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The electrons are an essential particle species in the solar wind. They often exhibit non-
equilibrium features in their velocity distribution function. These include temperature
anisotropies, tails (kurtosis), and reflectional asymmetries (skewness), which contribute
a significant heat flux to the solar wind. If these non-equilibrium features are sufficiently
strong, they drive kinetic micro-instabilities. We develop a semi-graphical framework
based on the equations of quasi-linear theory to describe electron-driven instabilities in
the solar wind. We apply our framework to resonant instabilities driven by temperature
anisotropies. These include the electron whistler anisotropy instability and the propagating
electron firehose instability. We then describe resonant instabilities driven by reflectional
asymmetries in the electron distribution function. These include the electron/ion-acoustic,
kinetic Alfvén heat-flux, Langmuir, electron-beam, electron/ion-cyclotron, electron/
electron-acoustic, whistler heat-flux, oblique fast-magnetosonic/whistler, lower-hybrid
fan, and electron-deficit whistler instability. We briefly comment on non-resonant
instabilities driven by electron temperature anisotropies such as the mirror-mode and
the non-propagating firehose instability. We conclude our review with a list of open
research topics in the field of electron-driven instabilities in the solar wind.
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1 INTRODUCTION

The solar wind is a fully ionised and quasi-neutral plasma flow (for a recent review about the solar
wind, see Verscharen et al., 2019b). Plasma flows with these properties consist of free negatively
charged electrons and free positively charged ions. The majority of the ions in the solar wind are
protons with an addition of 2–5% of α-particles and a minority contribution of heavier ions. Quasi-
neutrality requires that electrons and ions are spatially distributed so that the total charge density of
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the plasma is approximately zero on scales much greater than the
Debye length. In order to fulfill quasi-neutrality, electrons must
be, on average, the particle species with the greatest number
density in fully ionised and quasi-neutral plasmas like the
solar wind.

The mass of an electron is by a factor of 1836 times smaller
than the mass of a proton. Therefore, the direct contributions
of electrons to the solar-wind mass, momentum, angular-
momentum, and kinetic-energy fluxes are negligible
compared to the proton contributions. However, electrons
contribute significantly to the overall momentum balance of
the solar wind through their thermal pressure gradient
(Parker, 1958; Landi and Pantellini, 2003) and to the overall
energy balance of the solar wind through their heat flux
(Hollweg, 1974; Scime et al., 1994; Scime et al., 1999; Pagel
et al., 2005; Bale et al., 2013; Borovsky and Gary, 2014;
Cranmer and Schiff, 2021). This is true both for fast solar-
wind streams, whose sources are open coronal field regions
such as polar coronal holes, as well as for the wind originating
from the more complex coronal regions associated with helmet
streamers and pseudo-streamers. In the simplest models of
coronal acceleration, the fluid electron pressure gradient
reflects the effects of the interplanetary electric field set up
by the much greater scale height of electrons compared to
protons of similar temperatures (Parker, 2010). The
subsequent (Jeans-theorem) evolution of the wind, taking
into account charge conservation (the outflow must be
globally neutral) as well as local charge neutrality, together
with magnetic-moment conservation for particles of each
species, leads to distribution functions in the supersonic
wind that are strongly out of equilibrium. These
distributions become unstable to plasma and
electromagnetic field oscillations that most likely play a
major role in shaping the observed distributions as we
discuss in this article.

Electron-kinetic processes such as resonant damping and
instabilities modify the overall energy budget of the
electromagnetic plasma fluctuations, which has an impact on
the overall evolution of the solar wind (Gary et al., 1975b;
Feldman et al., 1976a; Ramani and Laval, 1978; Gary et al.,
1999b; Alexandrova et al., 2009; Schekochihin et al., 2009;
Štverák et al., 2015). Estimates of the empirical proton-to-total

heating ratio based on observed temperature profiles in the inner
heliosphere suggest that a significant fraction (~ 40%) of the
turbulent energy is dissipated by electrons (Cranmer et al., 2009).
Therefore, electrons and electron-driven processes are considered
essential for our understanding of the global evolution of the solar
wind (and for other astrophysical plasmas, see Verscharen et al.,
2021a,b).

In-situ solar-wind measurements show that the electrons, like
the ions, often exhibit deviations from thermodynamic
equilibrium (Feldman et al., 1975; Rosenbauer et al., 1977;
Pilipp et al., 1987; Maksimovic et al., 1997). These deviations
become apparent in the electrons’ velocity distribution function fe
that often differs from the Maxwellian equilibrium distribution.
We define fe so that fe (x, v, t) d

3x d3v describes the total number
of electrons in the phase-space volume d3x d3v centred around
the coordinates (x, v) at time t. If binary Coulomb collisions
between the plasma particles were the dominant process that
determined fe, the observed deviations from the Maxwellian
equilibrium would not persist, at least not over long timescales
when compared to the Coulomb collision time. We, therefore,
refer to the solar wind often as a collisionless plasma (Marsch,
2006). Given the steep energy dependence of the Coulomb-
collision cross section, this applies especially to the
suprathermal electrons; however, for the thermal electrons,
collisions remain important (Scudder and Olbert, 1979; Landi
et al., 2012).

Temperature anisotropy is a typical non-thermal feature
associated with fe in the solar wind (Phillips et al., 1989; Salem
et al., 2003; Štverák et al., 2008). Temperature anisotropy is
characterised by different temperatures in the directions
perpendicular and parallel to the local magnetic field. In this
context, we understand temperature as the kinetic temperature
based on the diagonal elements of the electron pressure tensor
(i.e., the second velocity moment of fe). We define the
temperature of a plasma species j in the direction
perpendicular to the magnetic field as T⊥j and its temperature
in the direction parallel to the magnetic field as T‖j.

Another important non-thermal feature of the solar-wind
electron distribution function is its ternary structure consisting
of a thermal core, a suprathermal halo (Feldman et al., 1975;
Pilipp et al., 1987; Lie-Svendsen et al., 1997; Maksimovic et al.,
1997), and a field-aligned beam (Pilipp et al., 1987; Lin, 1998).

FIGURE 1 | Schematic of a typical electron distribution function in the solar wind. Left: two-dimensional distribution function in (v⊥, v‖) space. Right: cut of the
distribution function along the v‖-axis. The blue colour indicates the electron core, the green colour represents the halo, and the red colour represents the strahl.
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Figure 1 illustrates the three populations of the electron
distribution function in velocity space and the formation of
the overall electron distribution in the solar wind.

The thermal core consists of about 95% of the electrons (blue
colour in Figure 1). It has a shape close to a Maxwellian
distribution and temperatures comparable to the proton
temperatures in the solar wind. The Maxwellian shape of the
core is often attributed to the lower mean free path for Coulomb
collisions at low speeds in the distribution (Phillips and Gosling,
1990).

The suprathermal halo is a quasi-isotropic tail of electrons
represented by an enhancement of fe above the Maxwellian
distribution. It is primarily observed at energies above a
breakpoint of about 50 eV at 1 au (green colour in
Figure 1; McComas et al., 1992; Lie-Svendsen et al., 1997).
The location of this breakpoint and the relative density of the
halo population vary with distance from the Sun and show
correlations with solar-wind parameters such as speed and
temperature (Maksimovic et al., 2000, 2005; Pierrard et al.,
2016, 2020; Bakrania et al., 2020). The halo population is often
successfully modelled with a κ-distribution (using the Greek
letter “kappa”; for detailed information about κ-distributions,
see the recent textbooks by Livadiotis, 2017 and Lazar and
Fichtner, 2021).

The field-aligned beam population is called the electron strahl
(red colour in Figure 1). This population appears as a “shoulder”
on the electron distribution at small pitch-angles around the
directions parallel or anti-parallel to the magnetic field and
typically in the anti-sunward direction (Hammond et al., 1996;
Fitzenreiter et al., 1998). As in the case of the halo, the breakpoint
energy between the core and the strahl populations and the
relative density of the strahl vary with distance from the Sun
and exhibit correlations with the solar-wind speed and
temperature (Maksimovic et al., 2005; Pagel et al., 2007;
Štverák et al., 2009; Graham et al., 2017; Abraham et al.,
2022). The bulk velocities of the core, halo, and strahl often
exhibit non-zero differences in their components parallel to the
magnetic field. Given the requirement for global quasi-neutrality
imposed by Poisson’s equation, these field-aligned relative drifts
must be such that the total electron charge flux is equal to the total
ion charge flux. Given the outward drift of the strahl, this typically
leads to a sunward drift of the core distribution. The relative
drifts, particularly those of the suprathermal components, are
responsible for the majority of the heat flux in the electron
distribution.

If the deviations from thermodynamic equilibrium are large
and certain criteria, which we discuss in this review, are fulfilled,
the kinetic configuration of fe drives kinetic micro-instabilities.
These instabilities lead to the exponential growth of fluctuations
in the electromagnetic or electrostatic fields over time at the
expense of the integrated particle kinetic energy. During the
growth of these instabilities, particles interact with the growing
fluctuations, leading to a change of fe that reduces the non-
thermal drivers of the instability, until fe achieves a marginally
stable state. In the case of instabilities driven by temperature
anisotropy, this process leads to a reduction of the anisotropy. In
the case of instabilities driven by heat flux, this process leads to a

reduction of the heat flux (López et al., 2020). The efficiency of the
heat-flux reduction by different instabilities is a matter of ongoing
research. The ability of electron-driven instabilities to regulate
electron temperatures, temperature anisotropies, and potentially
heat flux makes them important for the overall evolution of the
solar wind. We often characterise these instabilities in terms of
instability thresholds that depend on plasma bulk parameters,
such as the densities, bulk speeds, and temperatures of the
involved plasma populations.

The launch of Parker Solar Probe in 2018 and the launch of
Solar Orbiter in 2020 have started a new era of electron
observations in the solar wind (Fox et al., 2016; Müller et al.,
2020; Owen et al., 2020; Whittlesey et al., 2020). These spacecraft
measure the three-dimensional solar-wind electron distribution
function over a wide range of heliocentric distances and with
unprecedented accuracy and cadence. Electrons are particularly
difficult to measure due to their small mass and due to the small
kinetic energies of a large number of electrons in the distribution
(Wüest et al., 2007). These energies are often comparable to the
energy associated with the spacecraft electrostatic potential at the
measurement point. Nevertheless, these modern observations
confirm earlier suggestions that the electron distribution
evolves with distance from the Sun and that non-thermal
features are essential for a complete description of the
evolution of the solar wind, especially near the Sun (Halekas
et al., 2020; Berčič et al., 2021b; Halekas et al., 2021b; Abraham
et al., 2022; Jeong et al., 2022b). These results and extrapolations
based on previous measurements also suggest that electron-
driven instabilities play an important role in the shaping of
the electron distribution (Berčič et al., 2019), although many
questions about electron kinetics and its impact on the evolution
of the solar wind remain open.

With this review, we pay tribute to the many theoretical and
numerical discoveries made by Peter Gary in the field of electron-
driven instabilities in the solar wind. Through his application of
linear Vlasov–Maxwell theory, Peter made crucial contributions to
the understanding of the energetics of the solar wind. In Section 2,
we present a basic summary of linear Vlasov–Maxwell theory and
our quasi-linear framework to visualise the impact of electron-
driven instabilities. In Section 3, we discuss instabilities driven by
temperature anisotropies in the solar-wind electron populations. In
Section 4, we explore instabilities driven by reflectional
asymmetries in the electron distribution function, including
instabilities driven by electron heat flux. Section 5 gives a short
summary of non-resonant electron-driven instabilities. Finally,
Section 6 presents the conclusions of our work as well as an
outlook on open questions and future observations of electron-
driven instabilities.

2 THEORETICAL FRAMEWORK FOR THE
DESCRIPTION OF RESONANT
MICRO-INSTABILITIES
In this section, we summarise linear Vlasov–Maxwell theory for
the calculation of the hot-plasma dispersion relation of plasma
waves and instabilities. We then introduce a quasi-linear
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framework for the description of the evolution of the electron
distribution function under the action of electron-driven
instabilities. The framework described in this section applies
both to electrons and to ions in collisionless plasmas. This
prepares us for the discussion in the subsequent sections of
specific electron-driven instabilities in the solar wind.

