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This work compares several versions of the equations of motion for a test particle
encountering cyclotron resonance with a single, field-aligned whistler mode wave. The
gyro-averaged Lorentz equation produces both widespread phase trapping (PT) and
“positive phase bunching” of low pitch angle electrons by large amplitude waves.
Approximations allow a Hamiltonian description to be reduced to a single pair of
conjugate variables, which can account for PT as well as phase bunching at moderate
pitch angle, and has recently been used to investigate this unexpected bahavior at low
pitch angle. Here, numerical simulations using the Lorentz equation and several versions of
Hamiltonian-based equations of motion are compared. Similar behavior at low pitch angle
is found in each case.
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1 INTRODUCTION

Cyclotron-resonant wave-particle interactions are a crucial ingredient in magnetospheric dynamics,
especially in the radiation belts, and there is a vast tradition of simulating the process as quasi-linear
diffusion of phase space density by a broad-band spectrum of small, incoherent waves (Thorne, 2010;
Thorne et al., 2013), following the pioneering work of Lyons et al. (1971) and Lyons et al. (1972). A
complementary approach is that of test particle simulation, most often in the presence of a single,
coherent wave whose amplitude need not be small. Inan et al. (1978) noted both quasi-linear and
nonlinear behavior, including the “loss cone reflection effect” whereby low pitch angles increase
rather than decrease below zero. In the quasi-linear regime, connections between the two
perspectives have been provided by Lemons et al. (2009), Lemons (2012), Allanson et al. (2022),
and a unified picture of quasi-linear and nonlinear behavior was obtained by Albert (2001), Albert
(2010). These studies all used specified and idealized models of the waves, while Liu et al. (2010), Liu
et al. (2012) examined test particles driven by waves from self-consistent particle-in-cell simulations.

This work compares several versions of the equations of motion for a test particle encountering
cyclotron resonance with a single, field-aligned whistler mode plane wave. The Lorentz force law,
resolved into components parallel and perpendicular to the background magnetic field and gyro-
averaged, is commonly used for such simulations. Hamiltonian descriptions are in principle
equivalent, and with several approximations they allow the reduction to a one-dimensional (1D)
system (one action-angle pair, plus the independent variable playing the role of time). If the time
dependence is slow enough, particle motion is nearly along instantaneously drawn contours, with
invariant breaking at separatrix crossings. There is a rich literature of work based on these concepts,
which has been exploited in this context to some degree. Among others, Shklyar (1986) Albert
(1993), Albert (2000), Artemyev et al. (2018) further approximated the Hamiltonian as equivalent to
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that of a time-dependent pendulum and obtained quantitative
estimates of energy and pitch angle changes, which have proved
useful and reliable.

Recently, using the gyro-averaged Lorentz equation, Kitahara
and Katoh (2019), Gan et al. (2020) found both widespread (or
“anomalous”) phase trapping (APT) and “positive phase
bunching (PPB)” of low pitch angle electrons by large
amplitude waves. Both phenomena lead to pitch angle
increase, in contrast to the phase bunching behavior that is
the usual alternative to phase trapping, and are associated with
low pitch angle, which violates a certain approximation made in
obtaining the pendulum Hamiltonian. Albert et al. (2021),
Artemyev et al. (2021) presented generalizations of the
pendulum Hamiltonian which avoid that specific
approximation, but still relied on several others. In particular,
differences in the first-order (in wave amplitude) term of the
phase evolution equation are present among several versions of
the equations of motion. This work shows numerically that,
despite these differences, the generalized 1D Hamiltonian
reproduces the behavior at low pitch angle, and is therefore an
appropriate framework for the future development of refined
analytical estimates.

2 GYRO-AVERAGED EQUATIONS OF
MOTION

Starting with the Lorentz equation for a charged particle in a
background magnetic field and a single whistler-mode wave,

dp
dt

� q Ew + p
mcγ

× B0 + Bw( )[ ], dx
dt

� p
mγ

, (1)

where p = mvγ is the mechanical momentum, γ is the relativistic
factor, B0 is the local geomagnetic field strength with equatorial
value Beq, and Ew andBw are the electric andmagnetic fields of the
wave. Gyro-averaged equations of motion valid near a single
resonance have been obtained by many authors, including
(Chang and Inan, 1983; Bell, 1984; Albert et al., 2012; Li et al.,
2015; Kitahara and Katoh, 2019).

