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Owing to the development of String Theory and Quantum Gravity, studies of

quantized spaces described by deformed commutation relations for operators

of coordinates and operators of momenta have receivedmuch attention. In this

paper, the implementation of the weak equivalence principle is examined in the

quantized spaces described by different types of deformed algebras, among

them the noncommutative algebra of canonical type, Lie type, and the

nonlinear deformed algebra with an arbitrary function of deformation

depending on momenta. It is shown that the deformation of commutation

relations leads to the mass-dependence of motion of a particle (a composite

system) in a gravitational field, and, hence, to violation of the weak equivalence

principle. We conclude that this principle is recovered in quantized spaces if one

considers the parameters of the deformed algebras to be different for different

particles (bodies) and to be determined by their masses.
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1 Introduction

String Theory and Quantum Gravity predict the existence of a minimal length [see,

for instance, (Gross and Mende, 1988; Maggiore, 1993)]. This, one of the most important

suggestions of these theories, follows from the generalized uncertainty principle (GUP)

ΔX≥
Z

2
1
ΔP + βΔP( ), (1)

where β is a constant which is called the parameter of deformation. Notations ΔX, ΔP are

used for position andmomentum uncertainties. The inequality Eq. 1 leads to the existence

of a minimal value of ΔXwhich is determined by the parameter β and reads ΔXmin � Z
��
β

√
.

One can obtain the generalized uncertainty principle (1) by considering a quadratic

deformation of the commutation relations for the operator of coordinate and the operator

of momentum

X, P[ ] � iZ 1 + βP2( ). (2)

Relation (2) can be generalized as

X,P[ ] � iZF
��
β

√
|P|( ), (3)
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where F( ��
β

√ |P|) is a function, which is called the deformation

function, β is a constant, β ≥ 0, F(0) = 1.

For the invariance of the deformed commutation relation (3)

upon reflection (X→ −X, P→ −P) and for preserving of the time-

reversal symmetry the deformation function has to be even, so

that F � F( ��
β

√ |P|). Also from Eq. 3 it follows that the

deformation function has to be dimensionless, therefore a

dependence of F on the dimensionless product
��
β

√ |P| is

considered. In (Masłowski et al., 2012) the results of studies

of the minimal length in the context of the deformed algebra (3)

are presented and the answer to the question regarding what

functions F( ��
β

√ |P|) lead to the minimal length is found.

Historically the first deformed algebra was proposed by

Snyder in 1947 (Snyder, 1947). The algebra is well studied

[see, for instance, (Romero and Zamora, 2008; Mignemi,

2011; Lu and Stern, 2012; Gnatenko Kh. P. and Tkachuk V.

M., 2019b)]. In the nonrelativistic case the Snyder algebra reads

Xi, Xj[ ] � iZβ XiPj −XjPi( ), (4)
Xi, Pj[ ] � iZ δij + βPiPj( ), (5)

Pi, Pj[ ] � 0. (6)

Also, a three-dimensional algebra leading to the minimal length

was proposed by Kempf [see, for instance, (Kempf et al., 1995;

Kempf, 1997; Sandor et al., 2002; Menculini et al., 2013;

Gnatenko Kh. and Tkachuk V. M., 2019a)]

Xi,Xj[ ] � iZ
2β − β′( ) + 2β + β′( )βP2

1 + βP2
PiXj − PjXi( ), (7)

Xi, Pj[ ] � iZ δij 1 + βP2( ) + β′PiPj( ), (8)
Pi, Pj[ ] � 0, (9)

where β, β′ are constants. Here the minimal length is determined

by the parameters of deformation, it reads ΔXmin � Z
�����
β + β′

√
.

The most simple algebras leading to space quantization (i. e.

the existence of a minimal length and minimal area), are

noncommutative algebras of canonical type. In this algebras

the commutators for coordinates and momenta are equal to

constants

Xi, Xj[ ] � iZθij, (10)
Xi, Pj[ ] � iZ δij + σ ij( ), (11)

Pi, Pj[ ] � iZηij, (12)

where θij, σij, ηij are elements of constant antisymmetric matrixes

[see, for example, (Djemai and Smail, 2004; Alavi, 2007; Bastos

and Bertolami, 2008; Bertolami and Queiroz, 2011)].

