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We updated annual mean reconstructions of near-Earth interplanetary

conditions and (signed) open solar flux FS for the past 186 years.

Furthermore, we added observations for solar cycle 24 to refine regressions

and improved allowance for orthogardenhose and folded (a.k.a., switchback)

heliospheric flux from studies using strahl electrons. We also improved the

allowance made for the annual mean gardenhose angle of the interplanetary

magnetic field. We used both multiple regression with interplanetary magnetic

field B and solar wind speed VSW and linear regression with the function BVn
SW

and demonstrated that the latter gives correlations that are not significantly

lower than those given by the former. We conducted a number of tests of the

geomagnetic indices used, of which by far the most important is that all four

usable pairings of indices produce almost identical results for B, VSW, and FS. All

reconstructions were given full 2σ uncertainties using a Monte Carlo technique

that generates an ensemble of 1 million members for each pairing of indices.

The long-term variations of near-Earth interplanetary field B and open solar flux

FS were found to closely match those of the international sunspot numbers but

VSW show a significantly different variation. This result explains why of the two

peaks of 20th-century grand solar maximum, the range geomagnetic indices

give a larger second peak, whereas the diurnal variation indices give a first peak

that is larger, as it is for sunspots. We found that the increase in solar cycle

averages of FS was between 2.46 × 1014 Wb in 1906 and 4.10 × 1014 Wb in 1949,

the peak of the grandmaximum, and hence, the rise in open flux was by a factor

of 67%.
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1 Introduction

The potential to quantitatively reconstruct the interplanetary

conditions of the previous 100 years from geomagnetic

observations was foreseen by Russell (1975) and first

attempted by Feynman and Crooker (1978) and Gringauz

(1981). These early attempts used the aa geomagnetic index,

initially constructed for 1868–1968 by Mayaud (1972) from

observations made by geomagnetic observatories in southern

England and in Australia. The aa index is the arithmetic mean of

the northern and southern hemisphere subindices, aaN and aaS,

both of which are constructed from the range (between

minimum and maximum) of the irregular variation (i.e., after

elimination of the regular daily variation), observed in 3-h

intervals in either of the two horizontal components

(northward or eastward, whichever gives the larger value).

This range is then quantized, using quasi-logarithmic band

limits that are specific to the observatory, into k indices,

which are converted to ak values using a standard scale. This

procedure was first introduced by Bartels et al. (1939) and has

been discussed in reviews by Lockwood et al. (2018a) and

Lockwood et al. (2019a). In the northern hemisphere, the aa

stations used are Greenwich (IAGA code name GRW), Abinger

(ABN), and Hartland (HAD), which yield the k-index data

sequences kGRW, kABN, and kHAD, respectively, and

intercalibrated values are combined into aaN. In the southern

hemisphere, the sites are Melbourne (MEL), Toolangi (TOO),

and Canberra (CNB), which yield the data sequences kMEL, kTOO,

and kCNB and correspondingly formed the southern hemisphere

aa index, aaS. After the work of Mayaud, the aa index has

subsequently been continued to the present day.

The study by Feynman and Crooker (1978) used the derived

correlation of aa with BsV2
SW, where Bs is the southward

component of the near-Earth interplanetary magnetic field

(IMF) and VSW is the solar wind velocity. Because Bs (and the

IMF magnitude, B) was observed to be constant over solar cycle

20, Feynman and Crooker (1978) assumed that it remained

constant and used aa to infer the long-term change in VSW;

however, we now understand solar cycle 20 to be anomalous, and

subsequent cycles have shown that the assumptions of constant B

and/or Bs are not valid (Crooker and Gringauz, 1993). Stamper

et al. (1999) demonstrated that on annual timescales, which are

needed in these studies to average out seasonal ionospheric

effects and other dipole tilt effects, the IMF orientation is an

approximately constant factor, so the variation in Bs reflects that

in the IMF strength B. Lockwood et al. (2017) and Lockwood

(2022) have subsequently demonstrated that the assumption that

the IMF orientation is constant is only accurate to within a 1σ

error of 42% for 1-day means, but this error falls to 10.3% for 27-

day means and to 4.9% for 1-year means. Hence, on annual

timescales, the aa index depends on the IMF magnitude B and

the solar wind speed VSW to an accuracy of order 5%. The first

reconstruction to separate the effects of B and VSW on aa was

carried out by Lockwood et al. (1999), who used the fact that the

27-day recurrence index from aa (Sargent, 1979) has a different

(stronger) dependence on VSW than aa itself. Lockwood et al.

(1999) were aware that near-Earth interplanetary conditions are

a local parameter, predominantly relating to the streamer belt,

and so evaluated a global solar/heliospheric parameter, the open

solar flux (OSF), FS from B. This was achieved by using the Parker

spiral theory (Parker, 1958) to derive the radial IMF component

Br from B and then utilizing the observation by the Ulysses

spacecraft (Balogh et al., 1995; Smith and Balogh, 1995) that Br in

the heliosphere, averaged over IMF sectors of “toward” or “away”

field polarity (Br < 0 and Br > 0, respectively), is independent of

heliographic latitude. More specifically, Lockwood et al. (1999)

used the physical explanation of that result by Suess and Smith

(1996) and Suess et al. (1998), which predicts that |Br| is

independent of heliographic latitude. Note that Lockwood

et al. reconstructed the signed OSF, FS, the total away flux

which, because of Maxwell’s equation ∇ · �B � 0, equals the

total toward flux, and the unsigned OSF is 2Fs. Here, we used

signed OSF, and readers should be aware that some other studies

used the unsigned OSF, which is larger by a factor of 2.