For primary resonance (ℓ = −1) between an electron (charge
q = −e) and a parallel-propagating whistler wave, equation 3 of
Albert et al. (2012) simplifies to

dp‖
dt

� − p2
⊥

2mγ

dΩ/dz
Ω + eBw

mc

p⊥

γ
cos ξ,

dp⊥

dt
� p‖p⊥

2mγ

dΩ/dz
Ω + eBw

mc

Ω
ωη

mc

γ
cos ξ,

dξ

dt
� Ω

γ
− ω + kp‖

mγ
[ ] − eBw

mc

Ω
ωη

mc

p⊥γ
sin ξ,

dz

dt
� p‖

mγ
.

(2)

The angle ξ is a combination of wave phase and gyrophase, Ω
is the local nonrelativistic electron gyrofrequency eB0/mc, and η is
the refractive index kc/ω. The standard resonance condition is
just dξ/dt = 0, neglecting the term proportional to Bw.

Equations 3–9 of Kitahara and Katoh (2019) are very similar
after shifting ξ by π/2, using ηEw = Bw (in Gaussian units), and
accounting for the opposite sign convention in wave phase:

dp‖
dt
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⊥

2mγ

dΩ/dz
Ω + eBw

mc
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dp⊥

dt
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2mγ
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mc

γ

η
− p‖
mc

( )mc

γ
cos ξ,

dξ

dt
� Ω

γ
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mγ
[ ] − eBw

mc

γ

η
− p‖
mc

( ) mc

p⊥γ
sin ξ,

dz

dt
� p‖

mγ
.

(3)

These two versions are brought into agreement by invoking
the lowest-order resonance condition, which consists of setting
the bracketed expression in the equation for dξ/dt to zero.

3 TIME-DEPENDENT HAMILTONIAN
EQUATIONS

Ginet and Heinemann (1990), Ginet and Albert (1991) used a
Hamiltonian version of the equations of motion near resonance
with a constant-frequency wave propagating obliquely to a
constant background magnetic field B0, The Hamiltonan
formulation uses canonical momentum P = p + qA/c, where c
is the speed of light, and A is the vector potential that describes
both B0 and the wave electromagnetic field. A canonical
transformation was made from (x, Px, y, Py, z, Pz) to variables
(I, ϕ, X, PX, z, Pz), with z the distance along B0 in slab geometry. I
and ϕ correspond to standard first adiabatic invariant and
gyrophase but have modifications proportional to the wave
amplitude. After gyro-averaging, and specializing to the case of
a parallel-propagating wave, the variables (ϕ, z, t) appeared only
in the combination ∫kdz − ωt − ϕ (equation 19 of Ginet and
Heinemann (1990) with kx = 0 and sℓ = 1). Albert (1993)
generalized the treatment to include slow dependence of Ω
and η on z, obtaining the Hamiltonian

H I,ϕ, Pz, z, t( ) � ϒ + aℓ
2ϒ

sin ξ (4)
where

ϒ � 1 + 2
Ω
ω
I + P2

z( )1/2

, aℓ � −
����
2
Ω
ω
I

√
1
η

qBw

mc
, (5)

and

ξ � ηz − t + ϕ, (6)
using normalized variables (ωz/c, ωt, ωI/mc2, Pz/mc) as in Albert
(1993). Appropriate partial derivatives of H give equations of
motion for (I, ϕ, Pz, z), e.g., dI/dt = −zH/zϕ and dϕ/dt = zH/zI,
from which

dξ

dt
� η

Pz

ϒ
− 1 + dϕ

dt
. (7)

It is also found that dH/dt = zH/zt equals dI/dt, so that I −H is
a constant, denoted c2:
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I −H � c2. (8)
Following Shklyar (1986), Albert (1993) solved this for Pz after

approximating H by ϒ, obtaining

ϒ ≈ ϒ0 ≡ I − c2, P2
z ≈ P2

0 ≡ I − c2( )2 − 1 − 2
Ω
ω
I. (9)

