2
S+R2

Q

(α21−α2)R2
S
+R2

Q

1

2
�����
y + a2
√ dy+

(R2
S

4
+ a2cos2 θ)∫(α22−α2)R2

S+R2
Q

(α21−α1)R2
S
+R2

Q

1

2(y + a2cos2 θ) �����y + a2
√ dy+

∫(α22−α2)R2
S+R2

Q

(α21−α1)R2
S
+R2

Q

RS

2
�����
y + a2
√ ����������

y + a2cos2 θ
√ dy

�
�����
y + a2
√ ∣∣∣∣∣∣(α22−α2)R2

S+R2
Q

(α21−α1)R2
S
+R2

Q

+

(R2
S

4
+ a2cos2 θ) 1

a sin θ
ln( �����

y + a2
√ − a sin θ�����
y + a2
√ + a sin θ

)∣∣∣∣∣∣∣∣(α22−α2)R2
S+R2

Q

(α21−α1)R2
S
+R2

Q

+
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2
ln[2 �������������������������

y2 + a2(1 + cos2 θ)y + a4cos2 θ
√

+ 2y + a2(1 + cos2 θ)]∣∣∣∣∣∣∣(α22−α2)R2
S+R2

Q

(α21−α1)R2
S
+R2

Q

�
������������������(α2

2 − α2)R2
S + R2

Q + a2
√

−
������������������(α21 − α1)R2

S + R2
Q + a2

√
+

(R2
S

4
+ a2cos2 θ) 1

a sin θ
⎡⎢⎢⎢⎢⎢⎢⎢⎣ln⎛⎜⎜⎜⎝ ������������������(α2

2 − α2)R2
S + R2

Q + a2
√

− a sin θ������������������(α2
2 − α2)R2

S + R2
Q + a2

√
+ a sin θ

⎞⎟⎟⎟⎠
− ln⎛⎜⎜⎜⎝ ������������������(α2

1 − α1)R2
S + R2

Q + a2
√

− a sin θ������������������(α2
1 − α1)R2

S + R2
Q + a2

√
+ a sin θ

⎞⎟⎟⎟⎠⎤⎥⎥⎥⎥⎥⎥⎥⎦+
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2
ln{2 ������������������������������������������������������[(α2

2 − α2)R2
S + R2

Q]2 + a2(1 + cos2 θ)[(α2
2 − α2)R2

S + R2
Q] + a4cos2 θ

√
+2[(α22 − α2)R2

S + R2
Q] + a2(1 + cos2 θ)}+
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2
ln{2 ������������������������������������������������������[(α2

1 − α1)R2
S + R2

Q]2 + a2(1 + cos2 θ)[(α2
1 − α1)R2

S + R2
Q] + a4cos2 θ

√
+2[(α21 − α1)R2

S + R2
Q] + a2(1 + cos2 θ)}. (52)

Considering ζ � ω ≠ η, we have the case at two poles:
|cos θ| � 1, but R2

S/4 ≠ R2
Q + a2. The speed of the integral in

Eq. 30 can be directly calculated. Then, one can proceed with
the integral

L � ∫α2RS

α1RS

[1 − R2
Q

r2 − rRS + a2 + R2
Q

+ rRS

r2 − rRS + a2 + R2
Q

]dr.
(53)

For the case of 4(a2 + R2
Q)>R2

S, it gives

L � (α2 − α1)RS

−(R2
Q − R2

S

2
)⎛⎜⎜⎜⎝ 2�������������

4(a2 + R2
Q) − R2

S

√ ⎞⎟⎟⎟⎠⎛⎜⎜⎜⎝tan−1 2r − RS�������������
4(a2 + R2

Q) − R2
S

√ ⎞⎟⎟⎟⎠∣∣∣∣∣∣∣∣∣∣∣∣
α2RS

α1RS

+RS

2
ln
∣∣∣∣∣r2 − rRS + a2 + R2

Q

∣∣∣∣∣∣∣∣∣∣∣∣α2RS

α1RS

� (α2 − α1)RS

− (2R2
Q − R2

S)�������������
4(a2 + R2

Q) − R2
S

√ ⎛⎜⎜⎜⎝tan−1 (2α2 − 1)RS�������������
4(a2 + R2

Q) − R2
S

√ − tan−1 (2α1 − 1)RS�������������
4(a2 + R2

Q) − R2
S

√ ⎞⎟⎟⎟⎠
+RS

2
ln

∣∣∣∣∣(α2
2 − α2)R2
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Q
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1 − α1)R2

S + a2 + R2
Q

∣∣∣∣∣
� cTMeasure. (54)

For the case of 4(a2 + R2
Q)<R2

S, it gives

− R2
Q − R2

S
2�������������

R2
S − 4(a2 + R2

Q)√ ⎛⎜⎜⎜⎝ln
2r − RS −

�������������
R2
S − 4(a2 + R2

Q)√
2r − RS +

�������������
R2
S − 4(a2 + R2

Q)√ ⎞⎟⎟⎟⎠∣∣∣∣∣∣∣∣∣∣∣∣
α2RS

α1RS

+RS

2
ln
∣∣∣∣∣r2 − rRS + a2 + R2

Q

∣∣∣∣∣∣∣∣∣∣∣∣α2RS
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� (α2 − α1)RS −
R2
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2�������������
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Q)√ ×

ln⎛⎜⎜⎜⎝(2α2 − 1)RS −
�������������
R2
S − 4(a2 + R2

Q)√
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�������������
R2
S − 4(a2 + R2

Q)√ ×
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�������������
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S − 4(a2 + R2

Q)√
(2α1 − 1)RS −

�������������
R2
S − 4(a2 + R2

Q)√ ⎞⎠
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2
ln

∣∣∣∣∣(α2
2 − α2)R2

S + a2 + R2
Q

∣∣∣∣∣∣∣∣∣∣(α2
1 − α1)R2

S + a2 + R2
Q

∣∣∣∣∣
� cTMeasure . (55)

For the case of a2 � a2cos2 θ and 4(a2 + R2
Q) � R2

S, it gives

L � (α2 − α1)RS + (R2
Q − R2

S

2
)( 2

2r − RS
)∣∣∣∣∣∣∣α2RS

α1RS

+ RS ln(r − RS

2
)∣∣∣∣∣∣∣α2RS

α1RS

� (α2 − α1)RS + 2R2
Q − R2

S

RS
( 1
2α2 − 1

− 1
2α1 − 1

) + RS ln
2α2 − 1
2α1 − 1

�� cTMeasure.