2.1 Linear Vlasov–Maxwell Theory
Linear Vlasov–Maxwell theory is a framework for the description
of small-amplitude plasma waves in kinetic plasmas. The starting
point for the derivation of the hot-plasma dispersion relation in
linear Vlasov–Maxwell theory is the Vlasov equation,

zfj

zt
+ v · zfj

zx
+ qj
mj

E + 1
c
v × B( ) · zfj

zv
� 0, (1)

combined with Maxwell’s equations,

∇ · E � 4πϱ, (2)
∇ · B � 0, (3)

∇× E � −1
c

zB
zt
, (4)

and

∇× B � 4π
c
j + 1

c

zE
zt
. (5)

In this coupled set of equations, fj (x, v, t) is the velocity
distribution function of species j, E is the electric field, B is the
magnetic field, qj and mj are the charge and the mass of a
particle of species j, ϱ is the charge density, j is the current
density, and c is the speed of light. Self-consistency demands
that

ϱ �∑
j

qj ∫fj d
3v (6)

and

j �∑
j

qj ∫ vfj d
3v, (7)

showing that Eqs. 1–5 represent a complicated, coupled set of
integro-differential equations in six-dimensional phase space and
time. Linear Vlasov–Maxwell theory simplifies this set of
equations by linearisation so that

fj x, v, t( ) � f0j v( ) + δfj x, v, t( ), (8)
E (x, t) = δE (x, t), and B (x, t) = B0 + δB (x, t), where the subscript
0 indicates a background quantity and δ indicates a fluctuating
quantity that averages to zero over time and space. Moreover, we
make the assumption that all fluctuating quantities behave like
plane waves, ∝ eik·x−iωt, where k is the wave vector and ω is the
wave frequency. As described in the literature (e.g., Stix, 1992),
the application of these assumptions and Landau’s procedure for
the analytic continuation around poles in the complex plane lead
to the dispersion relation in the form

detD � 0, (9)

where

D �
ϵxx − n2z ϵxy ϵxz + nxnz
ϵyx ϵyy − n2x − n2z ϵyz

ϵzx + nznx ϵzy ϵzz − n2x

⎛⎜⎜⎝ ⎞⎟⎟⎠, (10)

is the dispersion tensor,  is the plasma susceptibility tensor, and
n = kc/ω. In this convention, the reference frame is chosen so that
ky = 0. The entries of the 3 × 3 matrix D depend on the plasma
background properties (qj, mj, f{0j}, and B0) and of the wave
properties (k and ω). Numerous numerical tools exist that solve
Eq. 9, often assuming closed expressions for f0j such as
Maxwellian or bi-Maxwellian distributions (Roennmark, 1982;
Klein et al., 2012; Verscharen and Chandran, 2018).

The standard approach for finding the dispersion relation
(corresponding to an initial-value problem) involves the
determination of a complex ω that solves Eq. 9 for given
plasma background properties at fixed k. In general, these
solutions are complex-valued. We define the complex ω that
solves Eq. 9 for given background parameters and k as

ωk � ωkr + iγk, (11)
whereωkr = Re (ωk) is the real wave frequency and γk= Im (ωk) is the
growth/damping rate at wave vector k. The fluctuation amplitudes of
solutions with γk < 0 exponentially decrease with time, while the
fluctuation amplitudes of solutions with γk > 0 exponentially
increase with time. Therefore, we refer to solutions with γk < 0
as dampedwaves and to solutions with γk> 0 as instabilities. In linear
theory, the damping rate γk is generally a function of k that possesses
a global maximum at fixed plasma background properties. We refer
to the maximum growth rate γm as the maximum γk over all k for a
given instability and given plasma background properties.

Due to the kinetic (microphysical) nature of these instabilities, we
also find the termmicro-instabilities for these solutions in the literature.
Peter Gary pioneered the application of linear Vlasov–Maxwell theory
to the study of micro-instabilities in space plasmas.

2.2 Quasi-Linear Evolution of
Micro-Instabilities
If γk ≠ 0, the energy density of the electromagnetic fluctuations
changes over time. This process exchanges energy between the
electromagnetic field and the plasma particles, either in the form
of a particle energy loss (γk > 0) or gain (γk < 0) in order to
conserve the total energy. This fundamental concept helps us
understand the evolution of the velocity distribution function
under the action of micro-instabilities.

Resonant micro-instabilities are a family of micro-instabilities
in which the energy exchange occurs via resonant wave–particle
interactions between the unstable waves and the plasma particles.

Quasi-linear theory is a mathematical framework to describe
the evolution of f0j (Vedenov et al., 1961; Drummond and Pines,
1964; Kennel and Engelmann, 1966; Rowlands et al., 1966). It
requires that the amplitude of the resonant waves and their
damping rates are small (|δfj|≪ f0j in Eq. 8, and |γm|≪|ωkr| in
Eq. 11 at the unstable k), so that the timescale of the evolution of
f0j is much greater than the period of the resonant wave 1/ωkr.
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Under the assumptions of quasi-linear theory, the background
distribution is gyrotropic; i.e., cylindrically symmetric around B0.
Therefore, it is helpful to work in cylindrical coordinates in
velocity space, so that v is represented by the velocity
component v⊥ perpendicular to B0, the velocity component v‖
parallel to B0, and the azimuthal angle ϕv. Likewise, we express k
with its cylindrical coordinates k⊥, k‖, and ϕk.

The slow, quasi-linear evolution of f0j over time due to
resonant wave–particle interactions is given by the equation
(Stix, 1992)

zf0j

zt
� lim

V→∞
∑+∞
n�−∞

q2j
8π2m2

j

∫ 1
v⊥V

Ĝv⊥δ ωkr − k‖v‖ − nΩj( ) ψj,n
k

∣∣∣∣ ∣∣∣∣2Ĝf0j d
3k,

(12)
where

Ĝ ≡ 1 − k‖v‖
ωkr

( ) z

zv⊥
+ k‖v⊥

ωkr

z

zv‖
, (13)

ψj,n
k ≡

1�
2

√ Ek,re
iϕk Jn+1 ξj( ) + Ek,le

−iϕkJn−1 ξj( )[ ] + v‖
v⊥

EkzJn ξj( ),
(14)

Ωj ≡ qjB0/mjc is the cyclotron frequency1, ξj = k⊥v⊥/Ωj is the
argument of the Bessel function Jm of orderm, and n is an integer
that marks the order of the resonance. We refer to the resonance
with n = 0 as the Landau resonance and to all other resonances
with n ≠ 0 as cyclotron resonances. The left and right circularly
polarised components of the electric field are given by
Ek,l ≡ (Ekx + iEky)/

�
2

√
and Ek,r ≡ (Ekx − iEky)/

�
2

√
, where we

use the Fourier transformation of the electric field in the
convention

Ek k, t( ) � ∫
V

δE x, t( )e−ik·x d3x (15)

over the spatial volume V. We define the sense of the polarisation
of a given wave mode in terms of Ek,l, Ek,r, and Ekz.

Due to the δ-function in Eq. 12, only particles fulfilling the
resonance condition

ωkr � k‖v‖ + nΩj (16)
participate in the resonant wave–particle interactions
associated with a given n. In the case of Landau-resonant
interactions, a resonant particle travels along B0 with the
parallel phase speed of the resonant wave, v‖ = ωkr/k‖. This
resonant particle experiences a constant parallel wave electric
field E‖≡ δE ·B0/B0. In the case of cyclotron-resonant
interactions, a resonant particle travels along B0 at a speed
such that the Doppler-shifted wave frequency in the particle’s
frame of reference is an integer multiple of the particle’s
cyclotron frequency. Such a particle experiences a
perpendicular wave electric field E⊥ ≡ δE − E‖B0/B0 that
does not average to zero over multiple cyclotron periods of
the particle. This description captures the fundamental nature
of resonant wave–particle interactions. We note, however, that
Eq. 12 includes more subtleties such as higher-order and
anomalous cyclotron resonances as well as transit-time
damping, which lie outside the scope of this review.

Figure 2 illustrates an example for a solution to the linear
Vlasov–Maxwell dispersion relation from Eq. 9 and the
resonance conditions from quasi-linear theory in Eq. 16. The
black curve shows a solution of the Vlasov–Maxwell dispersion
relation from Eq. 9 in terms of ωkr for the fast-magnetosonic/
whistler wave as a function of k‖. The dashed lines describe the
resonance conditions from Eq. 16 for n = −1 (blue), n = +1 (red),
and n = 0 (green). Their slopes correspond to different values of
v‖. At any intersection between a line representing a resonance
condition and the plot of the dispersion relation, Eq. 16 is
fulfilled.

Eq. 12 represents a diffusion equation in velocity space. The
operator Ĝ dictates the direction of the diffusive flux when the
resonance condition is fulfilled and ψj,n

k ≠ 0. The diffusive flux of
resonant particles through velocity space is locally tangent to
semicircles in velocity space of the form

v‖ − vph( )2 + v2⊥ � constant, (17)
where vph ≡ ωkr/k‖ is the field-parallel phase speed of the resonant
waves. According to Eq. 17, quasi-linear diffusion conserves
particle kinetic energy in the reference frame that moves with
the velocity vphB0/B0. The description of Eq. 17 leaves us with an
ambiguity in the direction of the diffusive flux of resonant
particles (clockwise or counter-clockwise in velocity space).
This ambiguity is resolved by the requirement that Eq. 12
demands, like other diffusion processes, a diffusive flux from
larger values of f0j to smaller values of f0j.

FIGURE 2 | Dispersion relation and resonance conditions. The black
curve shows a solution to Eq. 9 for the fast-magnetosonic/whistler wave. We
assume an angle of 40° between k and B0 and a very cold plasma (βj = 10−8)
consisting of Maxwellian protons and electrons. For our definition of βj,
see Eq. 22. The dashed lines represent electron resonance conditions
according to Eq. 16 for different n and v‖. The wavenumber is normalised by
the inverse of the electron inertial length de

1In our convention, Ωj has the same sign as qj. This means particularly with regard
to electrons that Ωe < 0.
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Our cylindrical coordinate system is aligned with B0, so that
waves with vph > 0 propagate in the direction of B0. The direction
of propagation of wave solutions with respect to B0 can be
reversed mathematically in two ways: either by changing the
sign of ωkr or by changing the sign of k‖. Although this choice
does not affect the physics described by the wave theory, it has an
impact on the polarisation and thus the applicable resonance
condition. We implicitly assume that ωkr ≥ 0 throughout this
work, so that a reversal of the direction of propagation
corresponds to changing the sign of k‖ in our convention2.

Figure 3 illustrates the quasi-linear diffusion in velocity space.
The black semi-circles represent Eq. 17. Particles at v‖ = vph fulfill the
Landau-resonance condition with n = 0 according to Eq. 16. If
Ĝf0j > 0 at v‖ = vph, the direction of the diffusive flux of Landau-
resonant particles is as indicated by the red arrowmarked “Landau”.
For Landau-resonant particles, Ĝf0j � (v⊥/vph)(zf0j/zv‖).

Assuming that particles with v‖ = vres > vph fulfill a cyclotron
resonance condition according to Eq. 16 in this example, the
diffusive flux of these cyclotron-resonant particles is as indicated by
the red arrow marked “cyclotron” as long as Ĝf0j > 0 at v‖ = vres.

As the resonant particles diffuse through velocity space, their
v‖ changes. If the particles interact with waves with k⊥ = 0 on only
a single branch of the dispersion relation, then at each value of v‖
the particles typically resonate with waves at a single value of k‖.
This resonant value of k‖, which can be regarded as a function of
v‖, corresponds to a unique parallel phase velocity vph, and over
time the particles trace out a one-dimensional diffusion contour
in velocity space that is locally tangent to the semicircles defined
by Eq. 17. For dispersive waves, vph varies with k‖, and hence with
v‖ of the resonant particles, and thus the full diffusion contour is

not semi-circular, because the centre of the locally tangent semi-
circle evolves during the diffusion process.