Modification of the commutation relations in the form (10)-

(12) leads to both a minimal length and a minimal momentum

[see, for instance, (Gnatenko Kh. P. and Tkachuk V. M., 2018b)].

Another type of deformed algebra describing features of the

spatial structure at the Planck scale is the noncommutative

algebra of Lie type. It is characterized by the following

commutation relations

Xi, Xj[ ] � iZθkijXk. (13)

Here θkij are the parameters of noncommutativity which are

constants (see, for instance, (Lukierski and Woronowicz, 2006;

Daszkiewicz and Walczyk, 2008; Lukierski et al., 2018)).

So, different deformed algebras, which describe features of

the spatial structure at the Planck scale were proposed. These

algebras can be divided into algebras of canonical type,

noncommutative algebras of Lie type, and nonlinear deformed

algebras (commutators for coordinates and momenta that are

equal to a nonlinear function of coordinates and momenta). We

would like to note that the status of the minimal length in the

frame of all the algebras is the same. The minimal length

indicates the min linear range in which a particle can be localized.

It is important to mention that a modification of the

commutation relations for coordinates and momenta leads to

violations of the fundamental laws and principles of physics,

among them the weak equivalence principle. This principle is

also known as the Galilean equivalence principle or universality

of free fall, and is a restatement of the equality of gravitational

and inertial mass. According to the weak equivalence principle,

the kinematic characteristics, such as the velocity and position of

a point mass in a gravitational field do not depend on its mass,

composition and structure and are determined only by its initial

position and velocity.

The equivalence principle was examined in the context of a

noncommutative algebra of canonical type in (Bastos et al., 2011;

Gnatenko, 2013; Saha, 2014; Bertolami and Leal, 2015; Gnatenko

Kh. and Tkachuk V., 2017b, Gnatenko Kh. and Tkachuk, V.

2018a). The weak equivalence principle in noncommutative

phase space was studied in (Bastos et al., 2011; Bertolami and

Leal, 2015; Gnatenko Kh. and Tkachuk V., 2017b, Gnatenko Kh.

and Tkachuk, V. 2018a). The authors of (Bertolami and Leal,

2015) concluded that the equivalence principle holds in the

quantized space in the sense that an accelerated frame of

reference is locally equivalent to a gravitational field, unless

the parameters of noncommutativity are anisotropic (ηxy ≠
ηxz). In the paper (Lake et al., 2019) generalized uncertainty

relations that do not lead to the violation of the equivalence

principle were presented. GUP models that do not require

modified commutation relations, have also been proposed in

(Bishop et al., 2021).

In this paper we study the weak equivalence principle in the

context of different deformed algebras leading to space

quantization. We show that the motion of a particle (a body)

in a gravitational field in quantized space depends on its mass

and composition. The weak equivalence principle is violated in

quantized space. It is important that space quantization leads to a

great violation of the weak equivalence principle if one considers

the parameters of the deformed algebras to be the same for
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different particles (bodies). We conclude that in the context of

different algebras (algebras with arbitrary deformation function

depending on momentum, noncommutative algebras of

canonical type, and noncommutative algebras of Lie type) the

weak equivalence principle is recovered in the case when the

parameters of deformation are different for different particles

and are determined by their masses.

The paper is organized as follows. In Section 2 the weak

equivalence principle is studied in the space with GUP. It is

shown that the deformation of the commutation relations

leads to a great violation of the weak equivalence principle.

We find a condition on the parameter of deformation in

which the weak equivalence principle is preserved. Section 3

is devoted to studies of the motion of a particle in a

gravitational field in a noncommutative phase space of

canonical type. The way to recover the weak equivalence

principle in the space is proposed. Section 4 is devoted to

studying a quantized space with Lie algebraic

noncommutativity. It is shown that the weak equivalence

principle is recovered due to the relation of the parameters of

the noncommutative algebra with mass. Conclusions are

presented in Section 5.

2 The weak equivalence principle in a
quantized space with a nonlinear
deformed algebra and the parameters
of deformation

Let us examine the motion of a particle in a gravitational field

in one-dimensional space characterized by a deformed algebra

(1D) with an arbitrary function of deformation dependent on

momenta (3). We study the following Hamiltonian

H � P2

2m
+mV X( ), (14)

where m is the mass of the particle, V(X) corresponds to the

gravitational potential. Note that in Eq. 14 we consider the

inertial mass (mass in the first term) to be equal to the

gravitational mass (mass in the second term).