(56)
Substituting Eqs 48–52, 54–56 into Eq. 36, it gives the

measurement time

Tmeasrure � 1
c
(I1 + I2 + I3), (57)

which has different values depending on a, RQ, and θ. The
distance D for light traveling this distance is

D � (α2 − α1)Rs. (58)
According to this, the average speed of light cave from r = α1RS

to r = α2RS is

cave � c(α2 − α1)Rs/(I1 + I2 + I3). (59)
Therefore, we can calculate the average radial speed of the light

cave. It is easy to prove that when α2 ≫ α1 and α2 ≫ 1, Eq. 60 gives

cave ~ c. (60)
This result is the reasonable speed of light that we measure on

Earth.

5 DEMONSTRATED CASES OF THE
SUPERLUMINAL PHENOMENA OUTER OF
THE BLACK HOLE
Next, we discuss the possibility of whether the superluminal
phenomenon can take place at a place larger than RS. In
astronomical observations, the measurements are made
during a finite period. Let α1 = 1 for calculating the average
radial speed of light on the two-dimensional xy plane with the
y-axis parallel to the rotational axis passing through the center
of the black hole, and the integrals in Eq. 30 or Eq. 36 can be
calculated numerically for different a, RQ, and α2 cases. The
center of the black hole is set as the origin of the coordinates.

In order to satisfy the condition in Eq. 26, we consider the
maximum of RQ is RS for r ≥ RS.

In order to understand the effect of rotational term a with the
small RQ = 0.1 RS, first, we study two cases of a = RS and a =
100 RS. In those cases, maximal x and y values are 10, 100, and
200 RS as shown in Figures 1A–C. The calculating space is
divided into 1000 × 1000 square grids, and the data in each
grid represents the average radial speed in units of c calculated
from r = RS to that point so all the data r ≤ RS are zero in these
figures. The grid size is (0.02 RS)

2 for the calculation of the
maximal x = y = 10 RS case, (0.2RS)

2 for the calculation of the
maximal x = y = 100 RS case, and (0.4 RS)

2 for the calculation of
the maximal x = y = 200 RS case. These parameters are the same in
all corresponding Figures 1–6. In Figure 1A, the distribution of
the average radial speed of light for a = RS shows that all average
radial speeds are less than c, and it becomes slower and slower as r
gradually closes RS and then gradually increases as r leaves away
RS. At the same distance away from the center, the average radial
speed is the slowest one on the x-axis and the highest one on the
y-axis. In Figures 1B and C, the distributions show the average
radial speed in the larger range, and both of them also reveal the
increased trends as r is away from the center. The data along the
x-axis in Figure 1C is drawn in Figure 1Dwhere the maximum of
r is 200 RS symmetrical to the center. It shows that the average
radial speed of light is only about 0.2 c at the place adjacent to RS
and gradually close to c far away from the center.

Then, we consider the case of a = 100 RS and RQ = 0.1 RS. It is
very explicit that the highest average radial speed of more than
20.0 cmainly distributes in a very narrow range near the x-axis as
shown in Figure 2A, and the maximum is close to 45.0 c. The
average radial speed quickly drops to about 10 c as r = 20 RS as
shown in Figures 2B and C. As r increases, it gradually goes to c.
Comparing the calculations with those in Figure 1, the highest
average speed is not on the y-axis. On the contrary, the highest
value appears on the x-axis and the slowest one on the y-axis at
the same r. Similar to Figure 1D, the distribution along the x-axis
is shown in Figure 2D where the maximum of r is 200 RS
symmetrical to the center. In particular, the maximum on the
x-axis is not at the place adjacent to RS but a little away from RS.
The maximum is at about r = 2 RS.

The third case is similar to the first one in which a = RS but RQ
increases from 0.1 RS to 1.0 RS However, the results are much
different from those in Figure 1. In Figure 3A, the maximum is at
the place adjacent to RS on the x-axis, and a lot of places show the
average radial speed of more than 0.8 c. Therefore, increasing RQ
from 0.1 RS to 1.0 RS also raises the average radial speed and
changes the distribution. In Figures 3B and C, the distributions
in the larger ranges show that the variation along the x-axis is
larger than that along the y-axis and the equi-speed surfaces are
elliptic shapes. The distribution along the x-axis in Figure 3C is
drawn in Figure 3D where the average radial speed is about 1.4 c
adjacent to RS and quickly drops to the minimum of roughly
0.85 c at about r = 4.0 RS. The maximum of r is 200 RS
symmetrical to the center in Figure 3D. After this minimum,
it slowly increases close to 1.0 c. Along each direction, all average
radial speeds show similar trends reaching 1.0 c when r increases
largely.
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The fourth case holds RQ equal to 1.0 RS but increases a to
10.0 RS. In Figure 4A, the maximum of about 10.0 c is also
adjacent to RS on the x-axis. The average radial speed of more
than half maximum distributes in a narrow range near the x-axis
but is not like the result in Figure 2where the distribution is more
centralized to the x-axis. As enlarging the calculation range, the
average radial speed of more than 2.0 cmainly distributes near the
x-axis and very close to RS as shown in Figures 4B and C. The
distribution of the average radial speed along the x-axis is drawn
in Figure 4D, in which it drops very quickly from the place
adjacent to RS to 200 RS. Finally, the average radial speed is close
to 1.0 c as r is very large in our calculations.

The fifth case uses the same RQ = 1.0 RS and a is increased to
50 RS in order to investigate the effect of the rotation on the
average radial speed. In Figure 5A, the distribution of the average
radial speed of more than 20.0 c is very close to the axis symmetric
to the center within 4.0 RS. The maximum of about 50.0 c is also
adjacent to RS on the x-axis. Comparing Figure 5A with

Figure 4A, it shows this distribution closer to the x-axis and
more centralized. In the enlarged space as shown in Figures 5B
and C, the average radial speed of more than 20.0 c is close to the
center. The distribution of the average radial speed along the
x-axis is shown in Figure 5D where it quickly drops from the
place adjacent to RS to 200 RS and the calculation is close to 1.0 c
the same as in previous cases.