From the data available from Lockwood et al. (1999), it was

evident that there had been a significant rise in the average values

of FS over the 20th century. The rise in OSF was reported to be a

doubling, a factor that has been contested (e.g., Mursula et al.,

2004; Svalgaard and Cliver, 2005). Next, various corrections have

been required and implemented along with improvements to the

method. The original reconstructions of Lockwood et al. (1999)

found that the optimum rise in 11-year running, boxcar averages

〈FS〉11 (used to smooth out the solar cycles) was between 2.09 ×

1014 Wb in 1901 and 5.42 × 1014 Wb in 1987. Hence, this is rise

was by 159%. However, this initial estimate did not allow for the

“excess flux” (caused by the effects on |Br| of “folds” or

“switchbacks” in the heliospheric field and by the

orthogardenhose flux; see discussion below). Lockwood et al.

(2014b) used the Monte Carlo fitting technique and four pairings

of indices to generate an ensemble of estimates that made

allowance for the excess flux. These reconstructions gave a

minimum 〈FS〉11 of 2.06 × 1014 Wb in 1901 and an earlier

and smaller maximum of 4.51 × 1014 Wb in 1955, and hence

an estimated rise of 110% with a 2σ uncertainty range between

95% and 125%. The uncertainty range is large because of the

uncertainty in the minimum values in solar cycle 14 at the start of

the 20th century: very small changes to this value make

disproportionately large changes to the percentage rise estimate.

Lockwood (2001), Lockwood (2003), and Lockwood et al.

(2009b) showed that the OSF subsequently had reached a peak

and was falling again and, as discussed later in the present study,

both geomagnetic and direct in situ spacecraft observations show

that 〈FS〉11 fell back to 2.64 × 1015 Wb by 2009, at the start of

solar cycle 24. This was the lowest value since 1902, at the start of

solar cycle 14. Furthermore, computation of the heliospheric

modulation potential and cosmic ray fluxes from the FS variation
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revealed that the twin peaks formed a grand solar maximum

(Usoskin et al., 2021). Steinhilber et al. (2012) used cosmogenic

isotopes to estimate the near-Earth IMF B (which is related to

OSF but is only an approximate proxy for OSF because of

variations of the Parker spiral associated with solar wind

speed) and found that the peak value in the 20th century was

of a magnitude that has been seen just 24 times previously in the

9000-year cosmogenic isotope record, an average repeat period

(of peaks in the IMF magnitude equal to or exceeding the 20th-

century peak) of 360 years (Barnard et al., 2011). Indeed, we now

know that the interval since 1610, when Thomas Herriot made

the first telescopic observations of sunspots, contains a grand

solar minimum, the Maunder minimum (Usoskin et al., 2015),

and a grand solar maximum (Lockwood et al., 2009b) and covers

almost the full range of solar activity levels seen over the

approximately 12,000-years interval over which cosmogenic

isotope data can give information about solar activity

(Usoskin, 2017). At the start of solar cycle 24, Barnard et al.

(2011) investigated the rise and fall of the 20th century grand

maximum and compared it with 24 previous analogous maxima

deduced from cosmogenic isotope abundance measurements for

the past 9000 years. They made analogue forecasts that predicted

a probability of approximately 8% that the fall would be rapid

enough for grand minimum conditions to commence around

2050. However, the optimum prediction (the median of the

ensemble of 24) was for a continuing slower decline than this

(in particular, at about the same rate as seen over cycles 22 and

23) in sunspot numbers and OSF, which is broadly consistent

with what has been subsequently observed in solar cycle 24.

Because this 20th-century grand maximum peaked in the

interval of modern spacecraft data, we here refer to it as the

“modern grand solar maximum,” hereafter “MGSM.” There is

great interest in this grand maximum because of its potential to

tell us about solar evolution, long-term variations in space

weather, and the solar magnetic cycle (see studies in the

collection edited by Banerjee et al., 2018).

2 Modern grand solar maximum in
monitoring data sequences

The MGSM can be seen in several datasets that extend back

far enough in time and that continue to the present day. Figure 1

shows two examples, sunspot numbers and the homogeneous aa

index, aaH. The top panel shows the newly recalibrated

international sunspot number, RISN (Clette and Lefèvre, 2016),

and the revised sunspot group number, RG (Vaquero et al., 2016).

The latter is scaled by a factor f, the ratio of the means over the

interval 1978–2018.

The aaH index is based on the same observations as

Mayaud’s classic aa index, but the long-term drifts in the

magnetic latitudes of the stations are allowed for by correcting

for the distances between the stations and an average auroral

oval location. This is done using the IGRF model and (for

before 1900) the gufm1 model of the intrinsic geomagnetic

field. This is a considerable advance on the original aa index

for which these distances were used but assumed constant for

each station (Lockwood et al., 2018a). In addition, improved

intercalibrations (that allow for the time of year) between data

from different stations were used, along with a model to

remove the time-of-year/time-of-day effects at a given

station location (Lockwood et al., 2018b). These changes

result in aaH, unlike aa, having two hemispheric subindices

(aaHN and aaHS for the northern and southern hemispheres,

respectively) with almost identical long-term variations,

despite them being entirely independent in their derivation.

In other words, the much better agreement of aaHN and aaHS

(compared with that for aaN and aaS of the original aa index)

was achieved from the improvements to the derivation

algorithm and not by any intercalibration to bring them

closer together. The aaH index data series runs from

1868 to the present day and here has been extended back

to 1844 using the k-index data from the Helsinki and St.

Petersburg magnetometers, using the procedure described by

FIGURE 1
Annual means and 11-year running means of (A) sunspot
numbers and (B) the homogeneous aa index (aaH). For the sunspot
numbers, the black and green lines are the (newly revised)
international sunspot number (RISN) and the group sunspot
number (RG, here plotted scaled by a factor f, which is the ratio of
mean values of RISN and RG over the years 1978–2018). The thick
mauve and orange lines indicate the corresponding 11-year
running means (〈RISN〉11yr and 〈RG〉11yr, respectively). The bottom
panel shows the annual means of aaH as a black line and 〈aaH〉11yr
as a thick blue line.
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Lockwood et al. (2013a) and Lockwood et al. (2014b). The

history of the development of this extension is reviewed in

Section 4 of Lockwood et al. (2014b).