In the classical limit Z → 0 on the basis of Eq. 3 we find the

deformed Poisson brackets

X, P{ } � F
��
β

√
|P|( ). (15)

The definition of the brackets reads

f, g{ } � F
��
β

√
|P|( ) zf

zX

zg

zP
− zf

zP

zg

zX
( ). (16)

So, using Eq. 16, one can write the equations of motion of a

particle in the gravitational field in the deformed space as follows

_X � X,H{ } � P

m
F

��
β

√
|P|( ), (17)

_P � P,H{ } � −m zV X( )
zX

F
��
β

√
|P|( ). (18)

From Eqs. 17, 18 it follows that the motion of a particle in a

gravitational field in the space (3) depends on its mass. So, the

deformed relation (3) leads to violation of the weak equivalence

principle. Moreover, the GUP (3) causes a great violation of the

weak equivalence principle (the value of the Eötvös parameter is

many orders larger then that obtained experimentally). Let us

show this by considering the motion of two particles in a uniform

gravitational field V(X) = −gX, where g is the gravitational

acceleration. On the basis of Eqs. 17, 18 one can write

_X
b( ) � P b( )

mb
F

��
β

√
|P b( )|( ), (19)

_P � mbgF
��
β

√
|P b( )|( ). (20)

So, up to the first order in β we find

€X
b( ) � g + 3F′ 0( )g

��
β

√
mb|υ| + 2F′′ 0( ) − F′ 0( )( )2( )gβm2

bυ
2,

(21)
where mb is the mass of a particle labeled by index b (b = (1, 2)),

F′(x) = dF/dx, F′′(x) = d2F/dx2. The notation υ is used for the

velocity of motion in the gravitational field V(X) = −gX in the

ordinary space (i. e. the space with β = 0).

So, up to the first order in β the Eötvös parameter for particles

with masses m1, m2 reads

Δa
a

�
2 €X

1( ) − €X
2( )( )

€X
1( ) + €X

2( )

� 3F′ 0( )|υ|
��
β

√
m1 −m2( ) + 2F′′ 0( ) − F′ 0( )( )2( )υ2β

× m2
1 −m2

2( ).
(22)

To estimate the value of Eq. 22 let us put Z
��
β

√ � lP � ���
ZG

√
/

��
c3

√
(lP is the Planck length, c is the speed of light, G is the

gravitational constant). So, we have

Δa
a

� 3F′ 0( ) |υ|
c

m1 −m2( )
mP

+ 2F′′ 0( ) − F′ 0( )( )2( ) υ2
c2

×
m2

1 −m2
2( )

m2
P

,
(23)

with mP � ��
Zc

√
/

��
G

√
being the Planck mass (Gnatenko and

Tkachuk, 2020).

Note that for m1 = 1 kg, m2 = 0.1 kg in the case of

deformation function F( ��
β

√ |P|) � 1 + βP2 form Eq. 23 we

obtain great violation of the weak equivalence principle

Δa/a ≈ 0.1 which has not been seen experimentally

(Gnatenko and Tkachuk, 2020). From the tests of the weak

equivalence principle it follows that this principle holds with

high accuracy. For instance, on the basis of the Lunar Laser

Ranging experiment it is known that the equivalence

principle holds with precision Δa/a = ( − 0.8 ± 1.3) · 10−13
(Williams et al., 2012). Similar results were obtained from the
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laboratory torsion-balance tests of the weak equivalence

principle for Be and Ti in which Δa/a = (0.3 ± 1.8) · 10−13
and Δa/a = ( − 0.7 ± 1.3) · 10–13 for Be and Ti or Al (Wagner

et al., 2012). The MICROSCOPE space mission aims to test

the principle with accuracy 10−15 (Touboul et al., 2017).

It is important to mention that we have obtained a great

violation of the weak equivalence principle in a space with

GUP assuming that parameter of deformation β is the same

for different particles. Let us consider a more general case in

which the parameter of deformation is different for different

particles. We use notation βb for the parameter of

deformation corresponding to a particle with index b. The

weak equivalence principle can be recovered in a space with

GUP, if we assume that βb is determined by the mass of a

particle as ��
βb

√
mb � γ � const, (24)

where the constant γ is the same for different particles and does

not depend onmass (Quesne and Tkachuk, 2010; Tkachuk, 2012;

Gnatenko and Tkachuk, 2020).