The sixth case continues the previous discussion where RQ is
still 1.0 RS and a is increased to 100 RS. In Figure 6A, the
maximum of about 100.0 c is also adjacent to RS on the x-axis. The
distribution of the average radial speed of more than 40.0 c is
much closer to the x-axis symmetric to the center and its range is
within 4.0 RS. When enlarging the calculation space, it shows the
average radial speed of more than 40.0 c close to the center as
shown in Figures 6B and C. The distribution along the x-axis is
shown in Figure 6D where it quickly drops to 1.0 c from RS to
200 RS, and the calculation reveals the same result as the previous
cases.

FIGURE 1 |Distribution of the average radial speed of light in units of c, calculated from r =RS to the randompoint S, in the case that a = 1.0 RS andRQ = 0.1RS. The
maximums of x and y are both (A) 10 RS, (B) 100 RS, and (C) 200 RS. (D) Distribution of the average radial speed of light along the x-axis in (C).
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Then, we compare these cases with each other and find out the
effects of RQ and a. Each data is discrete and we connect them in a
smooth curve. In Figure 7A, we investigate the effect of RQ using
the calculations in Figures 1D, 2D and Figures 3D, 6D. The
figure shows log10 of all curves. Comparing Figure 1D with
Figure 3D, the case of 0.1 RQ shows the minimum adjacent to RS,
and the case of 1.0 RQ has a maximum adjacent to RS and then
drops to a minimum a little away from RS. Both cases show very
close values when r is more than 80 RS and then gradually increase
to zero when r = 200 RS. For another two cases of 0.1 RQ and
1.0 RQ with the same a = 100 RS, the smaller RQ shows a drop
when r is close to RS and themaximum is at a distance a little away
from RS, whereas the bigger one has a maximum adjacent to Rs.
Both values almost overlap when r is larger than 4.0 RS and
gradually decrease to zero as r increases largely. So the larger
rotational term a needs longer distance to reach the average radial
speed close to 1.0 c. The same result is also revealed in the four

different rotation cases where RQ holds at 1.0 RS as shown in
Figure 7B. All curves show the maximums adjacent to RS and
decrease to zero as r is large enough. It means when the observer
is far away from the black hole, the measurement of the average
radial speed of light is close to c as we measure on the Earth. This
result can be applied to other superstars that produce strong
gravity with high rotation.

6 WHY THE SPEED OF THE MASSIVE
PARTICLE IS ASTRONOMICALLY
MEASURED FASTER THAN THAT OF
LIGHT?

According to the previous results, the average radial speed of light
is possibly more than c very tiny from the black hole to a faraway

FIGURE 2 | Distribution of the average radial speed of light in units of c, calculated from r = RS to the random point S, in the case that a = 100 RS and RQ = 0.1 RS.
The maximums of x and y are both (A) 10 RS, (B) 100 RS, and (C) 200 RS. (D) Distribution of the average radial speed of light along the x-axis in (C).
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place such as the Earth as long as the radial speed is the dominant
part. Some reports (Blandford et al., 1977; Mirabel and Rodríguez,
1994; Rodríguez and Mirabel, 1995; Belloni et al., 1997; Orosz
et al., 2001; Cheung et al., 2007; Asada et al., 2014a) showed that
the speed of the particle away from the black hole was measured
faster than c. This kind of phenomenon violates the special
relativistic theory and makes us think about other possibilities.
Here, we use our results to give another explanation.

As we know, there exists significant light bending near the
superstar or black hole due to the strong gravity. Gravitational
lensing is an example (Ehlers and Rindler, 1997). Then, we
consider the relativistically electric particles leaving the black
hole and radiating electromagnetic waves at two places A and B as
shown in Figure 8. Supposing the time difference measured in the
Earth system is 1 year and the speeds of the particles are all less
than c. So how can the measurements on the Earth give particles
faster than c? As shown in Figure 8, light radiated at place A
forwards to the Earth and will be received after time t. Then, when

the particles move to place B, light is radiated and will be received
after time t-1 year on the Earth, the actual path for the particles is
along AB and the actual length is AB. Light emitted at A is along
the trajectory with the average speed c1 and light emitted at B is
along the other one with the average speed c2. The time difference
between these two trajectories is 1 year, and the former spending
time is more than the latter. Due to the strong gravitation, two
trajectories are curved near the black hole and approximate two
straight lines far away from the black hole. The curvature of the
light trajectory from A can be larger than that from B. Due to the
light bending, the observed path of the particles is along A′’B′, not
AB. We call the path A′B′ the imaging path and its distance the
imaging length. The phenomenon is much similar to the
observation of particles in water by an observer above water.
The different refraction indices between water and air cause light
to change its direction at the interface and result in the observer
thinking of the particle is in shallow water. Therefore, the light
bending near the black hole results in the imaging length A′B′

FIGURE 3 | Distribution of the average radial speed in units of c, calculated from r = RS to the random point S, in the case that a = 1.0 RS and RQ = 1.0 RS. The
maximums of x and y are both (A) 10 RS, (B) 100 RS, and (C) 200 RS. (D) Distribution of the average radial speed of light along the x-axis in (C).
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longer than the actual length AB. The ratio of A′B′ to ABmight be
several times, so it gives the results of the particles faster than c.

After all, special relativity (Marion and Thornton, 1988) tells
us that the massive particle cannot be speeded higher than c and
its relativistic mass is close to infinite when the speed is very close
to c. This principle has been verified in each operation on the
synchrotron accelerator, and it always needs a lot of energy to
speed an electron close to c. We would expect that it is also the
same phenomenon in most places even near the black hole
because the massive particle is far away from the black hole
with only finite total energy and its energy would be conserved
even when it moves to the neighboring place of the black hole.
However, when the speed of the massive particle is faster than the
speed of light, it might be expected that a phenomenon like
Cherenkov’s radiation would be observed in the regions near the
black hole, some supermassive stars, or planets with strong
gravity.