In both panels of Figure 1, the thinner lines are annual

means, and the thicker lines are 11-point boxcar (running)

means of the annual data. After about 1925, the behaviors of

RG and RISN are very similar. Sunspot numbers have minima that

return to close to zero in every cycle, although there is some

cycle-to-cycle variation in the minima as well as in the maxima.

The 11-year running means show two clear peaks, the first being

the larger of the two because of the exceptionally large amplitude

of solar cycle 19 (June 1954 to October 1964). The 11-year

averages of cycle 24 (December 2008 to December 2018) are

almost exactly the same as they had been in cycle 14 (January

1902 to July 1913) with 〈RISN〉11yr ≈ 50. The peak value in cycle

19 was more than double this value (〈RISN〉11yr ≈ 125), so both

the rise and fall in average sunspot number over the period of

1900–2020 are by 150%. In view of this, a large rise and fall in

OSF is not surprising. The behavior of the aaH index also shows a

double peak, but differences exist. It is well known that the

minima in annual aa and aaH values showmuch greater cycle-to-

cycle change than the corresponding minima for sunspot

numbers. In addition, the peaks in 〈aaH〉11yr are more

triangular in shape than for the sunspot numbers, and the

second peak is slightly larger than the two. The two peaks in

the 11-year running means between weak solar cycles 14 and

24 define what we term here as the MGSM.

Figure 2 shows this grand maximum in two other long

solar–terrestrial observation sequences in the same format as

Figure 1, both of which commence in the early 1930s. The upper

panel is the ionospheric F2 peak critical frequency, foF2, from the

intercalibrated Slough and Chilton ionosondes. Near-noon

values are shown, being the means of values taken at 11, 12,

and 13 UT. The double peak is similar to that in sunspot

numbers, and the variation is consistent with that in RISN,

given the nonlinear regression of annual means of these foF2

data and RISN, as demonstrated by Lockwood et al. (2016b). Note

that the fractional change in foF2 is smaller than that for RISN

because the annual means of foF2 fall to minima of

approximately 5 MHz, whereas RISN falls to minima near zero.

The bottom panel is for the planetary ap geomagnetic range

index. This is quite similar to the plot for aaH given in Figure 1A.

However, there are some important differences. In particular, the

first of the two peaks of the MGSM is the larger for 〈ap〉11,
whereas for 〈aaH〉11, the second peak is larger. Because ap is

based on a planetary network of stations and aaH is based on just

two stations (currently Hartland (HAD) and Canberra (CNB)),

this initially appears to point to a problem with the calibration of

the aaH index. However, in this study, we show that aaH is in

excellent agreement with the k-index data from the Niemegk

(NGK) station, kNGK. This is highly significant because ap is

constructed by rescaling the k indices from the other stations in

the ap network to what Niemegk would have seen using standard

lookup tables before averaging (Lockwood et al., 2019a). Hence,

this difference between aaH and ap appears to be arising from the

procedure used to compile ap and from the fact there have been

numerous changes to the network of stations used to compile the

ap index (Lockwood et al., 2019a). This stresses a key point that

the homogeneity in the construction of a geomagnetic index is

vital if we wish to use it to reconstruct the space weather

conditions through the MGSM.

3 Calibration and checking of
geomagnetic data

It is self-evident that the reconstruction of past solar and

interplanetary conditions from historic geomagnetic data

critically depends on the stability of the calibration of those

data. There have been a number of instances of calibration skips

and drifts in data from a given station that have emerged from

comparisons with data from different stations. For example, in

developing the IHV index (Svalgaard et al., 2004; Svalgaard and

Cliver, 2007) using data from many stations, Leif Svalgaard in

2004 noted in a letter to the data curators that there appeared to

be an error in the early hourly mean data from the Eskdalemuir

station, something also noted by Martini and Mursula (2006).

From careful comparisons with data from nearby stations, this

FIGURE 2
Annual means and 11-year running means of (A) the
ionospheric F2-layer critical frequency, foF2, seen at Slough/
Chilton between 11 and 13 UT and (B) the geomagnetic range
index ap.
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error was corrected by Macmillan and Clarke (2011). Another

example was poor calibration of the horizontal force variometer

at Helsinki for a 6-year interval noted by Svalgaard (2014), which

was causing the horizontal H component to be too small;

Lockwood et al. (2014a) also found that correcting for this

using data on the vertical Z component indeed brought the

data in line with the observations from other stations, particularly

at the nearby St. Petersburg station.

Such corrections have been very valuable and important.

However, there is a potential and important pitfall here of which

we need to remain aware or we will make erroneous corrections

that would be a serious retrograde step. The key point is that if the

data sequences from two stations diverge, there are a number of

possibilities: first, one of the data sequences is in error (in which

case, which one?); second, they could both be in error; third, they

could both be correct, and it is the expectation that they should be

the same that is in error. The first and second possibilities are self-

evident, but the third is more subtle. We know that the

geomagnetic activity response depends on the geomagnetic

latitude of the station. The secular changes in Earth’s intrinsic

magnetic field mean that data from different stations will drift

relative to one another (see Lockwood et al., 2018a), and we must

be careful not to falsely ascribe these changes to measurement

error. The reason is that making a correction based on the

assumption that the difference is because of an instrumental

error effect means that the variation will be in error when we

apply a correction for the secular drift of the station.

