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The recent development of whole atmosphere models that extend from the

surface to the upper thermosphere represents a significant advance in

modeling capabilities of the ionosphere-thermosphere. Whole atmosphere

models have had an especially important influence on understanding the

role of terrestrial weather on generating variability in the ionosphere-

thermosphere. This paper provides an overview of the scientific motivations

and contributions made by whole atmosphere modeling. This is followed by a

discussion of future directions in whole atmosphere modeling and the science

that they will enable.
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1 Introduction

The importance of terrestrial weather on the ionosphere-thermosphere began to be

widely recognized in the past few decades. Although a number of researchers had

previously explored the role of the lower atmosphere on generating ionosphere-

thermosphere variability [e.g., (Chen, 1992; Stening et al., 1996; Forbes et al., 2000;

Rishbeth and Mendillo, 2001)], it is only more recently that this coupling is widely

understood to be an important source of variability in the ionosphere-thermosphere. The

considerable progress that has been made in this area can be found in a number of recent

reviews (England, 2012; Pancheva and Mukhtarov, 2012; Liu, 2016; Yiğit et al., 2016; Sassi

et al., 2019; Goncharenko et al., 2021; Ward et al., 2021). The increased recognition of the

lower atmosphere effects on the ionosphere-thermosphere served as an important

motivator for the development of whole atmosphere models, herein considered to be

those that seamlessly span altitudes from the surface to the upper thermosphere (

~500 km). In addition to observational investigations [e.g., (Immel et al., 2006; Chau

et al., 2009; Goncharenko et al., 2010; Gasperini et al., 2020; Goncharenko et al., 2022)],

the development of whole atmosphere models played a crucial role in understanding the

physical mechanisms by which terrestrial weather impacts the ionosphere-thermosphere,

and further confirmed the importance of the lower atmosphere on generating ionosphere-

thermosphere variability.
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This Perspective discusses the role of whole atmosphere

models in ionosphere-thermosphere research and the future

directions of whole atmosphere modeling. The focus is

primarily on their role in understanding the impact of

terrestrial weather on the ionosphere-thermosphere. Following

a brief background on the initial development of whole

atmosphere models, recent scientific progress enabled by

whole atmosphere models is discussed. This is followed by a

personal vision for the future of whole atmosphere model

development and the science that these developments will enable.

2 Development of whole atmosphere
models

A brief historical overview of the development of whole

atmosphere models is first warranted in order to provide

context for both recent advances and future developments.

For a more detailed discussion, including what is involved in

the development of a whole atmosphere model, the reader is

referred to Akmaev (2011). Roble (2000) significantly advanced the

concept of a whole atmosphere model by coupling together a model

developed for the lower atmosphere (NCAR Community Climate

Model, CCM3) with one developed for the upper atmosphere

(Thermosphere-Ionosphere-Mesosphere-Electrodynamics General

Circulation Model, TIME-GCM). Though viewed by Roble

(2000) as a “feasibility study to determine just how

processes in the lower atmosphere affect the upper

atmosphere”, the exploratory model proved to be highly

valuable with regards to understanding coupling processes

between the lower and upper atmospheres [e.g., (Liu and

Roble, 2002; Mendillo et al., 2002)]. This success led to the

subsequent development of several stand-alone whole

atmosphere models by researchers around the world,

including the Ground-to-topside model of Atmosphere and

Ionosphere for Aeronomy [GAIA, (Jin et al., 2011),], HI

Altitude Mechanistic general Circulation Model [HIAMCM,

(Becker and Vadas, 2020)], Whole Atmosphere Model

[WAM, (Akmaev et al., 2008)], and the Whole Atmosphere

Community Climate Model with thermosphere-ionosphere

extension [WACCM-X, (Liu et al., 2018)]. Note that in the

present context, whole atmosphere models are considered

those that are comprised of a single model that seamlessly

extends from the surface to the upper thermosphere. Though

not the focus of the present paper, it is important to recognize

that a variety of other models that are not considered whole

atmosphere models by this definition have also contributed

significantly to the understanding of how variability in the

lower atmosphere is imprinted on the middle and upper

atmospheres. This includes models with upper boundaries

in the lower thermosphere (~100–250 km) and models that

extend into the ionosphere-thermosphere but not all the way

down to the surface, as well as one- and two-dimensional

models [e.g., (Hagan and Forbes, 2003; Hagan et al., 2007;

Hickey et al., 2009; Qian et al., 2009; Vadas and Liu, 2009;

Yiğit et al., 2009)].