The speed of light near a massively rotating and charged black
hole can be observed faster than it on Earth. This result can be one
way to explain the flares near the black hole at IC 310 recorded on
12/13 November 2012 (Aleksić et al., 2014). The second way to
explain the superluminal phenomena of the massive jets ejected
from some quasars or black holes [−7] is based on our
discussions. The superluminal phenomenon of light from the
Earth’s viewpoint is the reason that we measure or observe the
speed of light by the definition of dr/dt, not dr/dτ in the
spontaneously local reference frame. Actually, the speed of
light in the local reference frame near some quasars or black
holes is still c, but it may be observed or measured to be larger
than c on the Earth. According to the same statement, it is easy to
speculate that the massive particles fully or most partly moving
along the radial direction away from some quasars or black holes
are possibly observed in their superluminal phenomena on the
Earth, as long as their speeds in the spontaneously local reference

FIGURE 4 | Distribution of average radial speed in units of c, calculated from r = RS to the random point S, in the case that a = 10 RS and RQ = 1.0 RS. The
maximums of x and y are both (A) 10 RS, (B) 100 RS, and (C) 200 RS. (D) The distribution of the average radial speed of light along the x-axis in (C).
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frames are very close to c. Therefore, we can observe some
relativistically massive jets moving faster than c near some
quasars or black holes (Blandford et al., 1977; Mirabel and
Rodríguez, 1994; Rodríguez and Mirabel, 1995; Belloni et al.,
1997; Orosz et al., 2001; Cheung et al., 2007; Asada et al.,
2014a).

7 COMPARISON WITH OTHER THEORIES
EXPLAINING THE SUPERLUMINAL LIGHT

There are also some theories to explain the superluminal light in
astronomy. In the following, two previous theories are reviewed.
The first one is the corrections to the local propagation of photons
calculated by the quantum electrodynamics (QED) contribution
of the one-loop vacuum polarization to the photon effective
action on a generally curved background manifold
(Drummond and Hathrell, 1980). The so-called vacuum

polarization is the photon being virtue e−-e+ pair for part of
the time (Drummond and Hathrell, 1980; Shore, 1996; Cho,
1997). The two leading terms in the photon effective action
are (Drummond and Hathrell, 1980; Daneils and Shore, 1994;
Daneils and Shore, 1996; Shore, 1996; Cho, 1997; Cai, 1998;
Shore, 2006; Hallowood and Shore, 2008; De Rham and Andrew,
2020)

W � W0 +W1

� ∫ d4x
���−g√ [ − 1

4
Fμ]F

μ] + 1
m2

e

(aRFμ]F
μ] + bRμ]F

μσFv
σ

+ cRμ]στF
μ]Fστ + dDμF

μ]DσF
σ
v)], (61)

where the Minkowski metric gμ] � diag(1,−1,−1,−1)
(Drummond and Hathrell, 1980), the Riemann curvature
tensor Rμ

vστ � Γμvτ,σ − Γμvσ,τ + ΓμλσΓ
λ
vτ − ΓμλτΓ

λ
vσ (Drummond and

FIGURE 5 |Distribution of the average radial speed of light in units of c, calculated from r = RS to the random point S, in the case that a = 50 RS andRQ = 1.0 RS. The
maximums of x and y are both (A) 10 RS, (B) 100 RS, and (C) 200 RS. (D) The distribution of the average radial speed of light along the x-axis in (C).
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Hathrell, 1980), Fμ] is the electromagnetic field strength,me is the
electron mass (Drummond and Hathrell, 1980; Daneils and
Shore, 1994; Daneils and Shore, 1996; Shore, 1996; Cho, 1997;
Cai, 1998; Dogov andNovigov, 1998; Shore, 2006; Hallowood and
Shore, 2008; De Rham and Andrew, 2020), a = -5α/720π
(Drummond and Hathrell, 1980; Daneils and Shore, 1994;
Daneils and Shore, 1996; Shore, 1996; Cho, 1997; Cai, 1998),
b = 26α/720π (Drummond and Hathrell, 1980; Daneils and
Shore, 1994; Daneils and Shore, 1996; Shore, 1996; Cho, 1997;
Cai, 1998), c = -2α/720π (Drummond and Hathrell, 1980; Daneils
and Shore, 1994; Daneils and Shore, 1996; Shore, 1996; Cho,
1997; Cai, 1998), and d = -24α/720π (Daneils and Shore, 1994;
Daneils and Shore, 1996; Cho, 1997; Cai, 1998) in terms of the
fine structure constant α. The coefficients a, b, and c reveal the
influence of the curvature functional, and dmay be obtained from
the flat-space vacuum polarization amplitude which represents

the mass-off-shell effect (Drummond and Hathrell, 1980). The
next term in the photon effect action is (Daneils and Shore, 1994;
Cho, 1997; Cai, 1998)

W2 � 1
m4

e

∫ d4x
���−g√ [yFμ]FστF

μσF]τ + z(Fμ]F
μ])2], (62)

where y = 56α2/720π and z = −20α2/720π (Daneils and Shore,
1994; Cho, 1997; Cai, 1998). This action is used to discuss the
quantum correction of photon propagation near the
Reissner–Nordström black hole of mass M and charge Q
(Daneils and Shore, 1994), the topological black hole (Cai,
1998), and the dilaton black hole (Cho, 1997). The photon
effective action in Eq. 61 leads to the gravitational modified
equation of motion for the photon (Drummond and Hathrell,
1980; Daneils and Shore, 1994; Daneils and Shore, 1996; Cho,
1997; Cai, 1998)

FIGURE 6 | Distribution of the average radial speed of light in units of c, calculated from r = RS to the random point S, in the case that a = 100 RS and RQ = 1.0 RS.
The maximums of x and y are both (A) 10 RS, (B) 100 RS, and (C) 200 RS. (D) The distribution of the average radial speed of light along the x-axis in (C).

Frontiers in Astronomy and Space Sciences | www.frontiersin.org August 2022 | Volume 9 | Article 87815614

Pei Average Radial Speed of Light

https://www.frontiersin.org/journals/astronomy-and-space-sciences
www.frontiersin.org
https://www.frontiersin.org/journals/astronomy-and-space-sciences#articles


DμF
μ] + δW1

δAμ(x) � 0. (63)

This equation shows DμF
μ] in order of O(e2) but the term

involving the coefficient d influences the motion to O(e4)
(Drummond and Hathrell, 1980). Usually, it can be omitted
due to its very small influence. Therefore, the photon equation
of motion approximates (Drummond andHathrell, 1980; Daneils
and Shore, 1994; Shore, 1996)

DμF
μ] + 1

m2
e

Dμ[4aRFμ] + 2b(Rμ
σF

σ] − Rv
σF

σμ) + 4cRμv
στF

στ] � 0.