Furthermore, the sensitivities of the geomagnetic observations

to variations in the IMF, B, and solar wind speed,VSW, depend on

the station location. Therefore, correcting data from two stations

to make them agree, on the false assumption that they should

agree, will cause errors in both the derived B and VSW. Another

potential pitfall of making corrections is the wrong assumption

that the geomagnetic activity data from different stations are

linearly proportional because, in reality, local site conditions may

mean this is not the case.

As expected, if we have one station that disagrees with several

others in similar locations on a given measurement, it is an

indication that it has a calibration problem, and this is best dealt

with by using the median of the distribution of all the available

values (with it being less prone to distortion by poorly calibrated

stations than the mean value). The problem is that as we go back

in time, we have fewer operating stations, and so the uncertainties

associated with using the ensemble of all available stations

inevitably increase. Furthermore, the geographic distribution

of those stations changes, which introduces an inhomogeneity

into the data series. For this reason, the second approach is to use

only a small number of stations but try to make the data from

them as homogeneous as possible (including allowing for the

secular drift in geomagnetic latitude and site differences). Hence,

there are two philosophies to generating a reliable geomagnetic

data sequence to extend modern spacecraft data on the

interplanetary medium back in time: (A) take the mean, or

preferably the median, of the distribution of all the stations

available at a given time and (B) use a limited number of stations

but do all one can to ensure the data series is homogeneous in the

sense that data from the past is consistent with the data from the

space age (the latter being the data that are compared with

interplanetary observations). Approach A has the advantage of

using all the available data but the disadvantage that the number

of stations decreases as we go back in time, thereby increasing the

uncertainties. This also means that the data for early years is not

from the same network of station locations as that during the

space age. When the number of stations is high, such an index is

genuinely global, but as one goes back in time, it becomes

increasingly local, applicable only to where the few early

stations were sited and not global in nature. Hence, it is not

true that using all the data available is necessarily the best

approach. Approach B could, in theory, achieve uncertainties

that are close to being constant throughout the data series and at

all times using data obtained from stations reasonably close to the

stations giving the data during the space age. Philosophy B uses

model values of the intrinsic magnetic field to allow for the

(changing) magnetic latitude of stations and so turn the local

measurements into a global estimate. However, it is not

deploying all the data available and so is more prone to errors

introduced by station calibration errors.

The IDV (interdiurnal variability) geomagnetic index

(Svalgaard and Cliver, 2005) and IHV (interhour variability)

geomagnetic index (Svalgaard et al., 2004; Svalgaard and Cliver,

2007) are examples of the application of philosophy A, whereas

the aaH (Lockwood et al., 2018a,b) and IDV(1d) (Lockwood et al.,

2013a,b, 2014a) indices are examples of the application of

philosophy B.

Given that geomagnetic responses vary with location, we

should not attempt to make all the geomagnetic data agree,

because that is based on the incorrect assumption that they

should all agree. However, when we use geomagnetic data to

reconstruct interplanetary conditions, the results should not

depend on where on the surface of the Earth the data come

from; hence comparing the interplanetary reconstructions

obtained using different geomagnetic data sequences is the

most valid test.

3.1 Comparison of the homogeneous aa
index and the corresponding k-index data
composite from the Potsdam, Seddin, and
Niemegk sites

Many of the criticisms of the doubling of the OSF derived by

Lockwood et al. (1999) were based on concerns on the calibration

of the aa index, some of which were valid, whereas others were

not. These mainly centered on apparent calibration skips

between the data from different stations in the deployed

sequences. However, this was a misunderstanding of the
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methodology that Mayaud (1972) had adopted when generating

the aa composite. Mayaud did not make a year-by-year

correction to allow for the effect of the secular drift of the

geomagnetic locations of the stations and then “daisy-chain”

the data sequences (i.e., link them using intercalibration between

the end of the prior sequence and the start of the next one).

Rather, he used an average sensitivity for each station and

computed for the mid-point of the data sequence from that

station. Hence, Mayaud effectively allowed for secular change in

the station latitude, but only in discrete steps at the joins of the

data sequences between stations. These steps have been wrongly

interpreted as “daisy-chaining” calibration errors. This factor has

been properly allowed for in the “homogeneous aa” (aaH) dataset

(Lockwood et al., 2018a,b), for which site sensitivity at a given

date is corrected for on an annual basis using a spline of the IGRF

and gufm1 geomagnetic field models from historic and

paleomagnetic observations. The data sequences can then be

daisy-chained and the calibrations checked at the joins between

the station data sequences. Doing this resulted in the data

sequences for the northern and southern hemisphere

subindices being much more similar for aaH than they are for

aa, even though at no stage was a comparison of the two used in

the derivation of either (Lockwood et al., 2018a,b).

A long, composite sequence of corresponding k-index data is

available from the combination of three nearby magnetometer

stations, namely, Potsdam, Seddin, and Niemegk in Germany.

We here refer to the latitude-corrected k-index data composite

from these three stations as kNGK (generated using the correction

from the IGRF and gufm1 models in the same way as in the

production of aaHN and aaHS), and the mean annual values are

compared with the aaH data sequence in the top panels of

Figure 3. The scatter plot on the right is between kNGK and

aaH for the last 51 years (1970–2020, inclusive), and the data

points have been fitted with a linear regression line (mauve) and a

second-order polynomial fit (blue). These are then used to scale

the kNGK data, which are then compared with aaH (the black line)

in the time series shown to the left. The linear fit (mauve line)

gives minima in kNGK around 1902 and 1912, which are deeper

than the corresponding minima in aaH. If we look at the deep

minimum in 2009, we see the same behavior. The correlation

coefficients are r = 0.978 and r = 0.983 for the linear and

quadratic fits, respectively. We applied the Meng-Z test for

the significance between two correlations (allowing for the

intercorrelation of the parameters) (Meng et al., 1992); the

resulting p-value for the null hypothesis that there is no

significant difference between the two correlations was 0.04.