These can be used to eliminate Pz in the equations of motion,
giving

dI

dt
� − aℓ

2ϒ0
cos ξ,

dξ

dt
� −η P0

ϒ0
+ Ω
ωϒ0

− 1[ ] + aℓ
1 + P2

0

4Iϒ3
0

sin ξ,

dz

dt
� −P0

ϒ0
,

(10)

as a closed set of equations in (I, ξ, z, t). Since P0 is defined as
always positive, explicit minus signs account for the motion of the
particle toward the equator. The bracketed expression in the
equation for dξ/dt gives the lowest order resonance condition.

Retaining the wave term in H to first order gives

ϒ ≈ ϒ0 − aℓ
2ϒ0

sin ξ, Pz ≈ − P0 + aℓ
2P0

sin ξ, (11)

again allowing Pz to be eliminated. The correction to Pz/ϒ
significantly affects Eq. 7, giving

dI

dt
� − aℓ

2ϒ0
cos ξ,

dξ

dt
� −η P0

ϒ0
+ Ω
ωϒ0

− 1[ ] + aℓ
4IP0ϒ3

0

P0 1 + P2
0( )[

+2ηI 1 + 2
Ω
ω
I( ) + 2I

Ω
ω
P0]sin ξ,

dz

dt
� −P0

ϒ0
+ aℓ
2P0ϒ3

0

1 + 2
Ω
ω
I( )sin ξ,

(12)

which is also a closed set of equations in (I, ξ, z, t).

4 POSITION-DEPENDENT HAMILTONIAN
EQUATIONS

Ginet and Heinemann (1990) and Ginet and Albert (1991)
proceeded to transform to variables (ξ, Pξ , μ, Pμ, ~ϕ, ~I), with Pξ
canonically conjugate to ξ. However, doing so in an
inhomogeneous setting reintroduces explicit time dependence
in place of z dependence (see equation 68 of Ginet and Albert,
1991).

Instead, following Shklyar (1986), Albert (1993) divided
the equations for dI/dt and dξ/dt by the equation for dz/dt
and attempted to write the results in Hamiltonian form using
z as the independent variable. With a Hamiltonian K of the
form

K I, ξ, z( ) � K0 I, z( ) + K1 I, z( )sin ξ, (13)

FIGURE 1 | Evolution of 24 electrons starting at z/Re = 1 and interacting
with a whistler mode wave, with particle and wave parameters as given in the
text. Red curves show results for the equations of motion given in Eq. 2, and
blue curves used Eq. 3.

FIGURE 2 | Evolution of 24 electrons starting at z/Re = 1 and interacting
with a whistler mode wave, according to equations of motion based on K(I, ξ,
z, t). Blue curves show results for the equations of motion given in Eq. 10, and
red curves used Eq. 12.
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the choice

K1 � − aℓ
2P0

(14)
gives

dI

dz
� −K1 cos ξ, (15)

which agrees with (dI/dt)/(dz/dt) from Eq. 10. Using

K0 � η I − c2( ) + P0 (16)
then gives

dξ

dz
� ηP0 + ϒ0 −Ω/ω

P0
− aℓ

P2
0 − 2I ϒ0 −Ω/ω( )

2IP3
0

sin ξ (17)
or, once more using the lowest-order resonance condition,

dξ

dz
� ηP0 + ϒ0 − Ω/ω

P0
− aℓ

P0 + 2ηI
2IP2

0

sin ξ. (18)

It is clear that the first-order term in dξ/dz obtained by this
procedure, which enforces the form of Eq. 13, is not the same as
that of (dξ/dt)/(dz/dt) from either Eq. 10 or Eq. 12. The analogous
disagreement is evident between equations 3.8 and 3.10 of Shklyar
(1986), who treated the simpler case of an electrostatic wave and
nonrelativistic protons. (Both equations give versions of dξ/ds, the
typesetting error in equation 3.8 notwithstanding.)