(64)
The more complicated photon equation of motion including

the d and W2 terms is (Daneils and Shore, 1994; Cho, 1997; Cai,
1998)

DμF
μ] + 1

m2
e

[4aDμ(RFμ]) + 2bDμ(Rμ
σF

σ] − Rv
σF

σμ)
+ 4cDμ(Rμv

στF
στ) + 2d(D2DσF

σ] −DμD
]DσF

σμ)]
− 1

m4
e

[8z(FστFστDμF
μ] + 2Fμ]FστDμF

στ) + 8y(F]τFστDμF
μσ

+ FμσFστDμF
]τ + FμσF]τDμF

στ)]
� 0.

(65)
Without the one-loop quantum correction, we have DμF

μ] = 0
(Drummond and Hathrell, 1980; Shore, 1996; Cho, 1997; Cai,
1998). To study the photon equation of motion, the simplest way
is to use the geometrical-optics plane-wave approximation in a
gauge-invariant manner by setting Fμ] = fμ]e

iθ, where fμ] is a
slowly varying amplitude and θ is the rapidly varying phase with
the photon momentum kμ = Dμθ (Daneils and Shore, 1994;
Daneils and Shore, 1996; Shore, 1996; Cho, 1997; Cai, 1998;

Shore, 2006; Hallowood and Shore, 2008). The electromagnetic
Bianchi identity becomes (Drummond and Hathrell, 1980;
Daneils and Shore, 1994; Shore, 1996; Cai, 1998)

kρfμ] + kμf]ρ + k]fρμ � 0. (66)
Furthermore, it gives fμ] � kμa] − k]aμ (Drummond and

Hathrell, 1980; Daneils and Shore, 1994; Daneils and Shore,
1996; Shore, 1996; Cho, 1997; Cai, 1998; Dogov and Novigov,
1998; Shore, 2006) where aμ is the polarization vector of the
photon with the condition aμaμ = −1 (Daneils and Shore, 1994;
Daneils and Shore, 1996; Shore, 1996; Cho, 1997; Cai, 1998;
Dogov and Novigov, 1998; Shore, 2006). This polarization vector
is orthogonal to the momentum that kμaμ = 0 (Drummond and
Hathrell, 1980; Daneils and Shore, 1996; Cho, 1997). Then, we
can obtain the light cone condition (Daneils and Shore, 1996;
Shore, 1996; Shore, 2006)

k2 − 2b
m2

e

Rμλk
μkλ + 8c

m2
e

Rμ]λρk
μkλa]aρ � 0. (67)

The quantum corrections showed the tidal gravitational forces
altering the low-energy speeds of photons greater than c in some
cases (Drummond and Hathrell, 1980; Daneils and Shore, 1994;
Daneils and Shore, 1996; Shore, 1996; Cho, 1997; Cai, 1998;
Shore, 2006; Hallowood and Shore, 2008; De Rham and Andrew,
2020). The speed of light c used here is the value in vacuum
without gravity. Initially, this non-dispersive and gauge-invariant
effect was demonstrated on the Schwarzschild background in
which the low-energy speed of the photon traveling transversely
(with momentum in the angular direction) is found to be the
form (Drummond and Hathrell, 1980)

∣∣∣∣∣∣∣ ktk∅∣∣∣∣∣∣∣ ≈ ⎧⎪⎪⎨⎪⎪⎩1 + 1
2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ 3Rs
r3 ( α

90πm2
e
)

1 + Rs
r3 ( α

90πm2
e
)⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⎫⎪⎪⎬⎪⎪⎭ ≈ 1 + α

60πm2
e

RS

r3
. (68)

FIGURE 7 | (A) Log10 of the smooth curves from Figures 1D, 2D, 3D, 6D. (B) Log10 of the smooth curves from Figures 3D–6D.
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On the other hand, for the Reissner–Nordström black hole of
mass M and charge Q, the unchanged radial photon velocity and
two physically polarization-dependent orbital photon velocities
are given (Daneils and Shore, 1994). The two orbital photon
velocities are∣∣∣∣∣∣∣ ktk∅∣∣∣∣∣∣∣r−polarized ≈ 1 + α

60πm2
e

RS

r3
+ α

36πm2
e

R2
Q

4πr4
− α2

45πm4
e

R2
Q

4πr4

(69)
and∣∣∣∣∣∣∣ ktk∅∣∣∣∣∣∣∣θ−polarized ≈ 1 − α

60πm2
e

RS

r3
+ 13α
180πm2

e

R2
Q

4πr4
− 7α2

90πm4
e

R2
Q

4πr4
.

(70)
The first term in both equations is the gravitational

contribution identical to the Schwarzschild background in Eq.
67. Whether it is superluminal or not is dependent on the relative
magnitude of the quantum corrections in Eq. 68 (Daneils and
Shore, 1994). Another spherically symmetric spacetime is the
dilaton black hole (Cho, 1997), in which to first-order
perturbation, the radially directed photons gives∣∣∣∣∣∣∣ktkr∣∣∣∣∣∣∣ ≈ 1 − 1

2m2
e

(b + 2c) â2(1 + â2)2 (r2−r4)(1 − r+
r
)(1 − r−

r
)−1,

(71)
where

2GM
c2

� r+ + (1 − â2

1 + â2
)r− (72)

and

KGQ2

c4
� r+r−
1 + â2

. (73)

The light-cone condition is modified considering the QED
quantum corrections. The radial photons in fact propagate
superluminally when r > r+, r- in this dilatonic case even
though the spacetime is still spherically symmetric. About the
rotating black hole (Daneils and Shore, 1996), the radial motion
for photons on the equatorial plane, the velocity shift is (Daneils
and Shore, 1996)

Δv �
∣∣∣∣∣∣∣ktkr∣∣∣∣∣∣∣ − 1 � ± (A + 2B)ϵ � ∓ ϵ(3Ma2r3

ρ6Σ2 Δ), (74)

where

Σ � (r2 + a2)2 − a2sin2 θΔ. (75)
It means the photon is possibly superluminal along the radial

direction.
Furthermore, not only the correction speeds of photons but

also the correction speeds of gravitational waves are proposed in
the curved spacetime. Using a gravitational field effective theory
(De Rham and Andrew, 2020),

L � ���−g√ [M2
pl

2
R − 1

2
(zϕ)2 + a

4M4
(zϕ)4], (76)

and considering a modification to the low-energy speed, it
gives cs different from unity:

FIGURE 8 | Two light trajectories with different average speeds cause the visual illusion in astronomical observations. It would result in the conclusion of the faster-
than-light particle. Here, c1 and c2 are very close to c and possibly more or less than c being very tiny.
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c2s � 1 + |a| _ϕ2