The quasi-linear evolution according to the concepts outlined
so far generally leads to a change of the integrated particle kinetic
energy of f0j (i.e., the second velocity moment of f0j). If the average
kinetic energy mj(v2⊥ + v2‖ )/2 of the resonant particles decreases
in the quasi-linear diffusion process, this energy is transferred
into the resonant waves, leading to growth of the wave amplitude
and thus instability. If the average energy of the resonant particles
increases, this energy is taken from the resonant waves,
corresponding to wave damping. Our graphical representation
in Figure 3 allows us to evaluate the energy behaviour by
comparing the direction of the diffusive flux of resonant
particles with semi-circles around the origin (green-dashed in
Figure 3). These semi-circles represent isocontours of constant
(v2⊥ + v2‖ ). If the direction of the diffusive flux locally crosses these
semi-circles from larger to smaller (v2⊥ + v2‖ ), the process
corresponds to an instability. If it crosses these semi-circles in
the other direction, the process corresponds to damping. In the
specific example shown in Figure 3, both the marked Landau-
resonant and the marked cyclotron-resonant particles contribute
to an instability of the resonant wave at phase speed vph. The
question of damping/instability thus ultimately simplifies to an
investigation of the relative alignments between the semi-circles
in velocity space defined by Eq. 17, the isocontours of f0j, and the
isocontours of (v2⊥ + v2‖ ) at the speed that fulfills Eq. 16 for
resonant wave–particle interactions.

The propagation direction and the polarisation of the waves
under consideration have a strong impact on the quasi-linear
diffusion process. If the waves are purely parallel-propagating
(i.e., k⊥ = 0), then ξj = k⊥v⊥/Ωj = 0 in Eq. 14. The Bessel functions
have the property

Jm 0( ) � 1 if m � 0,
0 otherwise.
{ (18)

This property simplifies Eq. 12 considerably for parallel-
propagating waves. According to Eq. 14, parallel-propagating
waves only have ψj,n

k ≠ 0 if n = +1, n = −1, or n = 0. If a parallel-

FIGURE 3 | Schematic illustration of quasi-linear diffusion in velocity space. The black semi-circles represent Eq. 17 for a given parallel phase speed vph. The
diffusive flux of resonant particles is locally tangent to these semi-circles (marked by the red arrows). The green-dashed semi-circle indicates v2⊥ + v2‖ � constant. If the
diffusive flux crosses the green-dashed semi-circle from larger to smaller values of (v2⊥ + v2‖ ), the resonant wave–particle interaction contributes to the growth of the
resonant waves with parallel phase speed vph. Examples for Landau-resonant and cyclotron-resonant interactions are indicated.

2In this convention, Ek,l corresponds to left-hand polarisation and Ek,r corresponds
to right-hand polarisation. The meaning of Ek,l and Ek,r for the characterisation of
the sense of polarisation as left-circular and right-circular swaps when ωkr < 0. In a
plasma with symmetric distribution functions around v‖ = 0, a forward-
propagating wave solution with ωkr > 0 and k‖ > 0 has the same sense of
polarisation in terms of Ek,l and Ek,r as the corresponding backward-
propagating solution with ωkr > 0 and k‖ < 0.
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propagating wave is purely left-circularly polarised (i.e., if Ek,r =
Ekz = 0), only the cyclotron resonance with n = +1 contributes to
the sum in Eq. 12. If a parallel-propagating wave is purely right-
circularly polarised (i.e., if Ek,l = Ekz = 0), only the cyclotron
resonance with n = −1 contributes to the sum in Eq. 12. Lastly, if a
parallel-propagating wave is purely longitudinal (i.e., if Ek,r = Ek,l
= 0), only the Landau resonance with n = 0 contributes to the sum
in Eq. 12. This simplification of the quasi-linear diffusion
equations is particularly useful since many instabilities have
maximum growth for k⊥ = 0, in which case they exhibit these
pure polarisation properties according to linear Vlasov–Maxwell
theory. For example, the parallel-propagating fast-magnetosonic/
whistler wave is purely right-circularly polarised. The parallel-
propagating Alfvén/ion-cyclotron wave is purely left-circularly
polarised, and the parallel-propagating Langmuir wave is purely
longitudinal. We note that these definitions only apply when ωkr

> 0 according to our convention. For waves with oblique wave
vectors, in general, all n must be considered and the polarisation
is typically “mixed” with contributions from non-zero Ek,r, Ek,l,
and Ekz. Nevertheless, it is often useful to consider that the Bessel-
function contributions Jm(ξj) in Eq. 12 are greater for m = 0 than
for othermwhen ξj is moderately small, which is often the case for
the majority of the resonant particles.

In addition to its mathematical rigour, the quasi-linear-diffusion
framework provides us with a visual aid to understand the physics of
resonant micro-instabilities. It can be shown that the description of
wave damping and instability in terms of quasi-linear diffusion is
consistent with its description in terms of γk from solutions of linear
Vlasov–Maxwell theory as far as the assumptions of both
frameworks are fulfilled (Kennel and Engelmann, 1966; Kennel
and Wong, 1967; see also Chandran et al., 2010).

The instabilities discussed in this review occur on a variety of
length scales, which are often related to the characteristic plasma
scales of the system (Verscharen et al., 2019b). We define the inertial
length of species j as

dj ≡
c

ωpj
� vAj

Ωj

∣∣∣∣ ∣∣∣∣ � ������
mjc2

4πnjq2j

√
, (19)

where wpj ≡
���������
4πnjqj2 /mj
√

is the plasma frequency of species j,
vAj ≡ B0/

�������
4πnjmj
√

is the Alfvén speed of species j and nj is the
background number density of species j. We define the gyro-
radius of species j as

ρj ≡
w⊥j

Ωj

∣∣∣∣ ∣∣∣∣ � ����������
2kBT⊥jmjc2

q2jB
2
0

√
, (20)

where w⊥j ≡
���������
2kBT⊥j/mj

√
is the perpendicular thermal speed of

species j and kB is the Boltzmann constant. For electrostatic
instabilities, the Debye length

λj ≡

������
kBT‖j
4πnjq2j

√
(21)

of species j defines an important spatial reference scale. Lastly, we
define the following dimensionless ratios of kinetic to magnetic
pressure:

βj ≡
8πnjkBTj

B2
0

, β⊥j ≡
8πnjkBT⊥j

B2
0

, and β‖j ≡
8πnjkBT‖j

B2
0

,

(22)
where Tj is the scalar temperature of species j, which we use in the
case of isotropic plasmas when Tj = T⊥j = T‖j.

3 RESONANT INSTABILITIES DRIVEN BY
TEMPERATURE ANISOTROPIES

We discuss two types of resonant instabilities driven by electron
temperature anisotropy: the electron whistler anisotropy instabilty
and the propagating electron firehose instability. Both instabilities
are associated with electromagnetic normal modes of the plasma.
Under typical solar-wind conditions, non-resonant anisotropy-
driven instabilities often have lower thresholds than the
resonant instabilities. The non-resonant instabilities are
discussed in Section 5. In plasmas with ωpe < |Ωe|, electrostatic
instabilities exist that are driven by electron anisotropy (Gary and
Cairns, 1999). However, since this condition is not fulfilled in the
solar wind, we do not discuss these instabilities further.

3.1 Electron Whistler Anisotropy Instability
The electron whistler anisotropy instability is driven when T⊥e >
T‖e (Kennel and Petschek, 1966; Scharer and Trivelpiece, 1967;
Gary and Karimabadi, 2006; Lazar et al., 2022). It is an instability
of the fast-magnetosonic/whistler wave withΩp ≪ ωkr < |Ωe| and
k ≲ 1/de at maximum growth. The instability has maximum
growth when k⊥ = 0.

Figure 4 describes the quasi-linear evolution of f0e under the
action of the electron whistler anisotropy instability. The initial

FIGURE 4 | Schematic illustration of the quasi-linear diffusion in the
electron whistler anisotropy instability. The blue shaded area represents the
anisotropic electron population with T⊥e > T‖e. The black semi-circles
represent Eq. 17 for fast-magnetosonic/whistler waves with parallel
phase speed |vph| (propagating in the direction parallel to B0) and −|vph|
(propagating in the direction anti-parallel to B0). The diffusive flux of cyclotron-
resonant particles is shown by the blue arrows. The green-dashed semi-circle
indicates v2⊥ + v2‖ � constant.
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electron distribution is elongated (i.e., anisotropic) in the
direction perpendicular to the background magnetic field.
Electrons with v‖ > 0 resonate with fast-magnetosonic/whistler
waves at parallel phase speed −|vph| (i.e., propagating oppositely
to the direction of B0) through the n = +1 cyclotron resonance
according to Eq. 16. Electrons with v‖ < 0 resonate with waves at
parallel phase speed +|vph| through the n = −1 cyclotron
resonance according to Eq. 16.

The relative alignment between the isocontours of f0e at the value
of v‖ that fulfills Eq. 16 and the black semi-circles around ±|vph| in
Figure 4 guarantees that the quasi-linear diffusion is locally directed
tangent to the blue arrows. Therefore, v⊥ of the resonant electrons
decreases while their |v‖| increases. Overall, this process leads to a
reduction of (v2⊥ + v2‖ ) and thus of the energy of the resonant
electrons. This energy is transferred into the resonant fast-
magnetosonic/whistler waves in both directions of propagation.
As in the case of the propagating electron firehose instability
presented in Section 3.2, the overall temperature anisotropy of
the distribution decreases in this process until the distribution
function relaxes to a quasi-linear plateau in the part of velocity
space occupied by resonant electrons. If f0e is asymmetric around
v‖ = 0, the energy in the unstable counter-propagating waves can
be imbalanced.

Kennel and Petschek (1966) give a necessary condition for
instability of the electron whistler anisotropy instability as

T⊥e

T‖e
− 1> 1

|Ωe |
ωkr

− 1
. (23)

The unstable mode follows the approximate dispersion
relation (Gary, 1993)

ωkr

Ωp
≃ k2‖d

2
p 1 + T⊥e

T‖e
− 1( ) β‖e

2
[ ]. (24)

When T‖e ~ T‖p and β‖e ~ 1 as in the solar wind, protons are
unlikely to undergo a significant resonant interaction with
parallel-propagating fast-magnetosonic/whistler waves.
Therefore, this instability does not compete with proton-
resonant damping.

The necessary relative alignment between the isocontours of
f0e at the value of v‖ that fulfills Eq. 16 and the semi-circles around
±|vph| as shown in Figure 4 can also be fulfilled in bi-κ electron
distributions (Lazar et al., 2011, 2013; Shaaban et al., 2021).
Likewise, the instability criteria can also be fulfilled in plasmas
consisting of anisotropic core and halo populations (Gary et al.,
2012; Lazar et al., 2018a). In these cases, anisotropic halo
electrons resonate with parallel-propagating fast-magnetosonic/
whistler waves through the same mechanism as the electron core
(Lazar et al., 2015). If the core is isotropic, the halo driving
competes with cyclotron-resonant core damping.

The electron whistler anisotropy instability is believed to be
responsible for the sporadic generation of parallel-propagating fast-
magnetosonic/whistler waves that are intermittently observed in the
solar wind (Tong et al., 2019a; Jagarlamudi et al., 2020; Vasko et al.,
2020).Observations show that the solarwind very rarely exhibits plasma
conditions above the instability threshold though (Štverák et al., 2008).

A review of early simulation work of the electron whistler
anisotropy instability with quasi-linear context is given by
Cuperman (1981). Particle-in-cell simulations reveal that this
instability changes its properties in the low-β‖e regime, in which
the wave at maximum growth is predominantly oblique and
electrostatic, so that Landau-resonant processes become
important (Gary et al., 2011). Kinetic simulations of the electron
whistler anisotropy instability agree reasonably well with quasi-linear
predictions in terms of the behaviour of the instability at saturation
(Kim et al., 2017). In particular, these simulations indicate the
occurrence of weakly resonant wave–particle interactions. While
these numerical simulations start with bi-Maxwellian electron
distributions, more recently, the impact of more realistic electron
distribution functions has been explored. For instance, Lazar et al.
(2022) perform particle-in-cell simulations with bi-κ electron
distributions with different β‖e. In the explored cases, the
presence of suprathermal electrons leads to higher growth rates
and oscillation amplitudes than in the bi-Maxwellian case.