5 SIMULATIONS AND DISCUSSION

The consequences of the disagreement in the first-order terms of the
various ξ evolution equations is studied here numerically. We choose
wave and particle parameters following Kitahara and Katoh (2019);
Gan et al. (2020). A Taylor expansion of the geodipole magnetic field
about the equator gives the variation along a field line as
B/Beq � 1 + 4.5z2/(LRe)2, with L = 4, where Re is the radius of
the Earth and LRe is the field line equatorial crossing distance. The cold
electron density is constant, and chosen to give the ratio of plasma
frequency to gyrofrequency as fpe/fce=4 at the equator. Thefield-aligned
whistler mode wave has frequency such that ω/Ωe = 0.3 at the equator.
We consider ensembles of 24 electrons, with energy 20 keV, uniformly
distributed in initial gyrophase. We take equatorial pitch angle α0 = 5°

and Bw/Beq = 3 × 10–4 (with Bw fixed), since this case seems particularly
complex, exhibiting a mixture of conventional phase trapping and
“anomalous” phase trapping (as opposed to the oppositely directed
change associated with phase bunching for larger pitch angles). The
particles are launched towards the equator (z = 0) from a distance of
1 Re, and the equations ofmotion are advanced with a standard Runge-
Kutta integrator with variable step size.

Figure 1 shows results using Eq. 2 (in red) and Eq. 3 (in blue).
The sets of trajectories are not expected to be identical because of
accumulated phase differences far from resonance. Nevertheless
the overall behavior is very similar, showing no significant change
until reaching resonance around z/Re = 0.35, after which the

FIGURE 3 | Evolution of 24 electrons starting at z/Re = 1 and interacting
with a whistler mode wave, according to equations of motion based on K(I, ξ,
z), namely Eqs 15, 18.

FIGURE 4 | Evolution of 24 electrons interacting with a whistler mode
wave, according to equations of motion based on K(I, ξ, z), shown in the (I, ξ)
plane. Phase-trapped trajectories are shown for 0.4 > z/Re > 0, in red; other
trajectories are shown in blue for 0.4 > z/Re > 0.22.
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equatorial pitch angle increases either over a sustained period
(conventional phase trapping, PT) or transiently. The long-time
behavior of the phase angle ξ is oscillatory for PT but monotonic
otherwise. This corresponds to the NL1 regime of Gan et al.
(2020), also referred to as positive phase bunching (PPB).
Numerically, PT was identified by a change of sign in dξ/dt
from one time step to the next after crossing below z/Re = 0.1. Of
24 simulated particles, 10 became PT using either Eq. 2 or Eq. 3.

Figure 2 shows results using Eq. 10 (blue) or Eq. 12 (red). The
equatorial pitch angle α0 obtained from the normalized variables
(I, z) via

B

Beq
sin2α0 � sin2 α � p2

⊥

p2
� 2 Ω/ω( )I

I − c2( )2 − 1
. (19)

The behavior turns out to be very similar to the previous run,
with 9 instances of PT, leading to α0 ≈ 25° at z = 0, with the rest of
the particles ending up with α0 spread between about 4° and 14°.

Finally, Figure 3 shows results using Eqs. 15, 18. Again the
results are very similar in the final α0 values reached by PT or PPB
particles, and in the number of each. The number of PT particles in
this run is 8, which does not deviate much from the previous values
given the small number (24) of particles in each simulation.

We conclude that the reduced Hamiltonian K(I, ξ, z) of Eq. 13
captures the nature of the particle dynamics, including APT and
PPB, with fidelity comparable to the other models. This is propitious
because it allows access to a rich body of work on invariant breaking
at separatrix crossings (e.g., Cary et al., 1986), enabling both
qualitative understanding and quantitative analytical estimates.