M2
plM

2
+ . . . ., (77)

where ϕ is the amplitude of the propagating wave.
To sum up, the vacuum polarization in QED is thought to

cause the superluminal low-frequency phase velocity of photons
propagating in a non-dynamically curved spacetime (Daneils and
Shore, 1996; Hallowood and Shore, 2008). All superluminal
phenomena discussed in references 1–10 exist in the local
Lorentz coordinate system. Some people even mentioned that
the tidal effect seems to strangely change the causal structure of
the manifold (Drummond and Hathrell, 1980). Due to the
quantum correction of photons in curved spacetime, it even
gives a surprising result that in some reference frames, based
on the possibility of closed time-like trajectories, photons can
return to their source before they are produced (Dogov and
Novigov, 1998). However, the spacelike photonmomentum given
by the light-cone condition inevitably involves the problem of
causal paradox (Daneils and Shore, 1994). This is themost serious
problem we must face. Therefore, the author proposes that either
a time machine is possible in principle, or the superluminal
propagation of photons due to the quantum correction of the
one-loop vacuum polarization is problematic (Dogov and
Novigov, 1998).

Another key question is whether this superluminal
propagation can be observed in principle (Daneils and Shore,
1994). In other words, we have to face the other serious question,
that is, does the vacuum polarization in curved spacetime always
occur, or does it randomly exist at a certain time? When we
calculate the quantum correction in curved spacetime, it clearly
points out that the one-loop vacuum polarization in QED is an
effect in which a photon is converted into a virtual e−-e+ pair for
part of the time (Drummond and Hathrell, 1980; Cho, 1997; Cai,
1998). In fact, the randomness of such virtual e−-e+ pairs causes
the phenomenon of the superluminal of light to occur randomly.
Therefore, the superluminal light based on the quantum
correction caused by the vacuum polarization in the curved
spacetime becomes unexpected, and it cannot be observed
always. This is the second question we must ask can we really
observe this kind of superluminal phenomenon or gravitational
birefringence? Especially, this phenomenon of the superluminal
light caused by the one-loop vacuum polarization can have more
possibility to take place near the super-gravitation source.
Therefore, the physical significance of our contribution and
study lies in deriving the superluminal phenomenon of light
observed in a reference frame far away from a super-gravitational
source such as on the Earth, which is different from the above
discussion in the local Lorentz frame.

The other theory reported in 1966 (Rees, 1966) was proposed
to explain the superluminal observations (Blandford et al., 1977;
Pearson et al., 1981; Schilizzi and de Bruyn, 1983; Davis et al.,
1985; Mirabel and Rodríguez, 1994; Rodríguez andMirabel, 1995;
Belloni et al., 1997; Abraham and Romero, 1999; Briretta et al.,
1999; Junor et al., 1999; Orosz et al., 2001; Qian et al., 2001;
Cheung et al., 2007; Asada et al., 2014a; Asada et al., 2014b; Snios
et al., 2019) in astronomy due to the optical illusion caused by the

object partly moving in the direction of the observer. In this
theory, the Doppler factor δ is (Davis et al., 1985; Mirabel and
Rodríguez, 1994; Briretta et al., 1999; Qian et al., 2001)

δ � 1
γ(1 − β cos θ), (78)

and the apparent velocity vc is (Blandford et al., 1977; Pearson
et al., 1981; Davis et al., 1985; Briretta et al., 1999; Qian et al.,
2001)

vc � cβ sin θ(1 − β cos θ) , (79)

where v0 = cβ is the space speed of the moving body, θ is the
angle between the velocity of the moving body and the line of
sight of the observer, and the Lorentz factor γ � (1 − β2)−1.
However, this is a problematic expression and easy to check
that vc→0 at θ→0. It is a wrong result because it tells us that we
never see any body approaching us along the line of sight of the
observer. Moreover, the theory mentioned earlier has been
applied for the measurement of the moving body through the
sound wave on the Earth. Therefore, it may predict to detect
many faster-than-sound phenomena easily when the bodies move
partly toward the observer according to this theory. Even if the
moving body is slower than the sonic wave, the theory still
predicts a possibly faster-than-sound phenomenon on the
Earth. The Doppler effect used to explain the observed change
of the light wavelength in special relativity (Klinaku, 2016) is
demonstrated in Figure 9. The theory proposed in the references
(Rees, 1966; Rees, 1967) belongs to the field of special relativity.
Whether the Doppler effect can explain the superluminal motion
or only the change of the light wavelength is worth further
discussion. In special relativity, the speed of light is a constant
no matter which reference frame proceeds the velocity
measurement. Thus, we would rather think about the Doppler
effect changing the frequency or wavelength, not changing the
speed of sound or light. However, this theory (Rees, 1966; Rees,
1967) does not disagree with our results here. On the contrary, we
worry that this theory (Rees, 1966; Rees, 1967) only discussed the
observed phenomenon in the flat spacetime, not the spacetime
near the super-gravitational source like the black hole.

As we know, many astronomically superluminal phenomena
were reported near some very massive sources (Blandford et al.,
1977; Pearson et al., 1981; Schilizzi and de Bruyn, 1983; Davis
et al., 1985; Mirabel and Rodríguez, 1994; Rodríguez and Mirabel,
1995; Belloni et al., 1997; Abraham and Romero, 1999; Briretta
et al., 1999; Junor et al., 1999; Orosz et al., 2001; Qian et al., 2001;
Cheung et al., 2007; Asada et al., 2014a; Asada et al., 2014b; Snios
et al., 2019), and the observation near the M87 black hole is a
representation (Snios et al., 2019). Fortunately, the radio jet from
the central black hole in M87 is not toward the observer on the
Earth. Otherwise, we will be impacted by this relativistic jet
resulting in a serious affection on the Earth’s living. After
rigorous derivations, our results also show the main part of
light along the radial direction can be observed faster than
light. This phenomenon is from near to far space surrounding
the central rotating and charged super-gravitational source. As
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long as the moving particles are very close to c in the local frame,
then these particles can be observed faster than light in the far-
distance frame on the Earth. Then, in the following, the M87 jet is
used as an example to demonstrate our model.