Thus, the difference in correlation is significant at the 2σ

level. We also computed the Akaike information criterion

(AIC) (Akaike, 1974), which were 24.70 and 14.45 for the

linear and quadratic fits, which gives an information ratio of

168 (meaning the quadratic fit is 168 times more likely to be

correct than the linear fit). We also fitted with a third-order

polynomial: the correlation coefficient was r = 0.983 (identical to

the quadratic fit), and the AIC was 16.26; this makes the third-

order fit less likely than the quadratic fit by an information ratio

factor of 2.5, which means the third-order fit suffers from

overfitting. From these tests, we used the quadratic fit, and

this made a large improvement to the agreement of the early

sunspot-minimum values. Hence, if we assumed that the

Potsdam composite was correct and that the relationship was

linear, we might wish to (erroneously) correct these minima in

the aaH data. However, the scatter plot for the past 50 years

suggests that the variation is not linear, and when we use a

second-order polynomial fit (the blue lines), we find excellent

agreement between aaH and kNGK at all times. Hence, aaH is fully

consistent with the latitude-corrected Niemegk composite k-

index data, as long as we do not impose a (false) expectation

of a linear dependence.

3.2 Comparison of the homogeneous aa,
interhour variability, and ap indices

The bottom panel of Figure 3 makes a similar comparison of

the aaH index with the ap index. The ap (and hence kp) index is

currently made from data from 11 stations in the northern

hemisphere and two in the southern. It has been continuously

available since 1 January 1932, although the number and

distribution of stations employed have significantly varied

since then: there were initially 10 stations all in the northern

hemisphere, the first southern hemisphere station being added in

1958. The bottom right plot of Figure 3 is the scatter plot for

1970–2020 and shows that the linear fit for these data is

essentially as good as the quadratic fit. Hence, there is no

justification for anything beyond a linear fit. However, when

we look at the time series of these fits, we see that although

agreement is very good after 1960, before then, aaH is

consistently lower than ap. Because it is based on more

stations, it might be concluded that it is aaH that is in error.

However, if we consider how ap is constructed, the upper panels

of Figure 3 present a major problem for this argument. The ap

index is constructed using k-index data from a number of mid-

latitude stations. The k indices are first converted into

standardized values, ks, to account for the time of year and

UT response characteristics of the observing site and to, as far as

possible, normalize them to the values seen simultaneously by

Niemegk, kNGK, which was selected as the reference station. The

standardization from k to ks is achieved using conversion tables

for each observatory that were defined for the original stations by

Bartels (1949, 1957). These give a multiplication factor ks/k that

depends on the station location, UT, time of year, and k value.

The presently used conversion tables are for three seasons, and

many were generated using selected data from 1943 to 1948 only.

The three seasons are as follows: (1) the months around winter

solstice (January, February, November, and December), (2) the

months around the equinoxes (March, April, September, and
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October), and (3) the months around summer solstice (May,

June, July, and August). If this conversion were done adequately

for our purposes, we would therefore expect all the ks values

(and hence ap) to show the same level of agreement over time

as presented in the top panel for kNGK. That this is not the case

shows the difference is arising from the method of

compilation of ap, and it must be remembered that this is

not homogeneous: the number and geographical distribution

of the stations used have significantly changed (Lockwood

et al., 2019a), and no allowance for secular change in the

geomagnetic latitude of stations is made in the lookup tables of

the factor ks/k. Further evidence that the long-term change in

aaH is correct (and hence that it is not in ap) is provided in

Figures 13 and 14 of Lockwood et al. (2017), which show that

the long time series of k indices observed at Eskdalemuir,

Potsdam/Seddin/Neimegk, and Sondankylä were also the

same (to a very high degree of accuracy) as aaH, once

allowance was made for the geomagnetic latitudes of the

stations and how they varied because of the secular change

in the intrinsic geomagnetic field (using the same procedure as

was used to make the corresponding allowance for the aaH
stations). Hence, although it is constructed from more

stations, ap is not suitable for the task of reconstructing

past interplanetary conditions and makes the point that a

homogeneous nature of geomagnetic data sequences is very

important in the context of these reconstructions.

There are other reasons to be confident about the accuracy of

aaH, summarized in the top panels in Figure 4. The variations in

the annual means of the northern and southern hemisphere

subindices of aaH (aaHN and aaHS, respectively) are indicated by

red and blue lines in Part A, and a scatter plot is given in Part B.

The most significant difference arises at the lowest values, and

Part A shows that these are because either the earliest aaHN data

at sunspot minimum (from Greenwich) are slightly too low or

the earliest aaHS data at sunspot minimum (fromMelbourne) are

slightly too high. Given that the sunspot maximum values agree

well at all times, this indicates a nonlinearity in the response of

one (or both) of the stations. Apart from some suggestion from

the IHV index that suggests that the Greenwich data are correct,

we have no clear evidence as to which station is the cause (or

indeed if it is both), and in using aaH, we average the two. As

stated above, the agreement is very good: the correlation

coefficient is r = 0.983, even with the slight divergence of the

earliest sunspot minimum values. As discussed by Lockwood

et al. (2006), Lockwood andMcWilliams (2021), and Sivadas and

Sibeck (2022), correlation can be a limited metric for assessing

the similarity of two data series, and in this work, we routinely

looked at some other metrics of agreement. These are the number

FIGURE 3
(Top) annual means of the aaH index compared with scaled annual means of the k value composite kNGK from the Potsdam, Seddin, and
Niemegk magnetometers. The scatter plot in part (B) shows linear (in mauve) and second-order polynomial (in blue) fits to the modern data
(1970–2020), which give correlations of 0.978 and 0.984. These fits are used to scale the kNGK data in the full time series shown in part (A), using the
same colors as in (B), and these scaled kNGK variations are compared with the aaH data in black. (Bottom) The same for the aaH index and the ap
index with the variations shown in (C) and the scatter plot for 1970–2020 shown in (D). In this case, there is almost no difference between the linear
and second-order polynomial fits.
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of samples, nr; the effective number of independent samples