Some steps have already been taken in that direction. Figure 4
shows the results of Figure 3 in the (I, ξ) plane, with PT
trajectories (identified as above) over the interval 0.4 > z > 0
shown in red, and become limited in ξ while reaching large values
of I. The remaining paths, shown in blue (over the interval 0.4 >
z > 0.22, for clarity), do not reach such large values of I but are less

FIGURE 5 | Contours of K(I, ξ, z), at several values of z shortly before and after resonance crossing, according to motion based on K(I, ξ, z). O-points are shown as
diamonds, and X-points (if present) are shown with an X symbol, with the contour through them is in cyan. The red, dashed curve shows the initial value of I.
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restricted in ξ. Figure 5 shows contours of K(I, ξ, z) at several
fixed values of z chosen during the trapping process, based on
Figure 3. They indicate that at early times (large values of z) there
is only a single, O-type fixed point, while an X-point and
separatrix, as well as another O-point, form around the time
of the trapping process. Contours circling the O-point at ξ = π/2
correspond to the (red) PT trajectories of Figure 4, and PPB
trajectories (in blue) are connected to the development of the
O-point at low I and ξ = −π/2. Similar contours, developed from
Eq. 13 with further approximation, were obtained and studied by
Albert et al. (2021), Artemyev et al. (2021). Quantitative analysis
of separatrix formation and crossing, invariant breaking, and
energy and pitch angle change will be the subject of future work.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included in
the article/supplementary material, further inquiries can be
directed to the corresponding author.

AUTHOR CONTRIBUTIONS

JA conceived this work, and wrote and ran the simulations. AA
helped analyze approaches to reducing the dimensionality of the

system of equations. WL, QM, and LG consulted on the work and
made several useful suggestions on the simulations and
presentation.

FUNDING

JA was supported by NASA grant 80NSSC19K0845 and the Space
Vehicles Directorate of the Air Force Research Laboratory. WL,
LG, and QM also acknowledge the NASA grants
80NSSC20K1506 and 80NSSC20K0698, NSF grant AGS-
1847818, and the Alfred P. Sloan Research Fellowship FG-
2018-10936.

ACKNOWLEDGMENTS

The views expressed are those of the author and do not reflect the
official guidance or position of the United States Government, the
Department of Defense or of the United States Air Force. The
appearance of external hyperlinks does not constitute
endorsement by the United States Department of Defense
(DoD) of the linked websites, or the information, products, or
services contained therein. The DoD does not exercise any
editorial, security, or other control over the information you
may find at these locations.

REFERENCES

Albert, J. M., Artemyev, A. V., Li, W., Gan, L., and Ma, Q. (2021). Models of
Resonant Wave-Particle Interactions. J. Geophys. Res. Space Phys. 126,
e2021JA029216. doi:10.1029/2021JA029216

Albert, J. M. (2001). Comparison of Pitch Angle Diffusion by Turbulent and
Monochromatic Whistler Waves. J. Geophys. Res. 106, 8477–8482. doi:10.1029/
2000JA000304

Albert, J. M. (1993). Cyclotron Resonance in an Inhomogeneous Magnetic Field.
Phys. Fluids B Plasma Phys. 5, 2744–2750. doi:10.1063/1.860715

Albert, J. M. (2010). Diffusion by One Wave and by Many Waves. J. Geophys. Res.
115, A00F05. doi:10.1029/2009JA014732

Albert, J. M. (2000). Gyroresonant Interactions of Radiation Belt Particles with a
Monochromatic Electromagnetic Wave. J. Geophys. Res. 105, 21191–21209.
doi:10.1029/2000JA000008

Albert, J. M., Tao, X., and Bortnik, J. (2012). “Aspects of Nonlinear Wave-Particle
Interactions,” in Dynamics of the Earth’s Radiation Belts and Inner
Magnetosphere. Editor D. Summers (Washington, DC: American
Geophysical Union), 255–264. doi:10.1029/2012GM001324

Allanson, O., Elsden, T., Watt, C., and Neukirch, T. (2022). Weak Turbulence and
Quasilinear Diffusion for Relativistic Wave-Particle Interactions via a Markov
Approach. Front. Astron. Space Sci. 8, 805699. doi:10.3389/fspas.2021.805699

Artemyev, A. V., Neishtadt, A. I., Albert, J. M., Gan, L., Li, W., and Ma, Q. (2021).
Theoretical Model of the Nonlinear Resonant Interaction of Whistler-Mode
Waves and Field-Aligned Electrons. Phys. Plasmas 28, 052902. doi:10.1063/5.
0046635