Taking into account Eq. 24, we find that the Eötvös

parameter written up to the first order in β is equal to zero

Δa
a

� 3F′ 0( )|υ|
��
β1

√
m1 −

��
β2

√
m2( ) + 2F′′ 0( ) − F′ 0( )( )2( )υ2

× β1m
2
1 − β2m

2
2( ) � 0.

(25)
Also, considering the parameter of deformation to be

dependent on mass according to

β � γ2

m2
, (26)

(this expression follows from Eq. 24), the equations of motion of

a particle in a gravitational field Eqs. 17, 18 read

_X � P

m
F γ

|P|
m

( ), (27)
_P

m
� −zV X( )

zX
F γ

|P|
m

( ). (28)

On the basis of Eqs. 27, 28 we have that the equations forX and P/

m do not contain mass. Therefore, the solutions X(t), P(t)/m of

these equations also do not depend on mass. So, the weak

equivalence principle is recovered due to the assumption Eq.

24 (Tkachuk, 2012; Gnatenko and Tkachuk, 2020).

Let us also study the weak equivalence principle in the more

general three-dimensional case of deformed (3D) algebras.

Namely, let us consider the following commutation relations

Xi,Xj[ ] � G P2( ) XiPj −XjPi( ), (29)
Xi, Pj[ ] � f P2( )δij + F P2( )PiPj, (30)

Pi, Pj[ ] � 0. (31)

The algebra Eqs. 29–31 is a generalization of the well known

Snyder Eqs. 4–6 and Kempf Eqs. 7–9 algebras. The functions

G(P2), F(P2) and f(P2) in Eqs. 29–31 have to satisfy the relation

f F − G( ) − 2f′ f + FP2( ) � 0, (32)

(here f′ = zf/zP2) which follows from the Jacobi identity

(Frydryszak and Tkachuk, 2003).

From the classical limit of Eqs. 29–31 we obtain the following

Poisson brackets

Xi,Xj{ } � G P2( ) XiPj −XjPi( ), (33)
Xi, Pj{ } � f P2( )δij + F P2( )PiPj, (34)

Pi, Pj{ } � 0. (35)

Let us study the weak equivalence principle in the quantized

space represented by Eqs. 33–35. Considering a particle in a

gravitational field V(X) with Hamiltonian

H � ∑
i

P2
i

2m
+mV X( ), (36)

and taking into account the deformation of the Poisson brackets

Eqs. 33–35, we find the following equations of motion

_Xi � Pi

m
f P2( ) +m∑

j

zV X( )
zXj

G P2( ) XiPj −XjPi( ), (37)

_Pi � −m zV X( )
zXi

~f βP2( ) −m∑
j

zV X( )
zXj

F P2( )PiPj. (38)

On the basis of dimensional considerations the functions

f(P2), F(P2), G(P2) can be rewritten as f(P2) � ~f(βP2), F(P2) �
β~F(βP2) and G(P2) � β ~G(βP2), where ~f(βP2), ~F(βP2) and
~G(βP2) are dimensionless functions. Taking this into account,

and considering the condition Eq. 26, one can rewrite the

equations of motion of a particle in a gravitational field as follows

_Xi � Pi′~f γ2 P′( )2( ) + γ2 ∑
j

zV X( )
zXj

~G γ2 P′( )2( )
× XiPj′ −XjPi′( ), (39)

_Pi′ � −zV X( )
zXi

~f γ2 P′( )2( ) − γ2 ∑
j

zV X( )
zXj

~F

× γ2 P′( )2( )Pi′Pj′,
(40)

where Pi′ � Pi/m. It is important that Eqs. 39, 40 do not depend

on mass. So, the weak equivalence principle is preserved in

quantized space Eqs. 33–35 if the relation of the parameter of

deformation with mass Eq. 26 is satisfied (Gnatenko and

Tkachuk, 2020).