One aspect of the coupled CCM3-TIMEGCM that is

important to highlight is that it leveraged decades of historical

model developments in what could be considered to be disparate

communities. Specifically, it could not have been realized without

the prior (generally separate) developments that occurred in

climate and ionosphere-thermosphere modeling. Middle

atmosphere models, those extending up to the mesosphere-

lower thermosphere, were also of fundamental importance.

Whole atmosphere models thus require expertise across a

range of disciplines. Future developments will continue to

require wide-ranging expertise, including atmospheric

scientists, software engineers, and space physicists. While this

can, at times, present a challenge, I have personally found that it

makes working with whole atmosphere models full of

opportunities to broaden one’s perspective and learn

significantly from those with a variety of areas of expertise.

3 Science enabled by whole
atmosphere models

Despite their recent development, whole atmosphere models

have already made significant contributions to ionosphere-

thermosphere research. Some of the areas where whole

atmosphere models have led to new scientific understanding

are discussed below. Note that what follows is focused on the role

of the lower atmosphere on generating ionosphere-thermosphere

variability and it is not intended to be an exhaustive list of the

scientific applications of whole atmosphere models. Other

scientific topics of relevance to whole atmosphere models

include long-term trends (Solomon et al., 2019; Cnossen and

Maute, 2020; Liu et al., 2020) and the solar influence on

chemistry and climate. All of these areas remain active areas

of research and will continue to see progress with the continued

development of whole atmosphere models.

The influence of SSWs on the ionosphere-thermosphere was

one of the first scientific applications of stand-alone whole

atmosphere models (Wang et al., 2011; Fang et al., 2012; Jin

et al., 2012; Pedatella et al., 2012). Detailed discussion of the

contributions of whole atmosphere models in the understanding

of the coupling mechanisms between SSWs and the ionosphere-

thermosphere can be found in Goncharenko et al. (2021).

Notably, whole atmosphere model simulations advanced

understanding of the variability of different solar and lunar

tides during SSWs and their role in generating ionosphere-

thermosphere variability. Another important contribution was

the finding that using data assimilation systems to initialize

whole atmosphere model forecasts could lead to forecasting

the SSW effects on the ionosphere ~10 days in advance

(Wang et al., 2014; Pedatella et al., 2018). This demonstrates
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the potential increased space weather forecast skill that may be

obtained by incorporating lower atmospheric effects, especially

during periods of strong lower atmospheric forcing.

Observational studies have long shown that the lower

atmosphere contributes a significant fraction of the day-to-day

ionosphere variability. The advent of whole atmosphere models

has helped to quantify the variability in the ionosphere-

thermosphere that is driven by the lower atmosphere. Model

simulations by Fang et al. (2018) have shown that the lower

atmosphere contributes ~10−20% of the ionosphere variability.

This is generally consistent with prior observational estimates,

demonstrating that whole atmosphere models can reasonably

represent the day-to-day variability of the ionosphere. Additional

modeling studies have shown that there exists large day-to-day

variability in atmospheric tides and planetary waves and that

these are likely to be the source of the persistent day-to-day

variability in the ionosphere [e.g., (Jin et al., 2011; McDonald

et al., 2018; Gasperini et al., 2020; Liu, 2020)].

Though whole atmosphere models are typically run at a

relatively coarse resolution (1-2°), the development of models

with resolutions of 0.25–0.50° has enabled investigation into

smaller scale variability. High resolution whole atmosphere

model simulations have led to new understanding of the

pathways by which gravity waves reach the thermosphere

where they can imprint themselves on the ionosphere by

generating traveling ionospheric disturbances (TIDs) at

middle latitudes and plasma instabilities in the equatorial

region. Though previous research investigated the impacts of

gravity waves on the thermosphere [e.g., (Vadas and Fritts, 2004;

Vadas and Liu, 2009; Yiğit et al., 2009; Yiğit and Medvedev,

2009)], high resolution whole atmosphere model simulations by

Vadas and Becker (2019) and Becker and Vadas (2020) provided

new insight into the gravity waves reaching the thermosphere,

which include an important contribution from secondary and

higher-order waves that are generated by the momentum

deposition that results from wave breaking. Complete

understanding of this process for gravity waves to reach the

thermosphere would be difficult without high resolution whole

atmosphere modeling owing to the difficulty in observing gravity

waves throughout their full altitude range. The capability to

simulate small-scale waves in the thermosphere enabled by

high resolution models further enables simulations of small-

scale structures in the ionosphere, such as TIDs and equatorial

instabilities (Miyoshi et al., 2018; Huba and Liu, 2020).