Artemyev, A. V., Neishtadt, A. I., Vainchtein, D. L., Vasiliev, A. A., Vasko, I. Y., and
Zelenyi, L. M. (2018). Trapping (Capture) into Resonance and Scattering on
Resonance: Summary of Results for Space Plasma Systems. Commun. Nonlinear
Sci. Numer. Simul. 65, 111–160. doi:10.1016/j.cnsns.2018.05.004

Bell, T. F. (1984). The Nonlinear Gyroresonance Interaction between Energetic
Electrons and Coherent VLF Waves Propagating at an Arbitrary Angle with
Respect to the Earth’s Magnetic Field. J. Geophys. Res. 89, 905–918. doi:10.1029/
JA089iA02p00905

Cary, J. R., Escande, D. F., and Tennyson, J. L. (1986). Adiabatic-Invariant Change
Due to Separatrix Crossing. Phys. Rev. A 34, 4256–4275. doi:10.1103/PhysRevA.
34.4256

Chang, H. C., and Inan, U. S. (1983). Quasi-Relativistic Electron Precipitation Due
to Interactions with Coherent VLF Waves in the Magnetosphere. J. Geophys.
Res. 88, 318–328. doi:10.1029/ja083iA01p00318

Gan, L., Li, W., Ma, Q., Albert, J. M., Artemyev, A. V., and Bortnik, J. (2020).
Nonlinear Interactions between Radiation Belt Electrons and Chorus Waves:
Dependence on Wave Amplitude Modulation. Geophys. Res. Lett. 47,
e2019GL085987. doi:10.1029/2019GL085987

Ginet, G. P., and Albert, J. M. (1991). Test Particle Motion in the Cyclotron
Resonance Regime. Phys. Fluids B 3, 2994–3012. doi:10.1063/1.859778

Ginet, G. P., and Heinemann, M. A. (1990). Test Particle Acceleration by Small
Amplitude Electromagnetic Waves in a Uniform Magnetic Field. Phys. Fluids B
2, 700–714. doi:10.1063/1.859307

Inan, U. S., Bell, T. F., and Helliwell, R. A. (1978). Nonlinear Pitch Angle Scattering
of Energetic Electrons by Coherent VLF Waves in the Magnetosphere.
J. Geophys. Res. 83, 3235–3253. doi:10.1029/ja083iA07p03235

Kitahara, M., and Katoh, Y. (2019). Anomalous Trapping of Low Pitch Angle
Electrons by Coherent Whistler Mode Waves. J. Geophys. Res. Space Phys. 124,
5568–5583. doi:10.1029/2019JA026493

Lemons, D. S., Liu, K., Winske, D., and Gary, S. P. (2009). Stochastic Analysis of
Pitch Angle Scattering of Charged Particles by Transverse Magnetic Waves.
Phys. Plasmas 16, 112306. doi:10.1063/1.3264738

Lemons, D. S. (2012). Pitch Angle Scattering of Relativistic Electrons from
Stationary Magnetic Waves: Continuous Markov Process and Quasilinear
Theory. Phys. Plasmas 19, 012306. doi:10.1063/1.3676156

Li, J., Bortnik, J., Xie, L., Pu, Z., Chen, L., Ni, B., et al. (2015). Comparison of
Formulas for Resonant Interactions between Energetic Electrons and Oblique
Whistler-Mode Waves. Phys. Plasmas 22, 052902. doi:10.1063/1.4914852

Liu, K., Lemons, D. S., Winske, D., and Gary, S. P. (2010). Relativistic Electron
Scattering by Electromagnetic Ion Cyclotron Fluctuations: Test Particle
Simulations. J. Geophys. Res. 115, A04204. doi:10.1029/2009JA014807

Liu, K., Winske, D., Gary, S. P., and Reeves, G. D. (2012). Relativistic Electron
Scattering by Large Amplitude Electromagnetic Ion CyclotronWaves: The Role

Frontiers in Astronomy and Space Sciences | www.frontiersin.org June 2022 | Volume 9 | Article 9102246