It is also important to mention that the relation Eq. 26 gives a

possibility to preserve the additivity property of the kinetic

energy in a space with GUP and to solve the problem of the

significant effect of the GUP on the kinetic energy of a

macroscopic body [for details see (Gnatenko and Tkachuk,

2020)].
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3 Influence of noncommutativity of
coordinates and noncommutativity
of momenta on the motion in a
gravitational field

Let us study the motion of a particle in a uniform

gravitational field in the context of a noncommutative algebra

of canonical type (2D)

X1, X2[ ] � iZθ, (41)
Xi, Pj[ ] � iZδij, (42)
P1, P2[ ] � iZη, (43)

where the parameters of noncommutativity θ, η are constants

and i, j = (1, 2). In the classical limit we obtain the following

deformed Poisson brackets

X1, X2{ } � θ, (44)
Xi, Pj{ } � δij, (45)
P1, P2{ } � η. (46)

Let us examine the motion of a particle in a gravitational

field in the space Eqs. 44–46 and find the way to preserve the

weak equivalence principle (Gnatenko, 2013; Gnatenko Kh.

and Tkachuk V., 2017b, Gnatenko Kh. and Tkachuk, V.

2018a). The equations of motion of a particle with mass m

in a uniform gravitational field with Hamiltonian

H � P2
1

2m
+ P2

2

2m
−mgX1, (47)

read

_X1 � X1, H{ } � P1

m
, (48)

_X2 � X2, H{ } � P2

m
+mgθ, (49)

_P1 � P1, H{ } � mg + η
P2

m
, (50)

_P2 � P2, H{ } � −ηP1

m
. (51)

In Eq. 47 one considers the field directed along the X1 axis.

Note that in the two-dimensional case the noncommutative

algebra of canonical type Eqs. 41–43 is rotationally invariant,

so the results and conclusions we obtain, considering this

particular case, can be generalized to the case of the arbitrary

direction of the field.

The solution of Eqs. 48–51 with initial conditions X1(0) =

X01, X2(0) = X02, _X1(0) � υ01, _X2(0) � υ02 is the following

X1 t( ) � mυ01
η

sin
η

m
t + m2g

η2
− m2gθ

η
+ mυ02

η
( ) 1 − cos

η

m
t( )

+X01,

(52)

X2 t( ) � m2g

η2
− m2gθ

η
+ mυ02

η
( )sin η

m
t − mυ01

η
1 − cos

η

m
t( )

−mg

η
t +mgθt +X02.

(53)
The obtained expressions Eqs. 52, 53 depend on mass, if we

assume that the parameters of noncommutativity θ, η are the

same for different particles. In this case the weak equivalence

principle is violated in the noncommutative phase space of

canonical type. The way to solve this problem is to consider,

as in the previous section, that the parameters of

noncommutativity are dependent upon mass (Gnatenko Kh.

and Tkachuk V., 2017b).

The trajectory of a particle in the uniform gravitational field

depends on mθ and η/m. So, if these values do not depend on

mass then the weak equivalence principle is recovered. So, let us

consider the following conditions

θm � γ � const, (54)
η

m
� α � const, (55)

where γ, α are the same for different particles. Taking into

account Eqs. 54, 55, the trajectory Eqs. 52, 53 transforms to

X1 t( ) � υ01
α

sin αt + g

α2
− gγ

α
+ υ02

α
( ) 1 − cos αt( ) +X01, (56)

X2 t( ) � g

α2
− gγ

α
+ υ02

α
( )sin αt − υ01

α
1 − cos αt( ) − g

α
t + γgt

+X02.

(57)
The trajectory of a particle in the gravitational field Eqs. 56,

57 is determined by its initial coordinates and velocities and does

not depend on its mass. So, the weak equivalence principle is

recovered in the noncommutative phase space of canonical type

due to the relations Eqs. 54, 55 (Gnatenko Kh. and Tkachuk V.,

2017b).