allowing for the persistence of the two data series (Thiébaux and

Zwiers, 1984), ne; the p-value of the null hypothesis that there is

no correlation, allowing for the persistence of the two data series,

pr; the root-mean-square fit residual as a percentage of the mean

value, Δrms; the p-value for the null hypothesis that the residuals

are not normally distributed, derived from a chi-squared test,

pnorm; and the p-value that the fit is not fully homoskedastic

(i.e., that the fit residuals have some variation with the fitted

value), from the heteroskedastic test ofWhite (1980), phet. For the

correlation between aaHN and aaHS, nr = 153, ne = 24.4, pr < 10–20,

Δrms = 6.58%, pnorm = 0.002, and phet = 0.181. Hence, the

correlation in this case is very highly significant, the fit

residuals are close to normally distributed, the probability of a

breakdown of homoskedacity is low, and the normalized r.m.s fit

residual is small. For all further correlations quoted in this study,

these metrics are given in Supplementary Table S1 of the

supplementary material. In addition, quantile–quantile plots

were generated for every correlation and visually inspected to

check that they were close to linear in form (and so the

distributions of the two parameters were similar); fit residuals

were plotted as a function of fitted value to give a visual check on

homoskedacity.

The good correlation between aaHN and aaHS is important

because although they are generated using the same procedure,

the data contributing to aaHN plays no part in the derivation of

aaHS, nor vice versa. Hence, aaHN and aaHS are entirely

independent and yet agree with each other very closely. The

green dots in Figure 4A are linearly scaled annual means of the

IHV index derived by Svalgaard et al. (2004) and Svalgaard and

Cliver (2007) using hourly means from many stations. These

points indicate that the IHV index is very similar to both aaHN
and aaHS. IHV for a given station is defined as the sum of the

absolute values of the difference between hourly means for a

specified geomagnetic component from 1 h to the next over the

7-h interval around local midnight. An average of the mean and

median of all available stations is then taken, and so it is an

example of an index generated by philosophy A. Hence, IHV is

FIGURE 4
(Top panels) Comparison of annual means of the northern and southern hemisphere subindices of aaH (aaHN and aaHS, shown by the red and
blue lines, respectively): (A) as a time series and (B) as a scatter plot (correlation coefficient 0.983 for the full 1868–2020 data series). The green dots
in (A) are linearly scaled annual means of IHV. (Bottom panels) Comparison of the IDV(1d) and IDV indices in the same format as the upper panel.
(C) annual means of IDV(1d) compared with scaled annual means of IDV. The scatter plot in (D) shows linear (in mauve) and second-order
polynomial (in blue) fits to the modern data (1970–2020), which give correlation coefficients of 0.987 and 0.988. These fits are used to scale the
IDV(1d) data in the full time series shown in (C) using the same colors as in (D) and are compared with IDV in black.

Frontiers in Astronomy and Space Sciences frontiersin.org08

Lockwood et al. 10.3389/fspas.2022.960775

https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org
https://doi.org/10.3389/fspas.2022.960775


quite different in its construction from aaH, which is derived

from 3-hourly k-values using philosophy B, and yet the two

closely agree. This becomes highly significant when we consider

that Lockwood et al. (2014b) have shown that IHV and aaH have

almost identical dependencies on interplanetary parameters, a

fact that is confirmed in the present study using data sequences

that contain an extra solar cycle. This being the case, we expect

IHV and aaH to show very similar variations, and Figure 4

confirms that they do.

3.3 Testing the interdiurnal variability
indices

The IDV index used here was derived by Svalgaard and Cliver

(2010), inspired by the u-index of Bartels (1932). The u-index

was defined as the weighted means of data, from a variety of

stations, on the absolute value of the difference between the mean

values of the horizontal (H) or vertical (Z) component

(whichever yields the larger value) for the day in question and

for the preceding day. The main difference between u and IDV is

that to further suppress contamination by changes in the regular

diurnal variation (most, but not all, of which is removed from u

by taking daily means), IDV only uses the hourly means (or spot

values if hourly means are unavailable) for the UT when the

station in question is closest to local midnight. Bartels’ work on

the u-index was criticized at the time for failing to register the

recurrent geomagnetic storms, and as a result, he himself

developed the range indices as an alternative (Bartels et al.,

1939). However, as pointed out by Svalgaard and Cliver

(2005), this feature is a positive advantage of the u and IDV

indices as it means that it does not strongly respond, if at all, to

solar wind speed variations. Thus, IDV offers a way of directly

determining the IMF, which can be readily applied to a great deal

of recorded historic data. One potential inhomogeneity in the

data series is that most of the older observatory yearbooks

contain spot values taken once every hour rather than the

hourly means available in later years. Svalgaard and Cliver

(2010) analyzed the IDV data sequence and (unlike for IHV,

as discussed above) did not find discontinuities associated with

the change from spot to hourly mean data, but one should remain

aware of the difference. Because it uses all available data, IDV

employs philosophy A in its construction.