3.2 Propagating Electron Firehose
Instability
The propagating electron firehose instability is driven when T‖e >
T⊥e (Hollweg and Völk, 1970; Pilipp and Völk, 1971; Li and
Habbal, 2000). It corresponds to an instability of left-hand
polarised fast-magnetosonic/whistler modes that undergo a
significant change in their dispersion relation under the
relevant unstable plasma conditions. In the following
discussion, we focus on the parallel-propagating case, in which
k⊥ = 0.

When T⊥e = T‖e, the fast-magnetosonic/whistler branch of
the dispersion relation is right-circularly polarised. However,
when T⊥e/T‖e is sufficiently small, the fast-magnetosonic/

FIGURE 5 | Schematic illustration of the quasi-linear diffusion in the
propagating electron firehose instability. The blue shaded area represents the
anisotropic electron population with T‖e > T⊥e. The black semi-circles
represent Eq. 17 for modified fast-magnetosonic/whistler waves with
parallel phase speed |vph| (propagating in the direction parallel toB0) and −|vph|
(propagating in the direction anti-parallel to B0). The diffusive flux of cyclotron-
resonant particles is shown by the blue arrows. The green-dashed semi-circle
indicates v2⊥ + v2‖ � constant.
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whistler wave becomes left-circularly polarised as |k‖| increases
from small to large values. These left-circularly polarised fast-
magnetosonic/whistler waves can interact with electrons when
Eq. 16 is satisfied for the n = +1 resonance, and such
interactions can drive the wave unstable. When unstable,
this mode satisfies Ωp < ωkr ≪|Ωe| and 1/dp < k‖ < 1/de
(Micera et al., 2020a).

Figure 5 describes the quasi-linear evolution of f0e under the
action of the propagating electron firehose instability. The initial
electron distribution is elongated (i.e., anisotropic) in the direction
parallel to the background magnetic field. Electrons with v‖ > |vph|
resonate with waves at + |vph| through the n = +1 cyclotron
resonance according to Eq. 16. Electrons with v‖ < −|vph|
resonate with waves propagating in the anti-parallel direction to
B0 (i.e., with a phase speed − |vph|) through the n = −1 cyclotron
resonance according to Eq. 16.

The relative alignment between the isocontours of f0e at the value
of v‖ that fulfills Eq. 16 and the black semi-circles around ±|vph| in
Figure 5 guarantees that the quasi-linear diffusion is locally directed
tangent to the blue arrows. Therefore, v⊥ of the resonant electrons
increases while their |v‖| decreases. Overall, this process leads to a
reduction of (v2⊥ + v2‖ ) and thus of the kinetic energy of the resonant
electrons. This energy is transferred into the resonant fast-
magnetosonic/whistler waves in both directions of propagation.
As in the case of the electron whistler anisotropy instability
discussed in Section 3.1, the overall temperature anisotropy of
the distribution decreases in this process until the distribution
function relaxes to a quasi-linear plateau in the part of velocity
space occupied by resonant electrons. If f0e is asymmetric around v‖
= 0, the energy in the unstable counter-propagating waves can be
imbalanced.

In addition to anisotropic core electrons, also suprathermal
electron populations such as an anisotropic halo with a bi-κ
distribution can drive the propagating electron firehose instability
(Lazar et al., 2017; Shaaban et al., 2021).

Since this instability is left-hand polarised, cyclotron-
resonant proton damping counteracts the driving by
cyclotron-resonant electrons. Due to its high frequency
compared to Ωp, the instability’s growth rate depends only
weakly on T‖e/T‖p and T⊥p/T‖p (Hollweg and Völk, 1970; Gary
and Madland, 1985). The non-propagating firehose instability
discussed in Section 5.2 often has a lower threshold than the
propagating firehose instability under most solar-wind
conditions (Paesold and Benz, 1999; Li and Habbal, 2000;
Gary and Nishimura, 2003).

One-dimensional, relativistic particle-in-cell simulations of
the propagating electron firehose instability underline its
possible role as a temperature-isotropisation mechanism in
solar-flare plasmas (Paesold and Benz, 1999; Messmer, 2002).
Simulations with both anisotropic protons and electrons reveal
that the concurrent presence of a proton and electron
temperature anisotropy can increase the growth rate of the
propagating proton firehose instability compared to plasmas
with isotropic electrons (Micera et al., 2020a). Quasi-parallel
and exactly parallel electron firehose modes become dominant
after the saturation of oblique modes with higher growth rates
(see also Section 5.2; Camporeale and Burgess, 2008; Innocenti

et al., 2019a, the latter study is conducted within an expanding-
box framework).

4 RESONANT INSTABILITIES DRIVEN BY
REFLECTIONAL ASYMMETRIES IN THE
DISTRIBUTION FUNCTION
In this section, we discuss instabilities driven by asymmetries in
the electron distribution function around v‖ = 0. These
asymmetries can be represented by beams, multi-beam
structures, or skewness in the electron distribution (Forslund,
1970). We distinguish between electrostatic and electromagnetic
instabilities driven by reflectional asymmetries in the distribution
function. The electrostatic approximation is valid in plasmas with
βj ≪ 1 for all j. In this case, E ≈ −∇ϕ, where ϕ is the electrostatic
potential, and B ≈ B0. With increasing βj, however, the coupling
between electric and magnetic fluctuations increases, and the
fluctuations become increasingly electromagnetic. Nevertheless,
some electrostatic modes also exist in plasmas with moderate to
high βj, especially when they propagate along B0. Electromagnetic
beam instabilities compete with their electrostatic counterparts in
the presence of hot electron beams and reasonably large βj, which
is often (but not always) the case in the solar wind. Unless stated
otherwise, we work in the reference frame in which the
background bulk speed of the protons is zero.

4.1 Electron/Ion-Acoustic Instability
The electron/ion-acoustic instability is an example of an
electrostatic instability driven by an asymmetry in the electron
distribution function. It is driven by the Landau-resonance of

FIGURE 6 | Schematic illustration of the quasi-linear diffusion in the
electron/ion-acoustic instability and in the kinetic Alfvén heat-flux instability.
The blue shaded area represents the core electron population with bulk
velocity Uc, and the red shaded area represents the strahl population
with bulk velocity Us. The black semi-circles represent Eq. 17 for either wave
type with parallel phase speed vph. The diffusive flux of Landau-resonant
particles is shown by the blue arrow. The green-dashed semi-circle indicates
v2⊥ + v2‖ � constant. In our geometrical convention with vph > 0, Us < 0 here,
which indicates that the diffusive flux points in the − B0 direction. We note that
Us < 0 still corresponds to the anti-sunward direction if B0 points towards
the Sun.
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electrons with the ion-acoustic mode (Fried and Gould, 1961). In
a magnetised plasma, it has maximum growth when k⊥ = 0.

The electron/ion-acoustic instability can be driven if there is a
non-zero current parallel to B0 in a plasma with a single proton
and a single electron component. While the ion-acoustic wave is
strongly Landau-damped in plasmas with Te ≈ Tp, a sufficiently
large relative drift between the protons and the electrons leads to
an instability. The dispersion relation of the ion-acoustic wave is
given by (Gary, 1993; Verscharen et al., 2017)

ωkr ≈ k‖cs � k‖

������������
3kBT‖p + kBT‖e

mp

√
, (25)

where cs is the ion-acoustic speed. The protons provide the wave
inertia, while the proton and electron pressures provide the
restoring force. In their wave evolution, protons behave like a
one-dimensional adiabatic fluid, while the electrons are
isothermal according to Eq. 25. When the instability is only
weakly unstable (i.e., small γm > 0), it is a long-wavelength
electrostatic instability with k ≪ 1/λp. With increasing γm, the
unstable wave-vector space increases to 0 < k ≲ 1/λp (Gary, 1993).

The quasi-linear evolution of f0e under the action of the
electron/ion-acoustic instability corresponds to the case shown
in Figure 6. If it is driven by the current between a single proton
and a single electron component, the red strahl population in
Figure 6 can be ignored. Due to the relative drift between the core
population and the protons, Landau-resonant electrons diffuse
towards smaller v‖, leading to a reduction in the kinetic energy of
the resonant electrons. This process drives the resonant ion-
acoustic waves unstable at the expense of the relative drift
between protons and electrons.

For the case of a single drifting electron component, Gary
(1993) gives an expression for the growth rate of the electron/ion-
acoustic instability in a plasma with Maxwellian distribution
functions under the assumption that Te ≫ Tp:

γk �
��
π

√
ω3
kr

2|k‖|3
mp

kBTe
( ) k‖Uc − ωkr

we
exp − ωkr/k‖ − Uc( )2

w2
e

( ), (26)

where Uc is the bulk velocity of the single electron component in
the proton reference frame. Combining Eqs 25 and 26 shows that
γk > 0 if Uc > vph, where vph ≈ cs. As shown in Figure 6, the
transition from Uc < vph to Uc > vph marks the transition from a
diffusion that raises v‖ (the blue arrow would be pointing to the
right in this case) of the Landau-resonant electrons to a diffusion
that lowers their v‖ (blue arrow pointing to the left as shown). The
growth rate according to Eq. 26 has a strong dependence on the
electron temperature.

If the electron beam is very fast or the electrons are cold
(i.e., Uc ≳ we), the dispersion relation of this unstable mode
changes significantly from Eq. 25. In this cold-plasma regime, the
instability transitions into the classic Buneman electron/ion two-
stream instability (Buneman, 1959). It corresponds to the P = 0
mode in cold-plasma theory (Stix, 1992) with ωkr ~ ωpe and
maximum growth at k‖≃ ωpe/Uc when Uc ≫ we.

In the solar wind, the persistent occurrence of sufficiently
strong field-aligned currents to drive the electron/ion-acoustic

instability via this mechanism is unlikely. For reference, the most
intense current densities in the solar wind at 1 au are typically
~ 5 nA/m2 (Podesta and Roytershteyn, 2017), and the
corresponding net drift between ions and electrons is very
small (Vasko et al., 2022). However, a two-component
electron configuration as shown in Figure 6 consisting of a
core and strahl population enables the same instability
mechanism. In an electron–proton plasma with core and
strahl populations, the system is free from parallel currents if

nsUs + ncUc � npUp, (27)
which is typically the case in the solar wind (Feldman et al.,
1975; Salem et al., 2021). In this configuration, the Landau-
resonant interaction between unstable core electrons and ion-
acoustic waves leads to a reduction of v‖ of the resonant
electrons. As this corresponds to a reduction in Uc, the
current-balance requirement from quasi-neutrality then also
leads to a reduction in |Us| (see also Schroeder et al., 2021).
Therefore, the electron/ion-acoustic instability is a candidate
for the (indirect) regulation of the strahl heat flux in the solar
wind (Gary, 1978). As shown in Figure 6, this instability
does not scatter strahl electrons into the halo, although
such a behaviour is found in the solar wind (Štverák et al.,
2009).

Ion-acoustic waves have been observed in the solar wind
(Gurnett and Anderson, 1977; Kurth et al., 1979; Gurnett,
1991; Píša et al., 2021). They often occur in sporadic bursts and
at times when T‖e > T‖p (Mozer et al., 2021b). Near the Sun, the
condition that T‖e ≫ T‖p can be satisfied in low-speed solar
wind. At small heliocentric distances, the proton temperature
remains correlated with the wind speed, but the electron
temperature is anti-correlated with the wind speed, most
likely due to the initial conditions in the corona (Halekas
et al., 2020; Maksimovic et al., 2020). The resulting conditions
in slow-speed near-Sun solar wind thus favour the growth of
the ion-acoustic wave. Indeed, Parker Solar Probe observes
ion-acoustic waves under these conditions (Mozer et al., 2022).
The loose correlation between ion-acoustic waves with periods
of enhanced electron temperatures suggests that these waves
may heat the core electrons. However, since high electron
temperature itself favours the growth of the waves, the
causality remains unclear.