It is worth also mentioning that for η → 0 the expressions

Eqs. 52, 53 reduce to the well known result for the trajectory of a

particle in a uniform gravitational field in ordinary space, X1(t) =

gt2/2 + υ01t + X01, X2(t) = υ02t + X02. At the same time, the

noncommutativity of the coordinates affects the relation between

the momenta and velocities, such that

P1 � m _X1, P2 � m _X2 +mgθ( ). (58)

In the case when the parameter of coordinate noncommutativity

is inversely proportional to the mass on the basis of Eq. 58 we

obtain that the momentum P2 is proportional to mass, as it is in

ordinary space P2 � m( _X2 + γg).
In the more general case of a particle in a nonuniform

gravitational field V(X1, X2) with Hamiltonian

H � P2
1

2m
+ P2

2

2m
+mV X1, X2( ), (59)
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The equations of motion read

_X1 � X1, H{ } � P1

m
+mθ

zV X1, X2( )
zX2

, (60)

_X2 � X2, H{ } � P2

m
−mθ

zV X1, X2( )
zX1

, (61)

_P1 � P1, H{ } � −m zV X1, X2( )
zX1

+ η
P2

m
, (62)

_P2 � P2, H{ } � −m zV X1, X2( )
zX2

− η
P1

m
. (63)

To obtain Eqs. 60–63 we take into account Eqs. 44–46. From

Eqs. 60–63 we can conclude that the weak equivalence principle

is violated, if the parameters of noncommutativity are the same

for different particles. In the case when the conditions on the

parameters of noncommutativity Eqs. 54, 55 hold, introducing

the notation Pi′ � Pi/m, we can write

_X1 � P1′ + γ
zV X1, X2( )

zX2
, _X2 � P2′ − γ

zV X1, X2( )
zX1

, (64)

_P1′ � −zV X1, X2( )
zX1

+ αP2′, _P2′ � −zV X1, X2( )
zX2

− αP1′. (65)

Eqs. 64, 65 depend on the parameters γ and α and do not depend

on mass. As a result, Xi = Xi(t), Pi′ � Pi′(t) also do not depend on
mass. So, conditions Eqs. 54, 55 give a possibility to preserve the

weak equivalence principle also in the case of motion in a

nonuniform gravitational field (Gnatenko Kh. and Tkachuk

V., 2017b).

It is worth noting that in this section we consider the two-

dimensional case of the noncommutative algebra of canonical

type Eqs. 41–43, because it is rotationally-invariant. In the three-

dimensional noncommutative phase space of canonical type one

faces the problem of rotational symmetry breaking. A 3D algebra

which is rotationally invariant and equivalent to the

noncommutative algebra of canonical type was proposed in

(Gnatenko K. P. and Tkachuk V. M., 2017a). It is important

to mention that to recover the weak equivalence principle in the

context of this algebra the idea to relate the parameters of

noncommutativity with mass has to be considered [for details

see (Gnatenko, 2018)].

4 Weak equivalence principle in
noncommutative space of Lie type

Let us also study the motion of a composite system in a

gravitational field in a space with a noncommutative algebra of

Lie type and examine the weak equivalence principle. We

consider the following algebra

Xi, Xj{ } � θ0ijt + θkijXk, (66)
Xi, Pj{ } � δij + �θ

k

ijXk + ~θ
k

ijPk, Pi, Pj{ } � 0, (67)

where i, j, k = (1, 2, 3), θ0ij, θ
k
ij,

�θ
k
ij,

~θ
k

ij are the parameters of

noncommutativity, that are antisymmetric in their lower indexes

θ0ij � −θ0ji, �θkij � −�θkji, ~θ
k

ij � −~θkij (Miao et al., 2011).

From the Jacobi identity it follows that the parameters θ0ij, θ
k
ij,

�θ
k
ij,

~θ
k

ij can not be arbitrary. In the particular case when

θ0kl � −θ0kγ �
1
κ
, θ0lγ �

1
κ
, (68)

θlkγ � −θklγ � ~θ
l

kγ � −~θklγ �
1
~κ
, (69)

the noncommutative algebra of Lie type reads

Xk,Xγ{ } � − t
κ
+ Xl

~κ
, Xl, Xγ{ } � t

κ
− Xk

~κ
, (70)

Xk,Xl{ } � t

κ
, Pk, Xγ{ } � Pl

~κ
, (71)

Pl, Xγ{ } � −Pk

~κ
, Xi, Pj{ } � δij, (72)

Xγ, Pγ{ } � 1 Pm, Pn{ } � 0, (73)

[see (Miao et al., 2011)]. Choosing

θ0lγ � −θ0kγ �
1
κ
, θlkγ � −θklγ �

1
~κ
, (74)