An important feature of whole atmosphere models is that

they can simultaneously capture ionosphere-thermosphere

variability that is driven by the lower atmosphere as well as

variability due to solar and geomagnetic activity. This is critical as

solar and geomagnetically driven variability occurs on top of the

background state of the ionosphere-thermosphere, which is in-

part controlled by waves propagating upwards from the lower

atmosphere. Previous studies (Hagan et al., 2015; Pedatella, 2016)

found that incorporation of lower atmospheric effects can

significantly alter the simulated response to a geomagnetic

storm. This was confirmed in the context of a whole

atmosphere model by Pedatella and Liu (2018), who found

that regional differences in the ionosphere-thermosphere

response to a geomagnetic storm can reach 50−100% due to

lower atmospheric effects.

4 Future of whole atmosphere
modeling

Whole atmosphere models will continue to play a critical role

in enabling scientific understanding of the ionosphere-

thermosphere system. It is likely that they will also have an

increasing role operationally, as evidenced by the recent

implementation of the NOAA WAM for operational space

weather forecasting (https://www.swpc.noaa.gov/products/

wam-ipe). Here I outline a number of areas for advances in

model development along with how they will facilitate advances

in ionosphere-thermosphere research and space weather

operations.

Fully capturing the range of spatial scales that influence the

ionosphere-thermosphere requires high-resolution whole

atmosphere models. Initial high-resolution whole atmosphere

model simulations with horizontal resolutions of ~0.25–0.50°

have shown the profound influence of small-scale waves on the

thermosphere-ionosphere, including the generation of equatorial

ionosphere instabilities (Huba and Liu, 2020). Such high-

resolution capabilities have only been developed in the past

several years and have yet to be fully exploited in terms of

understanding the influence of atmospheric waves of various

scale sizes on the ionosphere-thermosphere. At the same time, it

is also crucial to continue advancing the development of high-

resolution modeling capabilities. Current models rely on

hydrostatic dynamical cores, which inherently limits their

ability to simulate the full extent of the waves that influence

the ionosphere-thermosphere. This can be addressed by adopting

non-hydrostatic dynamical cores, though incorporating a non-

hydrostatic dynamical core is nontrivial owing in-part to the

need to control dynamical instabilities (Griffin and Thuburn,

2018). Minimizing unphysical noise, for example through

hyperdiffusion or hyperviscosity (Dennis et al., 2012; Ullrich

et al., 2018), is also critical to separate real wave variability from

unphysical noise. The development of new dynamical cores

allows for regionally refined grids, enabling extremely high

resolutions [O (5–10 km)] over specific areas within a coarser

resolution global grid. Regionally refined grids have yet to be

employed in whole atmosphere models, though they are likely

the only feasible approach to obtain resolutions on the order of

5–10 km within the context of a global model in the foreseeable

future. Important scientific questions that can be addressed

through the continued development and application of high-

resolution whole atmosphere models include cross-scale wave
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coupling processes and the mechanisms responsible for the day-

to-day variability of small-scale ionospheric structures, such as

TIDs and equatorial irregularities.

High-resolution simulations will continue to be inhibited by

their computational demands, restricting their applications to

simulation lengths on the order of years. There will thus continue

to be a need for whole atmosphere model configurations with

coarser resolutions (~1-2° degrees) for certain applications (e.g.,

long-term trends, multi-year climatological studies, etc.). These

resolutions necessitate parameterization of the atmospheric

gravity waves that influence the middle and upper

atmospheres. Though critical for reproducing the mean state

of the middle and upper atmosphere, gravity wave

parameterizations remain a significant source of uncertainty

in whole atmosphere models (Pedatella et al., 2014). This is

partly due to the fact that many existing gravity wave

parameterizations rely on a number of assumptions, such as

strictly vertical and instantaneous propagation, that are known to

be incorrect. Updated gravity wave parameterization schemes

may alleviate some of the uncertainty due to gravity wave

parameterizations [e.g., (Yiğit et al., 2008; Bölöni et al., 2021)].

They additionally neglect secondary and higher-order waves that

are now thought to have an increasingly important role at higher

altitudes (Becker and Vadas, 2020). It is important to note that

even high-resolution whole atmosphere models will continue to

rely on parameterized processes for the near future. This is due to

the fact that certain processes, such as convective generation of

gravity waves, wave dissipation, and mixing, will continue to be

on sub-grid scales. Development of improved parameterization

schemes for both high- and low-resolution whole atmosphere

models will therefore be necessary to address existing

uncertainties in whole atmosphere models.