The research about the M87 jet can be traced back 70 years. In
the 1950s, it was discovered that the optical radiation emitted by
the jet in M87 is synchrotron radiation performing strong
polarization (Baade, 1956; Burbidge, 1956). Then, the
phenomenon that the jet, from high-speed rotational Galaxy
M87 (Stewart, 1971; Sparks et al., 1992; Briretta et al., 1999;
Kovalev et al., 2007; Doeleman et al., 2012), radiates the polarized
electromagnetic waves (Felten, 1968; Felten et al., 1970; Schmidt
et al., 1978; Sparks et al., 1992; Cheung et al., 2007; Klein, 2007;
Kovalev et al., 2007; Doeleman et al., 2012) can be explained by
the accelerated electrons in an axial magnetic field. Researchers
found that the M87 jet precesses and forms a spiral within a small
conical angle because of the magnetic field from the nucleus of the
black hole (Sparks et al., 1992; Kovalev et al., 2007). The plane-
polarized light emitted by this jet suggested that light energy is
produced by accelerated electrons moving in a magnetic field at
relativistic velocities. At the same time, these accelerated electrons
perform helical trajectories with a gradually increasing rotational
radius along the axis (Persson, 1963). This jet was observed to
extend five thousand light-years at least as shown in Figure 10
(Felten et al., 1970; Kovalev et al., 2007), and open a small polar

FIGURE 9 | Doppler effect applied to the electromagnetic wave causing the change of wavelength in special relativity (Klinaku, 2016). This is a redrawn figure
according to special relativity, and each circle represents the wave front. The wavelength of the light wave at the rest frame is λ0 and the emitter moves at speed of v along
the x-direction. The measured light wavelength λ(θ) is different at different observed angles θ due to the Doppler effect similar to the sound wave. In this figure, three
observed wavelengths at 0, π/2, and π are also denoted by considering the relativistic effect.

FIGURE 10 | Multi-scale images of the M87 jet are shown in Reference
(Cheung et al., 2007). It is a well-knownM87 jet, extending at least 5,000 light-
years. Here, wemainly use these images to demonstrate our model. When we
discuss gravity and classical electrodynamics, the total mass as well as
total charges have to be considered, respectively. This concept is also
necessarily used in Einstein’s gravity when we use the Kerr–Newman metric.
Theoretically speaking, if the observed point is on the sphere with radius r
denoted by the yellow circle, the mass and charges within the sphere are
necessarily considered to calculate the average radial speed of light in the
Kerr–Newman metric. Therefore, not only the charges inside the black hole
but also the charges surrounding the black hole are used. For simplicity, we
suppose most parts of the effective charges distributing much wider than the
Schwarzschild radius, about within several ten pc, used in the Kerr–Newman
metric. The fixed approximate net charges are used to calculate points larger
than several pc to several kpc in the M87 jet.
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angle of 6–7° at a distance of 37.5 light-years (12 pc) from the
source (Kovalev et al., 2007).

The fast electrons in this jet have been estimated to be ~6 ×
1056 erg in the magnetic field B ~ 6 × 10−6 G where the
electromagnetic radiation above 108 Hz is considered (Felten,
1968). The other estimation (Klein, 2007) reveals the total energy
output of these electrons to be 5.1 × 1056 erg (or 5.1 × 1049 J or
3.2 × 1068 eV). By comparison, the entire Milky Way only
produces an estimated energy of about 5 × 1036 J per second.
Therefore, its energy is at least 1013 times as large as the emitted
energy per second from the entire Milky Way. It means that this
jet includes a lot of electrons, and the number of electrons can be
estimated. If each electron on average possesses an energy of
10 MeV, then there are at least 5.1 × 1042 C electrons in this jet. In
this average case, the Lorentz factor γ ~ 20, so the correspondingly
average speed of an electron is about 0.99875 c. If the average
energy of an electron increases to 1 GeV, then there are at least
5.1 × 1040 C electrons in this jet. Even though the average energy
of electrons can be as high as 1 TeV (Stawarz et al., 2006; Cheung
et al., 2007), at least 5.1 × 1037 C electrons exist in this jet.
Generally speaking, the average energy of 1 GeV would be a
reasonable value for electrons in this jet. As we know, the lightest

nucleus 1H is 1,836 times heavier than one electron. According to
this, we can speculate that most positively-charged nuclei or
particles move much slower than the high-speed electrons, so
these nuclei or particles exist much closer to the black hole, and
the negatively-charged electrons move far away from the black
hole at much faster speeds close to c (Felten et al., 1970). On the
other hand, from the estimation of the blobs of hydrogen gas
escaping the nucleus of the black hole (Felten et al., 1970), the
mass speed of these blobs is v ~ 0.06 c or more. This observation
really reveals that the hydrogen gas moves much slower than
electrons as expected. Therefore, the ejection of electrons in the
M87 jet means a lot of positive charges far behind the relativistic
electrons. If the energy of an electron were obtained initially the
same as a charged particle like a proton or a hydrogen nucleus
traveling at the above escaping speed, then the energy of an
electron is about 1 GeV. Based on this fact, it is reasonable to
assume the total charges surrounding the M87 black hole within
several ten pc to be 105~106 q where one q = 2.41 × 1030 C. This
charge q corresponds to R2

Q � KGq2/c4 � R2
S where K is the

Coulomb’s constant and G is the Newton’s gravitational
constant. The mass of the M87 black hole is about (6.2 ± 0.4)
x 109Mʘ (Doeleman et al., 2012), resulting in the maximum

FIGURE 11 | (A) Average radial speed of light along one radius from several ten pc to 1,550 pc in the equator plane calculated based on Eq. 30where a = 0.10 RS