Albert et al. Equations of Motion

https://doi.org/10.1029/2021JA029216
https://doi.org/10.1029/2000JA000304
https://doi.org/10.1029/2000JA000304
https://doi.org/10.1063/1.860715
https://doi.org/10.1029/2009JA014732
https://doi.org/10.1029/2000JA000008
https://doi.org/10.1029/2012GM001324
https://doi.org/10.3389/fspas.2021.805699
https://doi.org/10.1063/5.0046635
https://doi.org/10.1063/5.0046635
https://doi.org/10.1016/j.cnsns.2018.05.004
https://doi.org/10.1029/JA089iA02p00905
https://doi.org/10.1029/JA089iA02p00905
https://doi.org/10.1103/PhysRevA.34.4256
https://doi.org/10.1103/PhysRevA.34.4256
https://doi.org/10.1029/ja083iA01p00318
https://doi.org/10.1029/2019GL085987
https://doi.org/10.1063/1.859778
https://doi.org/10.1063/1.859307
https://doi.org/10.1029/ja083iA07p03235
https://doi.org/10.1029/2019JA026493
https://doi.org/10.1063/1.3264738
https://doi.org/10.1063/1.3676156
https://doi.org/10.1063/1.4914852
https://doi.org/10.1029/2009JA014807
https://www.frontiersin.org/journals/astronomy-and-space-sciences
www.frontiersin.org
https://www.frontiersin.org/journals/astronomy-and-space-sciences#articles


of Phase Bunching and Trapping. J. Geophys. Res. 117, A06218. doi:10.1029/
2011JA017476

Lyons, L. R., Thorne, R. M., and Kennel, C. F. (1971). Electron Pitch-Angle
Diffusion Driven by Oblique Whistler-Mode Turbulence. J. Plasma Phys. 6,
589–606. doi:10.1017/S0022377800006310

Lyons, L. R., Thorne, R. M., and Kennel, C. F. (1972). Pitch-Angle Diffusion of
Radiation Belt Electrons within the Plasmasphere. J. Geophys. Res. 77,
3455–3474. doi:10.1029/JA077i019p03455

Shklyar, D. R. (1986). Particle Interaction with an Electrostatic vlf Wave in the
Magnetosphere with an Application to Proton Precipitation. Planet. Space Sci.
34, 1091–1099. doi:10.1016/0032-0633(86)90021-8

Thorne, R. M., Li, W., Ni, B., Ma, Q., Bortnik, J., Chen, L., et al. (2013). Rapid Local
Acceleration of Relativistic Radiation-Belt Electrons by Magnetospheric
Chorus. Nature 504, 411–414. doi:10.1038/nature12889

Thorne, R. M. (2010). Radiation Belt Dynamics: The Importance of Wave-
Particle Interactions. Geophys. Res. Lett. 37, L22107. doi:10.1029/
2010GL044990

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2022 Albert, Artemyev, Li, Gan and Ma. This is an open-access article
distributed under the terms of the Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other forums is permitted, provided the
original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice.
No use, distribution or reproduction is permitted which does not comply with
these terms.

Frontiers in Astronomy and Space Sciences | www.frontiersin.org June 2022 | Volume 9 | Article 9102247

Albert et al. Equations of Motion

https://doi.org/10.1029/2011JA017476
https://doi.org/10.1029/2011JA017476
https://doi.org/10.1017/S0022377800006310
https://doi.org/10.1029/JA077i019p03455
https://doi.org/10.1016/0032-0633(86)90021-8
https://doi.org/10.1038/nature12889
https://doi.org/10.1029/2010GL044990
https://doi.org/10.1029/2010GL044990
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/astronomy-and-space-sciences
www.frontiersin.org
https://www.frontiersin.org/journals/astronomy-and-space-sciences#articles

	Equations of Motion Near Cyclotron Resonance
	1 Introduction
	2 Gyro-Averaged Equations of Motion
	3 Time-dependent Hamiltonian Equations
	4 Position-dependent Hamiltonian Equations
	5 Simulations and Discussion
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	References