Near 1 au, other instabilities often have lower thresholds
than the electron/ion-acoustic instability though (Gary, 1978;
Lemons et al., 1979). A direct stability analysis of measured
electron distributions from Helios identifies a case that is
unstable against the electron/ion-acoustic instability (Dum
et al., 1980). Strong ion-acoustic wave bursts are also found
near magnetic switchbacks (Mozer et al., 2021a). The exact
generation mechanism of these waves is unclear, as an ion/ion-
acoustic instability is also a possible candidate for the
generation of these waves (Mozer et al., 2020; Graham
et al., 2021).

The current-driven electron/ion-acoustic instability is studied
numerically in the context of laser-heated laboratory plasmas
(Detering et al., 2005).
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4.2 Kinetic Alfvén Heat-Flux Instability
The kinetic Alfvén heat-flux instability is driven by the same
instability mechanism as the electron/ion-acoustic instability
shown in Figure 6. Also in this instability, Landau-
resonant core electrons diffuse towards smaller v‖. The
unstable wave mode in this case is the highly-oblique
kinetic Alfvén wave, which is an electromagnetic plasma
mode. It corresponds to the small-wavelength extension of
the Alfvén wave in highly oblique propagation (i.e., k⊥ρp ≳ 1
and k⊥≫ k‖). Its dispersion relation is given by (Howes et al.,
2006)

ωkr ≈
k‖vAk⊥ρp����������
βp + 2

1+Te/Tp

√ . (28)

In a Maxwellian electron–proton plasma, kinetic Alfvén
waves undergo electron-Landau damping. With the
introduction of a core–strahl configuration with sufficiently
large Uc > 0, the plasma can achieve zf0e/zv‖ > 0 at v‖ = vph,
in which case the kinetic Alfvén wave is driven unstable. The
quasi-neutrality condition in Eq. 27 enforces a simultaneous
reduction of |Us| when the instability reduces Uc like in the case
of the electron/ion-acoustic instability. The kinetic Alfvén heat-
flux instability has maximum growth at k⊥≲ 1/ρp (Gary et al.,
1975b).

Under typical solar-wind conditions with βj ~ 1, the kinetic
Alfvén heat-flux instability has a significantly greater threshold
than the parallel whistler heat-flux instability (Section 4.6; Gary
et al., 1975a; Gary et al., 1975b). In addition, this instability does
not explain the observed scattering of strahl electrons into the
halo population (Štverák et al., 2009) since only core electrons
diffuse in velocity space towards smaller v‖ (Verscharen et al.,
2019a).

Kinetic Alfvén waves are often observed in the solar wind
(Leamon et al., 1998; Bale et al., 2005; Chen et al., 2010; Salem
et al., 2012; Šafránková et al., 2019; Roberts et al., 2020).
However, their presence is generally neither attributed to
ion-driven nor to electron-driven instabilities. Instead, they
are interpreted as the small-wavelength extension of the
Alfvénic cascade of solar-wind turbulence (Howes et al.,
2006; Schekochihin et al., 2009).

The kinetic Alfvén heat-flux instability has not been
investigated extensively via numerical simulations. In
contrast, kinetic Alfvén waves more generally have been the
subject of intense study. For example, Gary and Nishimura
(2004) compare linear theory and particle-in-cell simulations
(albeit employing a low proton-to-electron mass ratio) of
kinetic Alfvén waves to quantify the associated electron
heating. Particle-in-cell and gyrokinetic simulations of
kinetic Alfvén turbulence in the solar wind are used to
investigate ion and electron heating (Howes et al., 2008,
2011; Parashar et al., 2015; Hughes et al., 2017; Grošelj
et al., 2018; Cerri et al., 2019). Furthermore, kinetic Alfvén
waves are routinely generated in particle-in-cell simulations of
magnetic reconnection in conjunction with Hall physics in the
diffusion region (Rogers et al., 2001; Shay et al., 2011).

4.3 Langmuir Instability and Electron-Beam
Instability
The Langmuir instability and the electron-beam instability are
two examples of beam-driven electrostatic instabilities (also
called “high-frequency electron/electron instabilities”; Gary,
1985b). They are both driven by Landau-resonant electrons,
which requires that zf0e/zv‖ > 0 at v‖ = vph when vph > 0. This
configuration corresponds to a bump-on-tail distribution. Both
instabilities have maximum growth when k⊥ = 0.

In the relevant high-frequency range and assuming only a
small modification to the real-part of the dispersion relation from
any electron beam components, there are two solutions to the
dispersion relation that become unstable. The Langmuir wave
follows the dispersion relation

ωkr ≈
����������
ω2
pe +

3
2
k2‖w2

c

√
. (29)

If an electron-beam (strahl) component with bulk velocity Us is
present, the plasma also supports an electron-beam mode with
(Gary, 1978)

ωkr ≈ k‖Us. (30)
The criterion for distinguishing which of the two modes

becomes unstable when zf0e/zv‖ > 0 at v‖ = vph depends on
the speed, temperature, and relative density of the beam (O’Neil
and Malmberg, 1968). Under unstable conditions, the Langmuir
wave is the relevant mode if (Gary, 1993)�

2
√

Us

ws
( )3

ns
nc
( )< 1, (31)

and the electron-beam mode is the relevant mode if

FIGURE 7 | Schematic illustration of the quasi-linear diffusion in the
Langmuir instability and the electron-beam instability. The blue shaded area
represents the core electron population with bulk velocity Uc, and the red
shaded area represents the strahl population with bulk velocity Us. The
black semi-circles represent Eq. 17 for either wave type with parallel phase
speed vph. The diffusive flux of Landau-resonant particles is shown by the red
arrow. The green-dashed semi-circle indicates v2⊥ + v2‖ � constant.
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�
2

√
Us

ws
( )3

ns
nc
( )≳ 1. (32)

Both the Langmuir and the electron-beam instability have
high frequencies (compared to Ωp) and wave numbers k‖≪ 1/λe,
often even k‖≲ 1/λp, at maximum growth (Gary, 1993).

The quasi-linear evolution of f0e under the action of the
Langmuir instability or of the electron-beam instability is shown
in Figure 7. Landau-resonant strahl electrons diffuse towards
smaller v‖ in this configuration, while the core bulk velocity
increases in order to guarantee current balance according to Eq.
27. This process leads to a flattening of the distribution function
around v‖ = vph. If the dispersion relation in Eq. 30 were fulfilled
exactly and the strahl distribution were symmetric around v‖ = Us,
then zf0e/zv‖ = 0 for Landau-resonant electrons at v‖ = vph. In this
case, the instability would not act. This illustrates the importance of
subtle modifications to the dispersion relation due to the beam
component itself so that Us is slightly greater than vph in order to
create an unstable configuration.

Under certain parameter combinations, especially at large
beam speeds, the Langmuir mode and the electron-beam
mode couple in their dispersion relation (Gary, 1993). Since
the electron-beam mode’s phase speed is approximately equal
to the parallel speed of the resonant electrons, it typically grows
over a wide range of frequencies, which is important in the Earth’s
foreshock, where bump-on-tail configurations occur frequently
(Fuselier et al., 1985). However, this behaviour changes when the
modes couple because then the dispersion relation becomes more
complex.

In the cold-plasma limit (i.e., for very fast and cold beams with
Us ≫ ws and Us ≫ wc), the electron-beam instability corresponds
to the classical electron two-stream instability. In this limit, the
instability has ωkr ≃ ωpe and a maximum growth rate of (Gary,
1993)

γm ≃
�
3

√
2

ns
2nc
( )1/3

ωpc. (33)

In low-βc conditions, the Langmuir and electron-beam
instabilities can have lower thresholds than other beam-driven
instabilities. However, they both require a bump-on-tail
configuration in order to be driven. The electron strahl does
not generally generate such a non-monotonic v‖-dependence of
f0e. However, observations in the Earth’s foreshock find evidence
for the Langmuir instability when tenuous and fast electron beams
are present, and for the electron-beam instability when denser and
slower electron beams are present (Etcheto and Faucheux, 1984;
Lacombe et al., 1985; Onsager and Holzworth, 1990).

Langmuir waves are often observed in the solar wind at
different heliospheric distances (Kennel et al., 1980). They
frequently occur at the same time as narrow-band
electromagnetic waves identified as whistler waves, potentially
suggesting a common origin (Jagarlamudi et al., 2021).

Two-dimensional, electromagnetic particle-in-cell
simulations of a core-strahl electron configuration reveal that
the electrostatic electron-beam instability also develops
fluctuations in the perpendicular electric-field component,

which scatter strahl electrons towards greater v⊥ (Gary and
Saito, 2007). A Fokker–Planck model of wave–particle
interactions between an electron beam and the Langmuir
instability suggests a similar process (Pavan et al., 2013).

4.4 Electron/Ion-Cyclotron Instability
In low-βj plasmas, highly oblique electrostatic ion-cyclotron
waves exist (D’Angelo and Motley, 1962; Stix, 1992). These
modes occur in bands between the harmonics of the proton
gyrofrequency (Gary, 1993):

mΩp <ωkr < m + 1( )Ωp, (34)
wherem ≥ 1 is the integer harmonic order of the electrostatic ion-
cyclotron wave.

In a plasma consisting of a single electron and a single proton
population, electrostatic ion-cyclotron waves can become
unstable if there is a sufficiently large current given by a
difference in the bulk speeds of the electrons and the protons
parallel to B0 (Drummond and Rosenbluth, 1962; Kindel and
Kennel, 1971). Strong Landau-resonant interactions between the
electrons and the harmonics of the ion-cyclotron wave are
responsible for the driving of this instability. The wave
number at maximum growth typically fulfills k⊥~ 1/ρp.

The quasi-linear evolution of f0e is similar to the process
described in Figure 7, but where the strahl population is the
only electron population. Since electrostatic ion-cyclotron waves
are highly dispersive, vph depends strongly on v‖ of the resonant
electrons.

The ion-cyclotron wave with m = 1 has the lowest threshold.
With increasing Uc, harmonics with higherm become unstable as
well. Cyclotron-resonant interactions with protons compete with
the Landau-resonant electron driving. Therefore, the instability
threshold depends strongly on Tp (Gary, 1993). For Te/Tp ≲ 10,
the electron/ion-cyclotron instability has a lower threshold than
the current-driven electron/ion-acoustic instability. At Te/Tp ≳
50, the unstable ion-cyclotron branch of the dispersion relation
merges with the unstable ion-acoustic branch, so that this
instability loses its identity.

As in the case of other current-driven instabilities, we expect
that the introduction of a core-strahl configuration can also
create the conditions necessary for the electron/ion-cyclotron
instability in a plasma fulfilling Eq. 27. In this case, the
instability mechanism requires zf0e/zv‖ > 0 at v‖ = vph and
would be the same as shown in Figure 7. However, we are not
aware of detailed studies of the conditions necessary for a core-
strahl electron system to drive electrostatic ion-cyclotron waves
unstable.

In order to overcome cyclotron-resonant proton damping, this
instability is only relevant in plasma environments with β‖p ≪ 1.
Therefore, the electron/ion-cyclotron instability is mostly
thought to occur within low-βj environments such as the
auroral ionosphere (Ashour-Abdalla and Thorne, 1978;
Bergmann, 1984). Driven by electrons and damped by
protons, the unstable ion-cyclotron waves lead to efficient
proton heating in this environment (Okuda and Ashour-
Abdalla, 1983; Ashour-Abdalla and Okuda, 1984).
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A Fokker–Planck model of the current-driven electron/ion-
cyclotron instability shows the presence of quasi-linear cyclotron-
resonant diffusion effects on the proton distribution function,
leading to its flattening in the resonance region (Harvey, 1975).
These simulation results also confirm that the conditions for this
instability to be excited are not commonly satisfied in typical
solar-wind conditions.