and RQ = 455,000 RS. Each data represent the average speed within one pc. Three calculation data are denoted in the figure. When the calculations are averaged by
1 year, these three data vary between 1 and 4% only. (B) Several observation reports of the radio jet from the central black hole in M87 from 1995 to 2019 (Snios et al.,
2019). Although the average speeds of light are not coincident with each other, all the trends show the decreasing average radial speeds of light after a certain
distance from the central black hole. The red dashed curve is the approximate fitting curve to the 2019 report without including the data near 1,500 pc. This fitting curve is
much similar to the calculation curve in (A). It reveals that our model based on Eq. 30 is an explanation for the tangible observation about the M87 jet.
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Schwarzschild radius of about 0.75 light-day. Then, Figure 1 in
the reference (Stawarz et al., 2006) is used to demonstrate our
model as shown in Figure 10. The concept of this model
considers the total charges used in the Kerr–Newman metric,
not only from those in the black hole but also from the charges
surrounding the black hole because the fast-moving electrons
leave many positive charges behind them, after the production of
positive and negative charges in the sources. Although the tide
charge parameter is introduced to study the extra hidden
dimensions in the black hole spacetime (Banerjee et al., 2020;
Banerjee et al., 2021; Mishra et al., 2021), we still use the real
charge concept to easily and reasonably explain the observed
superluminal phenomena (Blandford et al., 1977; Pearson et al.,
1981; Schilizzi and de Bruyn, 1983; Mirabel and Rodríguez, 1994;
Rodríguez and Mirabel, 1995; Belloni et al., 1997; Abraham and
Romero, 1999; Briretta et al., 1999; Junor et al., 1999; Orosz et al.,
2001; Qian et al., 2001; Cheung et al., 2007; Asada et al., 2014a;
Asada et al., 2014b; Snios et al., 2019). When the observed point
leaves the black hole further and further, more and more mass
and charges from the black hole to the observed point can affect
spacetime. Theoretically speaking, if the observed point is on the
sphere with radius r, the mass and charges within the sphere are
necessarily considered to calculate the average radial speed of
light in the Kerr–Newmanmetric. Therefore, not only the charges
inside the black hole are used but also the charges surrounding
the black hole. Although most of the mass is gathered in the black
hole, however, the distribution of charges extends a relatively long
distance. However, the net charges shall decrease gradually and
quickly from near to far space surrounding the black hole and
most of them would mainly exist within several ten pc from the
center of the black hole. In our discussions, for simplicity, we use
constant net charges within several ten pc to calculate the average
radial speed of light from several ten pc to 1,550 pc as shown in
Figure 11A, where the constant net charges are 455,000 q,
corresponding to RQ = 455,000 RS. Herein, we adopt each
calculation point representing the average radial speed of light
within one pc. Three calculation data are also denoted in
Figure 11A. When the calculations are averaged by 1 year,
three data vary between 1 and 4% only. We find that the
calculated distribution of the average radial speed much
matches the approximate fitting curve to the real observations
in 2019 (Snios et al., 2019), as shown in Figure 11B. This
approximate fitting curve is drawn to pass through the centers
of the two data nearest the black hole. Furthermore, we can also
present calculations close to the approximate fittings for the other
observed data in different years by choosing different net charges
in the Kerr–Newman metric. In addition, if the net charges are all
consisting of the hydrogen nuclei, then the total mass of 455,000 q
hydrogen nuclei equals 0.0057 Mʘ or 8.66 × 10−13 times the
M87 black hole. The mass corresponding to these hydrogen
nuclei is much smaller compared to the M87 black hole thus
they easily exist surrounding the black hole within several ten pc.
So, our computations can be one explanation for the M87 jet
ejected from the rotational black hole. Our model and
calculations, based on the rotating and charged solution in
general relativity, can give a reasonable explanation of the
superluminal phenomena observed on the Earth.

8 CONCLUSION

We use the Kerr–Newman metric based on general relativity to
discuss the average radial speed of light from near to far space
surrounding the black hole. First, according to the equivalence
principle, time dilation requires some conditions between RS, a,
and RQ. The geodesic of light is determined by ds2 = 0 then we
obtain the velocity equation of light described on the reference frame
far away from the black hole like on the Earth. Next, we can calculate
the spending time for light traveling from r = α1RS to r = α2RS along
the radial direction at any θ. We find that the average speed of light
along the radial direction is possibly larger than c dependent on a and
RQ. Usually, the larger the a is, the higher the average radial speed of
light is. The largerRQ also benefits from a higher average radial speed.
Higher rotation or larger charge of the black hole gives a longer range
where the average radial speed is more than c, and it needs a longer
distance to decrease and approach c. When an observer is far away
from the black hole or other strong gravity, the measured average
speed of light is close to c, as themeasurement on the Earth. Based on
these results, our explanation is also applicable to the observation of
the faster-than-light massive particles like the M87 jet in astronomy.

In addition, two superluminal theories used to explain the
speed of light in astronomy are compared. One is the Doppler effect
in special relativity proposed 50 years ago, and the other is the change
in the photon speed due to the QED contribution of one-loop
vacuum polarization to the photon effective action in the general
curved background manifold. The former seems to mainly appear as
the change of the observedwavelength or frequency, while the latter is
the possibly random and irregular occurrences. The Doppler effect
has been applied on the observed wavelength of the sound wave
dependent on the observed angle and the emitter velocity in air so the
Doppler effect for the light wave in special relativity shall not be
explained as the speed change of light in special relativity. On the
other hand, although the QED contribution of one-loop vacuum
polarization might predict the speed change of light, it probably only
takes place for part of the time, that is, randomly occurs in spacetime,
not always. Our explanation is based on the Kerr–Newmanmetric in
general relativity, and it extends the discussion from the flat spacetime
in special relativity to the curved spacetimewhich is suitable formany
superluminal observations from near to far space surrounding the
super-gravitational sources like the black hole.

Finally, we use the M87 jet as a tangible observation to be
verified and explained by our calculations. The way we used to
calculate the measured time on the Earth is based on Eq. 30 or Eq.
36. Then we use Eq. 59 to calculate the average radial speed of
light traveling a distance. It tells us that the smaller the measured
time is, the larger the average radial speed of light is. Because the
fast-moving electrons leave many positive charges behind them
after the production of positive and negative charges in the
sources, the net charges are used to calculate the average
radial speed of light in the Kerr–Newman metric, not only
inside the black hole but also the charges surrounding the
black hole. A demonstration is to consider the total charges
surrounding the M87 black hole within several ten pc to be
455,000 qwhere one q = 2.41 × 1030 C. The calculated distribution
of the average radial speed of light from several ten pc to 1,550 pc
as shown in Figure 11 much matches the approximate fitting

Frontiers in Astronomy and Space Sciences | www.frontiersin.org August 2022 | Volume 9 | Article 87815620

Pei Average Radial Speed of Light

https://www.frontiersin.org/journals/astronomy-and-space-sciences
www.frontiersin.org
https://www.frontiersin.org/journals/astronomy-and-space-sciences#articles


curve to the real observations in 2019 (Snios et al., 2019). In
summary, our model and calculations are used to explain the
well-known superluminal phenomena in the M87 jet.
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