While a number of data assimilation systems have been

developed that extend into the lower thermosphere [e.g.,

(Wang et al., 2011; Eckermann et al., 2018; Koshin et al.,

2020)], a true whole atmosphere data assimilation system that

assimilates observations from the surface to the ionosphere-

thermosphere has only recently been realized (Pedatella et al.,

2020). There thus remains considerable room for improvement

in current data assimilation capabilities for whole atmosphere

models. Data assimilation systems have been extensively used for

numerical weather prediction (NWP), again providing the

opportunity to leverage the extensive prior developments in a

different discipline. However, data assimilation systems need to

be tailored to the specific demands of whole atmosphere models

owing to differences between the troposphere-stratosphere and

ionosphere-thermosphere. Important differences that influence

the data assimilation system include different spatial and

temporal scales of the dynamical variability, greater influence

of external driving in the ionosphere-thermosphere compared to

the troposphere, less understanding of model error

characteristics in the ionosphere-thermosphere, and the

relative sparsity of observations compared to the troposphere.

Dealing with unbalanced adjustments, which can generate

spurious waves, will also be critical due to the large wave

growth with altitude. The development of high-quality whole

atmosphere data assimilation systems will provide the

opportunity to advance a wide-range of scientific areas of

interest to the space physics community, much in the way

that atmospheric reanalysis products (e.g., ERA-5, MERRA2)

are widely used across the atmospheric science research

community. Furthermore, whole atmosphere data assimilation

systems can provide initial conditions for space weather

forecasting, enabling the study of the predictability and

forecast skill of the ionosphere-thermosphere, an area that is

vastly understudied in the authors opinion. Development of

whole atmosphere data assimilation systems is also critical for

operational space weather forecasting, especially for forecasting

the day-to-day variability of the ionosphere-thermosphere

during periods of quiet solar and geomagnetic activity.

Though slightly outside the primary focus of the present

article, it should be noted that improvements to the specification

of high-latitude forcing in whole atmosphere models are also

required. Whole atmosphere models currently typically rely on

empirical specifications of the high-latitude electric potential and

auroral precipitation that are known to be deficient.

Improvements in the high-latitude forcing may be realized

through data-driven approaches, such as the Assimilative

Mapping of Ionosphere Electrodynamics [AMIE, (Richmond

and Kamide, 1988)] and Assimilative Mapping of Geospace

Observations [AMGeO, (Matsuo, 2020)]. Coupling with a

magnetospheric model is an alternative approach, and has

proven to be beneficial for improving the high-latitude forcing

specification in ionosphere-thermosphere simulations (Wang

et al., 2004; Pham et al., 2022). Additionally, the current

capability of whole atmosphere models to simulate the effects

of particle precipitation on the chemistry of the middle

atmosphere is inhibited by large uncertainties in the particle

precipitation [e.g., (Nesse Tyssøy et al., 2022; Sinnhuber et al.,

2022)]. Improved specifications of particle precipitation will

enable better representation of solar influences on chemistry

and climate.

It is important to recognize that although the above

advances in whole atmosphere modeling and data

assimilation capabilities will themselves enable new

understanding of the ionosphere-thermosphere, it remains

important to continually assess the fidelity of model

simulations. This entails both confronting the model with

observations as well as performing detailed inter-model

comparisons. Such comparisons provide crucial insight into

model shortcomings and can help identify areas for future

development. Observational verification of whole atmosphere

models is especially critical; however, it is inhibited by the

deficiency of observations, especially in the thermosphere. A

robust observing system is thus essential for ensuring the

continued advancement of whole atmosphere models.
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5 Conclusion

The development of whole atmosphere models have

significantly advanced our understanding of the influence of

the lower atmosphere on the ionosphere-thermosphere across

a range of temporal and spatial scales. The advances outlined

above will serve to advance our existing modeling capabilities,

leading to new understanding of the processes that generate

ionosphere-thermosphere variability. Some of the important

scientific topics that can be addressed with advanced whole

atmosphere modeling capabilities include: 1) the influence of

terrestrial weather on the day-to-day variability of the

ionosphere, including TIDs and equatorial irregularities; 2)

cross-scale coupling between small and large scale waves; 3)

long-term trends; 4) predictability of the ionosphere-

thermosphere; 5) interaction between lower atmosphere and

solar/geomagnetic driven variability; and 6) solar influences

on atmospheric chemistry and climate. Advances in whole

atmosphere modeling will thus enable new understanding

across a range scientific areas, demonstrating the need to

continue advancing current modeling capabilities. They may

additionally serve to improve operational space weather

forecasts.
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