4.5 Electron/Electron-Acoustic Instability
In a plasma consisting of protons and two electron populations,
an additional electrostatic mode with properties similar to the
ion-acoustic wave from Section 4.1 emerges (Watanabe and
Taniuti, 1977). This mode is called the electron-acoustic wave.
In order for this mode to have a small damping rate, it is required
that the two electron components have comparable densities but
that one of the electron components is much hotter than the other
(Gary, 1987). We identify the hotter component with a possible
halo population in the solar wind.

If nh ~ nc, Th≫ Tc, andUh =Uc = 0, the electron-acoustic wave
has the dispersion relation (Watanabe and Taniuti, 1977; Gary,
1987)

ωkr ≈ ωp c

���������
1 + 3k2‖λ

2
c

1 + 1/k2‖λ2h
√√

. (35)

The cold electron component provides the wave inertia, while the
high mobility of the hot electrons provides the restoring force of
the electron-acoustic wave. At long wavelengths, vph is
approximately proportional to

���
Th

√
.

With the introduction of a sufficient relative drift speed
between the core and halo populations, the electron-acoustic
mode becomes unstable through the Landau-resonant interaction
between halo electrons and the electron-acoustic mode. In this
case, the mode still fulfills Eq. 35, but in the frame of the core

electrons, which provide the wave inertia. The wave number of
the electron/electron-acoustic instability at maximum growth
typically fulfills 1/λh < k‖ < 1/λc. It has maximum growth
when k⊥ = 0.

If the electron-acoustic mode is moderately unstable
(i.e., |γm|≪ ωkr), its growth rate is given by (Gary, 1993)

γk ≃
ωpc

2|k‖|3λ2h
��
π

√ k‖Uh′ − ωkr′
wh

( )exp − Uh′ − ωkr′ /k‖( )2
w2

h

⎛⎝ ⎞⎠ (36)

whereUh′ and ωkr′ are the bulk velocity of the halo population and
the wave frequency in the reference frame of the core population:
Uh′ � Uh − Uc and ωkr′ � ωkr − k‖Uc. Eq. 36 shows that, as for all
Landau-resonant instabilities, the electron/electron-acoustic
instability requires Uh > vph when vph > 0 so that zf0e/zv‖ >
0 at the value of v‖ of the resonant electrons.

The quasi-linear evolution of f0e under the action of the
electron/electron-acoustic instability is shown in Figure 8.
Landau-resonant halo electrons diffuse towards smaller v‖ in
this configuration.

The electron/ion-acoustic instability from Section 4.1 has a
lower threshold than the electron/electron-acoustic instability
unless Th ≫ Tc (Gary, 1987). In addition, a substantial nh ~ nc
is required. Both conditions are not generally fulfilled in the solar
wind. However, cusp hiss fluctuations in the magnetospheric
context are attributed to electron-acoustic fluctuations (Thomsen
et al., 1983;Marsch, 1985). Electron-acoustic waves, typically with
nonlinearly steepened wave forms, are reported in the Earth’s
inner magnetosphere, where the density of hot electrons can be
greater than the density of cold electrons during hot plasma
injections from the magnetotail (Vasko et al., 2017; Dillard et al.,
2018). In the near-Sun environment, the electron/electron-
acoustic instability may be relevant for the regulation of the
solar-wind heat flux (Sun et al., 2021).

FIGURE 8 | Schematic illustration of the quasi-linear diffusion in the
electron/electron-acoustic instability. The blue shaded area represents the
core electron population with bulk velocity Uc, and the green shaded area
represents the halo population with bulk velocity Uh. The electron/
electron-acoustic instability requires Th≫ Tc. The black semi-circles represent
Eq. 17 for electron-acoustic waves with parallel phase speed vph. The diffusive
flux of Landau-resonant particles is shown by the green arrow. The green-
dashed semi-circle indicates v2⊥ + v2‖ � constant.

FIGURE 9 | Schematic illustration of the quasi-linear diffusion in the
whistler heat-flux instability. The blue shaded area represents the core
electron population with bulk velocity Uc, and the green shaded area
represents the halo population with bulk velocity Uh. The black semi-
circles represent Eq. 17 for parallel-propagating fast-magnetosonic/whistler
waves with parallel phase speed vph. The diffusive flux of cyclotron-resonant
particles is shown by the green arrow. The green-dashed semi-circle indicates
v2⊥ + v2‖ � constant.
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Fully electromagnetic particle-in-cell simulations of the
electron/electron-acoustic instability show that heating of the
cold core component quenches the instability due to a breakdown
of its requirement that Th ≫ Tc (Lin et al., 1985). This appears to
be the dominant nonlinear saturation mechanism for the
electron/electron-acoustic instability (Gary, 1993).

4.6 Whistler Heat-Flux Instability
The whistler heat-flux instability is a cyclotron-resonant
instability of the electromagnetic fast-magnetosonic/whistler
wave (Gary et al., 1975a, Gary et al., 1975b; Schwartz, 1980).
It has maximum growth at k⊥ = 0. Quasi-parallel fast-
magnetosonic/whistler waves follow the approximate cold-
plasma dispersion relation (Verscharen et al., 2019b)

ωkr

Ωp
≈
k2‖d

2
p

2

������
1 + 4k2‖

d2
p

√√
+ 1⎛⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎠, (37)

when ωkr ≪|Ωe|. The cyclotron-resonant electrons interact with
the right-hand circularly polarised electric field of the fast-
magnetosonic/whistler wave through the n = −1 resonance.
According to Eq. 16, only electrons with v‖ < 0 can fulfill the
resonance condition when vph > 0. In a plasma consisting of
protons and two isotropic electron populations, the driving
electron population must have a bulk velocity greater than vph.
Therefore, this instability is typically driven by a hot beam
population like the halo. At maximum growth, Ωp ≪ ωkr

≪|Ωe| and 1/dp ≪ k‖ ≲ 1/de.
Figure 9 shows the quasi-linear evolution of f0e in the whistler

heat-flux instability. In this case, 0 < vph < Uh, and halo electrons
with v‖ < 0 resonate with the whistler wave. This setup guarantees
that the flux of diffusing electrons in velocity space is directed as
shown by the green arrow in Figure 9 as particles diffuse towards
smaller values of f0e (see also Shaaban et al., 2019c). The resonant
electrons diffuse towards smaller v⊥ but larger |v‖|, while their
(v2⊥ + v2‖ ) decreases. This decreasing kinetic energy is transferred
into the resonant fast-magnetosonic/whistler waves. Increasing
the halo density and temperature brings a larger number of
electrons into resonance with the wave and thus leads to an
increase in the growth rate. This instability is not a good
candidate to explain the regulation of the strahl heat flux since
the strahl does not provide a sufficient number of electrons at v‖ <
0 when Us > 0 (Verscharen et al., 2019a).

With increasing halo speed, ωkr decreases compared to the
traditional dispersion relation in Eq. 37. Figure 7 of Gary (1985a)
compares the thresholds of the whistler heat-flux instability with
the thresholds of the electron/ion-acoustic instability (see Section
4.1) and the electron-beam instability (see Section 4.3). Under
typical solar-wind conditions, the whistler heat-flux instability
has the lowest threshold of these instabilities. Only at large nh/nc,
large Th/Tc, and small βj, the other instabilities can compete with
the whistler heat-flux instability.

The instability mechanism of the whistler heat-flux instability
is similar to the instability mechanism of the electron whistler
anisotropy instability presented in Section 3.1. The introduction
of a halo anisotropy modifies the shape of f0e in the velocity space

occupied by resonant electrons. Consequently, the threshold of
the whistler heat-flux instability decreases with increasing halo
anisotropy T⊥h/T‖h > 0 (in general, the instability is sensitive to
the shape of the halo distribution; see Abraham-Shrauner and
Feldman, 1977; Dum et al., 1980).

The cyclotron-resonant halo driving competes with the
cyclotron-resonant core damping of the fast-magnetosonic/
whistler wave in this instability. Introducing a core anisotropy
with T⊥c/T‖c > 0 lowers the cyclotron-resonant core damping
though and thus raises the growth rate. Treatments of the whistler
heat-flux instability in bi-Maxwellian and κ-distributed plasmas
confirm this picture (Shaaban et al., 2018; Sarfraz and Yoon,
2020). Quasi-linear models of the whistler heat-flux and electron
whistler anisotropy instability driven by a combination of heat
flux and anisotropy are also available (Shaaban et al., 2019b;
Vasko et al., 2020).

The thresholds of the whistler heat-flux instability have often
been compared with the observed heat flux in the solar wind (Gary
and Feldman, 1977; Gary et al., 1999a; Tong et al., 2019b). This
instability is likely to operate near 1 au (Tong et al., 2019b), but it
appears unlikely to prove important near the Sun, where the halo is
an almost negligible component of the distribution (Halekas et al.,
2020, 2021b; Abraham et al., 2022). Conditions relevant for the
driving of this instability also occur near interplanetary shocks and
in the Earth’s foreshock (Wilson et al., 2009, 2013; Page et al.,
2021). Quasi-parallel whistler waves are observed in solar-wind
intervals with strong heat flux, supporting the links between core-
halo heat flux and the whistler heat-flux instability (Lacombe et al.,
2014; Stansby et al., 2016; Tong et al., 2019a; Jagarlamudi et al.,
2020). The contributions of core and halo anisotropies to the
growth of the instability are confirmed observationally through the
presence of a clear positive correlation between the occurrence of
whistler waves and core/halo anisotropies (Jagarlamudi et al.,

FIGURE 10 | Schematic illustration of the quasi-linear diffusion in the
oblique fast-magnetosonic/whistler instability and in the lower-hybrid fan
instability. The blue shaded area represents the core electron population with
bulk velocity Uc, and the red shaded area represents the strahl
population with bulk velocity Us. The black semi-circles represent Eq. 17 for
oblique fast-magnetosonic/whistler waves or lower-hybrid waves with parallel
phase speed vph. The diffusive flux of cyclotron-resonant particles is shown by
the red arrow. The green-dashed semi-circle indicates v2⊥ + v2‖ � constant.
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2020). Like the relative halo density, the core and halo anisotropies
decrease with decreasing heliocentric distance, which is consistent
with the observed lack of whistler waves at heliocentric distances ≲
0.13 au (Cattell et al., 2022).

Particle-in-cell simulations of the whistler heat-flux
instability reveal that beam scattering and core heating occur
simultaneously due to cyclotron-resonant wave–particle
interactions (López et al., 2019b). The quasi-linear pitch-
angle diffusion of the resonant electrons as shown in
Figure 9 saturates quickly so that a significant heat-flux
regulation is not expected. Numerical simulations confirm
this expectation under typical solar-wind conditions
(Kuzichev et al., 2019). Therefore, despite a significant
amount of research into the action of the whistler heat-flux
instability, its contribution to the observed heat-flux regulation
in the solar wind is still not fully understood (for observational
constraints, see Feldman et al., 1976a,b).

4.7 Oblique Fast-Magnetosonic/Whistler
Instability
When the fast-magnetosonic/whistler wave is not exactly parallel
in propagation, it develops a non-zero left-circularly polarised
component in its electric-field fluctuations. Unlike in the case of
the whistler heat-flux instability presented in Section 4.6, this
allows electrons with v‖ > 0 to resonate according to Eq. 16 with
fast-magnetosonic/whistler waves with vph > 0 via the n = +1
cyclotron resonance (Verscharen et al., 2019a), provided v‖ is
sufficiently large. This enables strahl electrons with v‖ > 0 to drive
the oblique whistler wave unstable (Vasko et al., 2019). At
maximum growth, Ωp ≪ ωkr ≲ |Ωe| and 1/dp ≪ k‖ ≲ 1/de.

The quasi-linear evolution of f0e in the oblique fast-
magnetosonic/whistler instability is shown in Figure 10. If the
strahl distribution is isotropic, the resonant electrons diffuse
towards larger v⊥ and smaller v‖ given that 0 < vph < Us. In
this case, (v2⊥ + v2‖ ) of the resonant strahl electrons decreases,
corresponding to a loss of kinetic energy and thus a transfer of
energy into the growing fast-magnetosonic/whistler waves.