The IDV(1d) index was compiled by Lockwood et al. (2013a)

using IDV values but applying philosophy B rather than

philosophy A. A number of station combinations were

possible and investigated, and the decision of which data to

use was made using the level of agreement with other stations and

avoiding spot values in case they could introduce a systematic

difference, albeit small. Lockwood et al. (2013a) knew that the

variation of IDV(1d) should be very similar to that of IDV after

about 1960, when there were sufficient stations to make

philosophy A valid. However, for earlier data, and before

1872 in particular, the homogeneous construction of IDV(1d)

should give better values than IDV. The composite IDV(1d) used

interdiurnal variation data from Helsinki for 1845–1890

(inclusive) and 1893–1896 and from Eskdalemuir from

1911 to the present. Stations were selected that showed close

agreement to the polynomial fit to all data used to allow for the

varying station geomagnetic latitudes and which had close

agreement with other stations, once that correction had been

implemented. The gaps were filled using data from the Potsdam

(1891–1892 and 1897–1907) and the nearby Seddin observatories

(1908–1910), and intercalibration was achieved using short

spline intervals of the Potsdam–Seddin sequence. A key point

in the compilation of the index was allowance for the variation of

geomagnetic latitude of each station. A survey of the

dependencies on interplanetary conditions was made using

data from many stations during the space age, and the

derived latitudinal dependence was then used to correct the

data sequences using the magnetic latitude of the stations

derived from the IGRF and gufm1 models of the geomagnetic

field. Lockwood et al. (2013a) tested the IDV(1d) composite

against data from many other stations, again corrected for their

geomagnetic latitude variation (note that this included Niemegk,

NGK), and found extremely good agreement with all stations,

except for some intervals of the data from Greenwich. Closer

inspection of the Greenwich data showed increasing

measurement errors up to the introduction of new

instrumentation in 1919. As aforementioned, Svalgaard (2014)

noted the poor calibration of the “horizontal force” variometer at

Helsinki for a 6-year interval, and Lockwood et al. (2014a) found

that correcting for this indeed brought the data in line with other

local observations.

The lower panels of Figure 4 compare the IDV and IDV(1d)

indices. The variations in Part C of Figure 4 show that the

agreement is almost perfect after 1959. In this interval, IDV is

always compiled from at least 42 stations, whereas IDV(1d) is

compiled from just one. This shows that philosophy B can work

just as well as A, with the caveat that care must be taken to ensure

that the station used is error-free. Going back in time to 1900,

some differences between IDV and IDV(1d) are seen in some

years, but they are very minor and do not form a consistent trend.

Over the years 1903–1958, the number of stations available to

compile IDV rose from 10 to 25. Before 1900, there are more

significant differences between the two, and in these years,

IDV(1d) has the advantage of being homogeneous is its

construction with later years and has also been checked

against stations close to the Helsinki site used, such as using

data from St. Petersburg. On the other hand, IDV at these times is

generated using considerably fewer stations, the number being

just 1 until 1880. Before 1872, IDV uses Bartels’ u-index data,

which Bartels himself was not confident of, describing it as “more

for illustration than for actual use.”Hence, IDV is a very different

index before 1900 than for the space age when it can be compared

with interplanetary data. Holappa and Mursula (2015) criticized
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the IDV(1d) index because it uses data from the Eskdalemuir

observatory, which, despite the work of Macmillan and Clarke

(2011), they argue to be inaccurately calibrated in its hourly

means (but not in the k-index range data). This is of limited

relevance to the IDV and IHV indices for which Eskdalemuir and

its similarly operated station, Lerwick, were just two of a basket of

stations used in the compilation under philosophy A, but it is

important for IDV(1d) that uses Eskdalemuir data with

philosophy B. The main evidence that the Eskdalemuir as in

error was differences compared with the corresponding data

from the Potsdam/Seddin/Niemegk composites, hereafter

referred to as IDV(NGK). Holappa and Mursula (2015)

attributed the differences to Eskdalemuir because of changes

to the instrumentation deployed there whereas the

instrumentation was not changed as radically for IDV(NGK),

although of course the sites used were. Holappa and Mursula

(2015) also tested the data from the Lerwick station that used

similar series of instrumentation to Eskdalemuir and found

larger errors; this had been noted by Lockwood et al. (2013a),

which is why they rejected Lerwick as a potential dataset for

compiling the IDV(1d) composite. However, Holappa and

Mursula (2015) used the explicit expectation that the ratio of

the values from different stations should be constant, which

neglects the fact that the magnetic latitudes of both stations have

changed differently. Figure 4C shows that for the years that

IDV(1d) is based on Eskdalemuir data (after 1911), it agrees very

well with IDV, which at these times is based on at least

12 stations. In fact, the difference between the Eskdalemuir

and the Potsdam/Seddin/Niemegk data is the greatest in solar

cycles 17 and 18 when IDV(1d) agrees very well with IDV, and

the latter is based on more than 20 stations. Thus, the argument

of Holappa and Mursula (2015) that the Eskdalemuir data are in

error, even after correction by Macmillan and Clarke (2011),

because they differ from the data from Potsdam/Seddin/

Niemegk, is very likely to be based on the false expectation

that they should be the same.

To confirm this, the top panels of Figure 5 test the IDV(1d)

index, which contains allowance for the secular drift in the

geomagnetic latitudes of the stations used, against the NGK

composite, after the latter has been similarly corrected

(Lockwood et al., 2013a). The format of the comparison is the

same as that used for the k-index range tested in Figure 3. To a

small extent, the difference noted by Holappa and Mursula

(2015) is indeed observed, with slightly higher values seen in

IDV(1d) at the peaks of cycles 16–19 (c. 1920–1960) than in the

corrected Potsdam composite. Holappa and Mursula (2015)

attributed this difference to errors in the Eskdalemuir data,

whereas it had been noted in relation to several other stations

by Lockwood et al. (2013a), who therefore attributed it to a

difference in the Potsdam data, which is why they used

IDV (ESK) to compile IDV(1d) after 1911 and not IDV(NGK),

the latter using data from Seddin until 1931 and from Niemegk

thereafter. The bottom panels of Figure 5 present an example of

just how similar the Eskdalemuir data are to the results from

other stations, once allowance is made for the secular changes in

geomagnetic latitude. Figures 5C,D make a comparison of

IDV(1d) with the results from the Tucson magnetometer

(with allowance for the magnetic latitude changes of that site).