~θ
l

kγ � −~θklγ �
1
~κ
, (75)

�θ
l

kγ � −�θklγ �
1
�κ
, (76)

We obtain the following noncommutative algebra

Xk,Xγ{ } � − t
κ
+ Xl

~κ
, Xl, Xγ{ } � t

κ
− Xk

~κ
, (77)

Xk,Xl{ } � 0, Pk, Xγ{ } � Xl

�κ
+ Pl

~κ
, (78)

Pl, Xγ{ } � Xk

�κ
− Pk

~κ
, Xi, Pj{ } � δij, (79)

Xγ, Pγ{ } � 1, Pm, Pn{ } � 0, (80)

[see (Miao et al., 2011)].

The equations of motion of a particle with mass m in a

gravitational field V = V(X1, X2, X3) with Hamiltonian H � P2

2m +
mV(X1, X2, X3) in a space with a noncommutative algebra of Lie

type read

_Xi � Pi

m
+ �θ

k

ij

PjXk

m
+ ~θ

k

ij

PjPk

m
+m θ0ijt + θkijXk( ) zV

zXj
, (81)

_Pi � −m zV

zXi
−m �θ

k

ijXk + ~θ
k

ijPk( ) zV

zXj
. (82)

The equivalence principle is recovered if the following

conditions are satisfied (Gnatenko, 2019)

θ0 b( )
ij mb � γ0ij � const, θk b( )

ij mb � γkij � const, (83)
~θ
k b( )
ij mb � ~γkij � const, �θ

k b( )
ij � �θ

k

ij. (84)
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The constants γ0ij, γ
k
ij, ~γ

k
ij are the same for different particles,

γ0ij � −γ0ji, γkij � −γkji, ~γkij � −~γkji. Taking into account (83), (84)

and using the notation Pi′ � Pi/m the equations of motion of a

particle in an arbitrary gravitational field can be rewritten as

_Xi � Pi′ + �θ
k

ijPj′Xk + ~γkijPj′Pk′ + γ0ijt + γkijXk( ) zV

zXj
, (85)

_Pi′ � − zV

zXi
− �θ

k

ijXk + ~γkijPk′( ) zV

zXj
. (86)

The obtained Eqs. 85, 86 do not contain mass. So, conditions

Eqs. 83, 84 give a possibility to recover the weak equivalence

principle in a space characterized by a noncommutative algebra

of Lie type Eqs. 66, 67.

5 Discussion

The idea to describe features of the spatial structure at the

Planck scale (the existence of a minimal length) with the help of

deformed algebras has been considered. Deformed algebras of

different types have been studied. Among them are deformed

algebras with arbitrary functions of deformation that depends on

momenta (these algebras are generalizations of the nonrelativistic

Snyder and Kempf algebras), algebras with noncommutativity of

the coordinates and noncommutativity of the momenta of

canonical type, and noncommutative algebras of Lie type. The

implementation of the weak equivalence principle has been

examined in the quantized spaces described by these

deformed algebras.

We have shown that, considering the parameters of the

deformed algebras to be the same for different particles

(different bodies), one faces the problem of violation of the

weak equivalence principle. In this case the motion of a

particle in a gravitational field in quantized space depends on

its mass and composition. Even in the case of equality between

the gravitational and the inertial masses of a body the Eötvös

parameter is not equal to zero. Besides space quantization leads

to great violation of this principle which should have been seen

experimentally (see Eq. 23). To solve this problem the

dependence of the parameters of the deformed algebras on

mass has been considered. We have shown that if the

parameters of the deformed algebras for coordinates and

momenta are related to the particle mass the weak

equivalence principle is preserved in noncommutative phase

spaces of canonical type, in spaces with Lie algebraic

noncommutativity, and in spaces with an arbitrary function of

deformation dependent on momenta. In addition, the same

relations for the parameters of deformation (parameters of

noncommutativity) on mass give a possibility to recover the

properties of the kinetic energy (its additivity and independence

of compositions) and to solve the problem of the great effect of

the minimal length on the motion of macroscopic bodies which is

well known in the literature as the soccer-ball problem

(Gnatenko and Tkachuk, 2020, Gnatenko Kh. and Tkachuk,

V. 2017b; Gnatenko, 2019).
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