Due to its obliqueness, the fast-magnetosonic/whistler wave
also possesses fluctuations in the electric-field component E‖
parallel to B0. Therefore, the cyclotron-resonant driving by
resonant strahl electrons competes not just with cyclotron-
resonant damping by core electrons via n = −1 but also with
Landau-resonant damping by core electrons via n = 0. These
competitions between driving and damping define two regimes of
the oblique fast-magnetosonic/whistler instability: a high-β‖c
regime and a low-β‖c regime.

In the high-β‖c regime (i.e., when w‖c ≳ vAe/2), the competition
between cyclotron-resonant strahl driving and Landau-resonant
core damping determines the instability threshold. The oblique
fast-magnetosonic/whistler wave is unstable in this case if
(Verscharen et al., 2019a)

Us ≳ 2
nc
ns

���
T‖s
T‖c

√
v2Aew

2
‖c

1 + cos θ( )
1 − cos θ( )cos θ⎡⎣ ⎤⎦1/4, (38)

where θ is the angle between the wave vector and the background
magnetic field.

In the low-β‖c regime (i.e., when w‖c ≲ vAe/2), the competition
between cyclotron-resonant strahl driving, cyclotron-resonant
core damping, and Landau-resonant core damping determines
the instability threshold. The oblique fast-magnetosonic/whistler
wave is unstable in this case if

Us ≳ 3w‖c. (39)
In the low-β‖c regime, ωkr ≈ |Ωe|/2, k‖ ≈ |Ωe|/2w‖c, and θ = 60° at
maximum growth.

Eqs 38 and 39 have been tested successfully against numerical
solutions to the linear Vlasov–Maxwell dispersion relation for
typical solar-wind parameters (Verscharen et al., 2019a).

Statistical comparisons of instability thresholds with electron
measurements in the solar wind from Wind (Verscharen et al.,
2019a) and from Parker Solar Probe (Halekas et al., 2021b) show
that the strahl parameters are limited by Eq. 38 to the stable
parameter space. However, a recent analysis of Parker Solar
Probe and Helios data suggests that the strahl very rarely reaches
the threshold in the inner heliosphere, so that the importance of
this instability is now put into question (Jeong et al., 2022a).
This finding is consistent with the observed lack of fast-
magnetosonic/whistler waves in Parker Solar Probe data at
heliocentric distances ≲ 0.13 au (Cattell et al., 2022).
Moreover, the majority of the fast-magnetosonic/whistler
waves observed farther away from the Sun have a quasi-
parallel direction of propagation with respect to the magnetic
field (Kretzschmar et al., 2021). Therefore, other mechanisms
than the self-induced scattering of strahl electrons by the
oblique fast-magnetosonic/whistler instability may thus be
needed to explain the observed scattering of strahl electrons
into the halo population (e.g., the interaction with pre-existing
fast-magnetosonic/whistler waves; Vocks et al., 2005; Vocks and
Mann, 2009; Pierrard et al., 2011; Jagarlamudi et al., 2021;
Cattell and Vo, 2021; Cattell et al., 2021). Moreover,
Bernstein and ion-acoustic waves become more dominant
than fast-magnetosonic/whistler waves in the very inner
heliosphere, suggesting a transition into an electrostatic
regime which could affect the electron distributions near the
Sun (Mozer et al., 2021b; Malaspina et al., 2021). The observed
Bernstein and ion-acoustic waves occur in very specific types of
solar wind: Bernstein waves occur predominantly in quiet wind
with magnetic field close to the ideal Parker spiral, while ion-
acoustic waves occur predominantly in slow solar wind. This
correlation underlines the importance of the careful
investigation of the electron distribution’s evolution as a
function of wind parameters.

Numerical evaluations of the quasi-linear diffusion equation
confirm that the oblique fast-magnetosonic/whistler instability
scatters resonant strahl electrons as shown in Figure 10 (Jeong
et al., 2020; Sun et al., 2021). Numerical particle-in-cell
simulations also confirm this evolution under conditions
consistent with observed solar-wind parameters (Micera et al.,
2020b).
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4.8 Lower-Hybrid Fan Instability
At very large angles of propagation (k2‖ /k2 <me/mp), the fast-
magnetosonic/whistler wave solution of the Vlasov–Maxwell
dispersion relation is also known as the lower-hybrid mode.
Its wave frequency asymptotes to the lower-hybrid frequency
(Verdon et al., 2009)

ωkr ≈ ωLH ≡
ωpp�����
1 + ω2

pe

Ω2
e

√ (40)

in the low-βj limit. Landau-resonant core damping strongly
suppresses the lower-hybrid mode (Lakhina, 1979), so that it
becomes most relevant when βc ≪ 1, in which case the mode
becomes largely electrostatic (Marsch and Chang, 1983).

In this low-βc case, the lower-hybrid wave can be driven
unstable by strahl electrons via the n = +1 cyclotron resonance
like the oblique fast-magnetosonic/whistler instability (see
Section 4.7; Omelchenko et al., 1994; Krafft and Volokitin,
2003; Shevchenko and Galinsky, 2010). At maximum growth,
the lower-hybrid fan instability has ωkr ≈ ωLH and k‖ ≈ (ωLH +
|Ωe|)/Us.

The instability mechanism for the lower-hybrid fan instability
is the same as the mechanism driving the oblique fast-
magnetosonic/whistler instability shown in Figure 10. Since
the cyclotron-resonant diffusion leads to a fan-like widening
of the strahl component in the perpendicular direction, this
instability received the name lower-hybrid fan instability.

Numerical Hamiltonian simulations of the lower-hybrid fan
instability confirm the importance of both cyclotron-resonant
and Landau-resonant interactions between electrons and waves
(Krafft et al., 2005; Krafft and Volokitin, 2006). In its nonlinear
stage, the lower-hybrid fan instability is prone to strong wave
trapping that is not captured by quasi-linear theory.

4.9 Electron-Deficit Whistler Instability
Up until this point, we have discussed the canonical examples of
electron instabilities driven by anisotropy, drifts, or beams in the
electron distribution function. However, other deviations from
thermodynamic equilibrium are also able to drive instabilities if
the deformation of the distribution is sufficiently strong in the
range of resonant velocities (Dum et al., 1980).

One example of such a deformation of f0e is the sunward deficit
in the electron distribution (Halekas et al., 2020; Abraham et al.,
2022). As expected in exospheric models of the solar wind
(Lemaire and Scherer, 1971; Pierrard and Lemaire, 1996;
Maksimovic et al., 2001), the interplanetary potential reflects
electrons that leave the Sun with a kinetic energy below a cut-off
value that depends on the potential. These reflected electrons
return towards the Sun and form part of the sunward half of the
electron distribution in the inner heliosphere. Electrons above the
cut-off energy do not return. If collisions and other scattering
mechanisms are neglected, a sharp cut-off is thus expected on the
sunward side of the electron distribution, marking the separation
between the reflected and the (missing) electrons that have
escaped the potential. This cut-off has been observed in the
form of a sunward deficit in the electron distribution function
in data from Parker Solar Probe (Berčič et al., 2021a; Halekas
et al., 2021a).

The sunward deficit can create conditions in which electrons near
the cut-off resonantly interact with parallel fast-magnetosonic/
whistler waves such that they lose their kinetic energy and drive
the wave unstable (Berčič et al., 2021b). This interaction leads to the
electron-deficit whistler instability. The instability at maximum
growth has Ωp ≪ ωkr ≪|Ωe| and k⊥ = 0. The wave number at
maximum growth depends on the parallel velocity of the deficit in
velocity space according to Eq. 16. The properties of this instability
are still under study, but Berčič et al. (2021b) suggest that the wave
number at maximum growth is typically ~ 1/de.

The quasi-linear evolution of f0e in the electron-deficit whistler
instability is shown in Figure 11. The deficit is located at v‖ < 0,
where it modifies the relative alignment between the pitch-angle
gradients of f0e and the direction of the diffusive flux of resonant
electrons (locally tangent to the black semi-circles). Resonant
electrons diffuse towards smaller v⊥ and larger |v‖|. The parallel
fast-magnetosonic/whistler wave with phase speed vph grows at
the expense of the energy of the diffusing electrons. This quasi-
linear process fills up the electron deficit.

High-cadence and high-resolution measurements of the
electron distribution function from Solar Orbiter show
pronounced deficits at times when pronounced amplitudes of
quasi-parallel fast-magnetosonic/whistler waves are seen (Berčič
et al., 2021b). This observation suggests the sporadic occurrence
of the electron-deficit whistler instability in the solar wind. Since
the sunward electron deficit is more pronounced near the Sun, a
systematic study of the this instability would be worthwhile in
data from Parker Solar Probe and Solar Orbiter at small
heliocentric distances.

The observed deficit, rather than forming a sharp cutoff at a
specific v‖ as shown in Figure 11, also extends to larger pitch
angles, encompassing locally mirroring electrons with largely
perpendicular velocities. This observation could indicate that

FIGURE 11 | Schematic illustration of the quasi-linear diffusion in the
electron-deficit whistler instability. The blue shaded area represents the
electron population with a deficit at v‖ < 0. The black semi-circles represent
Eq. 17 for parallel-propagating fast-magnetosonic/whistler waves with
parallel phase speed vph. The diffusive flux of cyclotron-resonant particles is
shown by the blue arrow. The green-dashed semi-circle indicates v2⊥ + v2‖ �
constant.
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the operation of the instability has already resulted in diffusion
from perpendicular to parallel velocities, or it could indicate that
those regions of phase space are also unpopulated as suggested by
Halekas et al. (2021a).

Simulations of the electron-deficit whistler instability are not
available yet.

4.10 The Impact of Ion Beams on
Electron-Driven Instabilities
If the plasma consists of one electron population and multiple ion
populations, relative drifts between the electrons and the ion
populations can drive instabilities. The current balance in a
system consisting of an electron component and two proton
components demands

neUe � npcUpc + npbUpb, (41)
where the subscript e refers to the single electron species, pc to
the proton core, and pb to the proton beam. If such a proton
beam–core configuration with Upc ≠ Upb exists, then Ue ≠ Upc;
i.e., there is a non-zero drift between the proton core and the
electrons. If the proton beam is sufficiently dense and fast in the
proton-core frame, the fast-magnetosonic/whistler wave can be
driven through cyclotron-resonant wave–particle interactions
with the electrons (Akimoto et al., 1987). The mechanism is
similar to the one shown in Figure 9 for the whistler heat-flux
instability, where the population marked as the halo now
corresponds to the only electron population. For isotropic
electrons, this instability still requires that Ue > vph. The
separation between Ue and vph depends on the proton-beam
and proton-core properties. The same mechanism is also
potentially able to drive other instabilities presented in
Section 4.

5 NON-RESONANT INSTABILITIES

The instabilities discussed thus far are characterised by resonant
wave–particle interactions that lead to quasi-linear diffusion of
resonant electrons in velocity space. Another family of
instabilities is characterised by non-resonant plasma processes.
These non-resonant instabilities often also exist in fluid plasma
models (Verscharen et al., 2019b). Our quasi-linear model does
not apply to this family of instabilities. Therefore, we give a brief
summary of two important examples only: the electron mirror-
mode instability and the non-propagating firehose instability.

5.1 Electron Mirror-Mode Instability
The mirror-mode instability is an example for a non-resonant,
anisotropy-driven instability. It corresponds to the oblique non-
propagating slow mode with ωkr = 0 (Chandrasekhar et al., 1958;
Barnes, 1966; Basu and Coppi, 1984; Verscharen et al., 2017). Due to
the polarisation of the non-propagating slow mode, the mirror-
mode instability exhibits a significant component of magnetic-field
fluctuations δB‖≡ δB ·B0/B0 parallel toB0. The fluctuations in δB‖ are
anti-correlated with the fluctuations in δne. Trapping of slow (v‖ ≈ 0)

particles through the mirror force plays an important role in the
nonlinear evolution of the mirror-mode instability (Southwood and
Kivelson, 1993). However, particle trapping is not captured by our
quasi-linear framework, and our requirement that ωkr ≫ γK is
violated in the mirror-mode instability.

Unlike the resonant instabilities discussed in Sections 3 and 4,
the mirror-mode instability is less sensitive to the shape of the
distribution function in a defined narrow part of velocity space.
Instead, its stability depends on the total pressure anisotropy of
the system. This point is also illustrated by the analytical
threshold for the mirror-mode instability which depends on
the pressure contributions of both species in an
electron–proton plasma: the mirror mode is unstable if (for a
gyrokinetic derivation, see Verscharen et al., 2019a)

β⊥p
T⊥p

T‖p
− 1( ) + β⊥e

T⊥e

T‖e
− 1( )> 1. (42)

This type of analysis has also been extended to the case in which
there are more than two particle species present (Hall, 1979;
Hellinger, 2007; Chen et al., 2016).

Eq. 42 illustrates that the mirror-mode instability can be
driven unstable by both ions and electrons (see also Migliuolo,
1986). The wave number at maximum growth shows an
interesting transition between ion scales (k ≲ 1/dp) and
electron scales (k ≲ 1/de) depending on the species with the
dominant anisotropy (Hellinger and Štverák, 2018). The
saturation of the mirror-mode instability happens via a fluid-
level rearrangement of the plasma that reduces the overall
pressure anisotropy (Kivelson and Southwood, 1996; Rincon
et al., 2015; Riquelme et al., 2015).

Linear theory predicts that, for the same β‖e and T⊥e/T‖e in a
bi-Maxwellian plasma, the electron whistler anisotropy instability
discussed in Section 3.1 generally has higher growth rates and
lower thresholds than the oblique electron mirror-mode
instability (Gary and Karimabadi, 2006). However, two-
dimensional particle-in-cell simulations show that both
instabilities compete, and the oblique electron mirror-mode
instability often becomes dominant in the nonlinear phase
after the parallel electron whistler anisotropy instability
saturates (Hellinger and Štverák, 2018). Hellinger and Štverák
(2018) also note that the importance of the mirror-mode
instability potentially increases in more realistic three-
dimensional simulations due to the higher degrees of freedom
in such a system3.

5.2 Non-Propagating Electron Firehose
Instability
The non-propagating electron firehose instability is another non-
resonant instability driven by anisotropy. It corresponds to a non-
propagating (i.e., ωkr = 0) solution of the oblique Alfvén-wave

3Surprisingly, Sarfraz et al. (2021) perform two-dimensional simulations with the
same physical parameters used by Hellinger and Štverák (2018) and do not observe
any oblique modes. However, their simulation box is much smaller than that
employed by Hellinger and Štverák (2018) and, as a consequence, the growth of the
mirror instability may have been inhibited.
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branch (Li and Habbal, 2000). If the plasma pressure anisotropy
with p‖ > p⊥ is sufficiently large, the magnetic tension is unable to
provide a sufficient restoring force for the propagation of the
Alfvén wave anymore, and the mode becomes aperiodic (Squire
et al., 2016). In this context, we define the total pressures
p⊥≡∑jnjkBT⊥j and p‖≡∑jnjkBT‖j. Like in the case of the mirror-
mode instability, the instability threshold of the non-propagating
firehose instability depends on both electron and proton pressure
contributions. In an electron–proton plasma, the non-
propagating firehose mode is unstable if (for a gyrokinetic
derivation, see Verscharen et al., 2019a)

β‖p − β⊥p + β‖e − β⊥e > 2. (43)
If multiple species are present, this condition can be extended to
(Kunz et al., 2015; Chen et al., 2016)

∑
j

β‖j − β⊥j +
8πmjnjU

2
j

B2
0

( )> 2, (44)

which also accounts for the contributions of relative drifts to the
total parallel pressure (Gary et al., 1975b). Therefore, the non-
propagating firehose instability can also be driven unstable in the
presence of isotropic or anisotropic beam populations. At
maximum growth, the non-propagating electron firehose
instability has k ~ 1/de.

The non-propagating electron firehose has a significantly
lower threshold than the propagating electron firehose
instability under typical solar-wind conditions (Gary and
Nishimura, 2003; Lazar et al., 2022). The presence of
suprathermal electron populations with properties consistent
with observed solar-wind conditions lowers the threshold of
the non-propagating firehose instability even further (Shaaban
et al., 2019a). In the expanding solar wind, conservation of the
first adiabatic invariant (magnetic moment) in a decreasing
magnetic field naturally increases T‖e/T⊥e and drives the
distribution toward the firehose instability thresholds
(Innocenti et al., 2020). If this process happens faster than
Coulomb collisions can moderate the anisotropy, then the
non-propagating firehose instability can be triggered.

The non-propagating electron firehose instability thresholds
constrain slow wind (but not fast wind) core electrons to the
stable parameter space in electron measurements from Helios,
Cluster, and Ulysses (Štverák et al., 2008). Electrons measured by
Parker Solar Probe during encounters 1 to 9 are stable and far
from the thresholds of the non-propagating electron firehose
instability (Cattell et al., 2022).

Particle-in-cell simulations of the non-propagating electron
firehose instability show that nonlinear wave–wave interactions
play an important role during the nonlinear stage of the
instability (Camporeale and Burgess, 2008; Hellinger et al., 2014).
Highly oblique fluctuations grow initially, which then couple to
modes with less oblique wave vectors. The interplay of the various
modes leads to a situation in which the plasma “bounces” around the
marginal stability threshold in parameter space. An anisotropy in
suprathermal electron populations relaxes more quickly than an
anisotropy in thermal electron populations during the instability’s
nonlinear evolution (López et al., 2019a), which is also consistent

with the observation of lower halo anisotropies (Štverák et al., 2008).
Fully kinetic, expanding-box simulations demonstrate that the non-
propagating electron firehose instability arises self-consistently in the
expanding solar wind due to the conservation of the magnetic
moment (Innocenti et al., 2019a). After onset, the firehose
instability and its nonlinear evolution compete against the
ongoing expansion to drive the system between stability and
instability: also in expanding-box simulations, the electrons
bounce around the marginal stability threshold in parameter space.

6 CONCLUSIONS AND OPEN QUESTIONS

We develop a semi-graphical framework for the analysis of resonant
micro-instabilities based on the equations of quasi-linear theory. We
apply this framework to electron-driven instabilities with relevance
to the solar wind. With the help of this description, we discuss
instabilities driven by temperature anisotropy and reflectional
asymmetry in the electron distribution function.

Electrons make an important contribution to the overall
dynamics and energetics of the solar wind through their
pressure gradient and through their heat flux. Micro-
instabilities modify the kinetic properties of the electron
distribution function locally and thus have a local impact on
the electron contributions to the global dynamics and energetics
of the solar wind. Once triggered, they regulate the temperatures,
temperature anisotropies, field-parallel currents, or heat flux.
Throughout his career, Peter Gary has made groundbreaking
contributions to the study of electron-driven instabilities in the
solar wind, especially from the perspective of linear
Vlasov–Maxwell theory and nonlinear plasma simulations.

Measurements with modern space missions have revealed a
number of open questions regarding the action and role of
electron-driven instabilities in the solar wind. Here, we list a
selection of these topics that we consider important for future
research:

1. While most linear-theory calculations assume a homogeneous
and steady-state background plasma, the solar wind is far from
homogeneity and a steady state. The plasma exhibits variations
and inhomogeneities on a broad range of scales (Verscharen
et al., 2019b). The action of micro-instabilities in such a
turbulent and variable plasma is not understood. Most
relevant electron-driven instabilities act on small electron
scales (~de or ~ρe) at which the amplitude of the ubiquitous
turbulent fluctuations in the solar wind is small. Therefore,
they are likely to experience a less variable background on the
relevant scales than ion-driven instabilities. Moreover,
interactions between electrons and turbulent fluctuations
also modify the electron distribution, so that a separation
between the effects of micro-instabilities and the effects of
turbulent dissipation is complex.

2. The solar wind is an expanding plasma flow. Therefore, the
background parameters of the system change as a parcel of
solar-wind plasma travels through the heliosphere with its
local bulk velocity. This global large-scale evolution modifies
the kinetic structure of the particle distributions. Through
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numerical models such as expanding-box simulations
(Innocenti et al., 2019b, 2020; Micera et al., 2021) or semi-
analytical kinetic approaches (Sun et al., 2021; Jeong et al.,
2022b), a simultaneous treatment of instabilities and
expansion effects has become possible. In this context, the
implementation of the regulating impact of electron-driven
instabilities in global solar-wind models is an important goal
for our understanding of the solar wind (e.g., Chandran et al.,
2011). Despite progress in our numerical capabilities, a fully
self-consistent treatment of the large-scale expansion and
electron-driven instabilities still lies far in the future.

3. Electron-driven instabilities are often treated in isolation. In
reality, however, it is likely that electron-driven and ion-driven
instabilities co-exist, depending on the mechanisms that create
the driving deviations of the particle distributions from
thermodynamic equilibrium. Numerical simulations that
resolve both ion and electron processes and scales are a
crucial tool for the understanding of the nonlinear stages of
these combined instabilities (Schriver and Ashour-Abdalla,
1990; Riquelme et al., 2018, 2022). For example, shearing
particle-in-cell simulations show that unstable electron-scale
fluctuations can grow inside the unstable ion-scale fluctuations
in systems with driven anisotropy (Riquelme et al., 2016). Fully
kinetic particle-in-cell simulations show that the electron
firehose instabilities develop concurrently with the ion
firehose instabilities (López et al., 2022), which is a likely
scenario since both species develop a temperature anisotropy
due to solar-wind expansion. This effect increases the growth
rate of the firehose instabilities compared to the linear
prediction for the ion-driven firehose instabilities alone. We
require such a combined description of electron-driven and
ion-driven instabilities under realistic solar-wind conditions.

4. Although some of the instabilities discussed in this review are
able to regulate the heat flux of the electron distribution,
recent research suggests that the solar-wind plasma rarely
exceeds the linear instability thresholds for heat-flux driven
instabilities (Horaites et al., 2018; Schroeder et al., 2021; Jeong
et al., 2022a). These findings highlight the uncertainty in our
understanding of the importance of electron-driven
instabilities in the solar wind. For all instabilities, it is
crucial to investigate (a) how often they occur in the solar
wind and (b) how strong their impact is on the evolution of
the global system. These questions can only be answered by
combining theory, simulations, and spacecraft observations.
A quantification of the different contributions of instabilities
would be worthwhile, as recently provided by Zhao et al.
(2022) for Alfvén waves in collisionless plasmas.

5. As we show through our quasi-linear model, resonant
instabilities strongly depend on the exact shape of the
distribution function near the parallel speed that fulfills Eq.
16 via Ĝf0j. While temperature anisotropies and reflectional
asymmetries in the distribution function each represent non-
equilibrium features, natural plasmas are likely to exhibit a
combination of both. Some recent studies combine these
drivers in their analyses of electron-driven instabilities
(Lazar et al., 2018b; Shaaban and Lazar, 2020; Vasko et al.,
2020). While most theoretical descriptions characterise the

instability-driving non-equilibrium features with prescribed
distributions (e.g., with drifting bi-Maxwellian or bi-κ-
distributions), it is more reliable (and potentially necessary)
to evaluate the stability of the actual distribution functions
without relying on distribution models (Dum et al., 1980).
Modern numerical tools such as LEOPARD (Astfalk and
Jenko, 2017) and ALPS (Verscharen et al., 2018) exist that are
capable of this evaluation; however, a systematic application
to measured electron distributions is still outstanding (for
notable exceptions, see Husidic et al., 2020; Page et al., 2021;
Schroeder et al., 2021).

6. Parker Solar Probe will continue to measure electron
distribution functions in close proximity to the Sun. Solar
Orbiter will measure electron distribution functions outside
the ecliptic plane. With its modern sets of instrumentation,
both missions will generate unprecedented amounts of solar-
wind electron data in combination with measurements of
fluctuations in themagnetic and electric fields. These data will
resolve some of the listed science challenges here but also pose
new questions about the action and role of electron-driven
instabilities in the solar wind. Moreover, the space-plasma
community is planning future missions, like the mission
proposal Debye, dedicated to electron-scale kinetics and its
impact on the global plasma system (Wicks et al., 2019;
Verscharen et al., 2021a).
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