This discussion highlights the points made in the Introduction

section, that when two stations disagree, one has to investigate

which is in error but also bear in mind that they could both be in

error and/or that one’s expectation that they should be the same

is at fault. On the latter point, we note that Holappa and Mursula

(2015) recommended the same correction for IDV(1d) and IHV,

which cannot be correct because we know these indices have

different dependencies on interplanetary parameters and that

those parameters have different long-term variations. Hence, we

urge extreme caution in correcting stations by intercomparison

because an incorrect correction is a damaging and retrograde

step. Thus, Lockwood et al. (2013a) adopted the philosophy of

avoiding stations that gave concern rather than correcting them

and then using them. However, as discussed above, an exception

to this philosophy had to be made and a correction to the early

Helsinki data (for solar cycle 11) implemented as there was no

adequate alternative data to deploy Lockwood et al. (2014b).

4 Procedure for reconstructing near-
Earth interplanetary conditions

Recent studies have confirmed that there is no such thing as a

“universal coupling function,” a combination of interplanetary

parameters that accurately predicts all terrestrial responses to

interplanetary variations. We know this because even different

geomagnetic activity indices are found to respond differently to a

given set of interplanetary conditions, let alone other space

weather activity indicators (Lockwood and McWilliams, 2021;

Lockwood, 2022).

Table 1 presents the results of a multiple regression

analysis of the four indices used in the present study, aaH,

IHV, IDV(1d), and IDV. We used the MATLAB two-

dimensional polynomial fitting routine “fit2dPolySVD” and

evaluated the polynomial using “eval2dPoly” (Whitehead,

2021). We use polynomials of order 2 and, based on

previous studies, fit using the near-Earth IMF B and solar

wind speed VSW. Table 1 presents the six coefficients (a to f)

that yield the predicted index, Ip1, given by

Ip1 � a + b.VSW + c.V2
SW + d.B + e.B.VSW+f.B2 (1)

We then evaluate the fit by computing the correlation

coefficient between the sequence of Ip1 values from the annual

means of B and VSW from the Omni interplanetary data (King

and Papitashvili, 2005) and the annual means of the observed

index Iobs. The optimum correlation coefficient from this

procedure is ropt1, and the 2σ uncertainty range in that value

is between rmin1 and rmax1.
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The left-hand side of Equation 1 has just two free variables, B

and VSW, and so in theory, we could solve for both using just two

geomagnetic indices. However, the combination of terms in

Equation 1 means the solution is complex and almost

certainly would require a numerical iteration technique.

Table 1 demonstrates that we obtain almost as high

correlations with the much simpler formulation:

Ip2 � g + h.B.Vn
SW (2)

which was used by Lockwood et al. (2014b) and is much more

readily solved. As for Equation 1, we evaluate the minimum,

optimum, and maximum correlation coefficients between Ip2 and

Iobs, which were rmin2, ropt2, and rmax2, respectively. All these

correlation coefficients are presented in Table 1 for each of the

four Iobs indices used, along with the 2σ errors of the optimum

correlations in both cases (ϵ1 and ϵ2) and the differences between
the correlations for the two fit procedures Δmin = (rmin2 − rmin1),

Δopt = (ropt2 − ropt1), and Δmax = (rmax2 − rmax1). Table 1 shows

that all the correlations are exceptionally high, with the lowest

optimum value being 0.915 and the highest being 0.971, but that

the Δ values are positive, showing that using Equation 1 always

generates better fits than using Equation 2, as we would expect,

because it has six free fit parameters, as opposed to the three in

Equation 2. However, these Δ values are very small and

considerably smaller than the 2σ uncertainties, ϵ1 and ϵ2. We

also applied the Meng-Z test for the significance between two

correlations (allowing for the intercorrelation of the parameters)

(Meng et al., 1992) and p-values for the null hypothesis that there

is no significant difference between the two correlations were

always above 0.85. Furthermore, we used fit residual analysis to

determine the AIC of each of the fits, and again, in no case did the

fit using Equation 1 give a significantly lower value than the fit

using Equation 2. These tests justify using the much simpler fit

procedure with fewer free fit parameters (Equation. 2).

The procedure used is a variant of that used by Lockwood et al.

(2014b), but with an additional solar cycle of data now available

(except in the case of IHV, which has not been updated). That extra

cycle (solar cycle number 24) is much weaker than the others

previously available in the space age and so extends the range of

values covered by the fits, thereby reducing the degree of

extrapolation involved in the reconstruction of the lower values

derived for around the start of the 20th century. Figure 6 shows the

variations ofB.Vn
SW (for B in nT andVSW in kms−1) for the optimum

exponent n and the best-fit annual means of the observed

geomagnetic index, Iobs, from Equation 2, (Iobs − g)/h, for the

four geomagnetic indices discussed and checked in Section 3.

FIGURE 5
(Top) annual means of the IDV(1d) index compared with annual means of the latitude-corrected IDV value the Potsdam, Seddin, and Niemegk
magnetometers, IDV(NGK). The scatter plot in (B) shows linear (in mauve) and second-order polynomial (in blue) fits to the modern data
(1970–2020), with correlation coefficients of 0.948 and 0.950. These fits are used to scale the IDV(NGK) data in the full time series shown in (A) using
the same colors as in (B), and these scaled variations are compared with the IDV(1d) variation in black. (Bottom: parts (C,D)) The same for the
IDV(1d) index and the corresponding IDV value from the Tucson data, IDV(TUC), (for both linear and quadratic fits r = 0.980). Note that for both
IDV(NGK) and IDV(TUC), the correction for the (varying) station geomagnetic latitude has been made.
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The reconstruction procedure is the most sophisticated yet

used as it is the only one (as far as we are aware) that employs a

Monte Carlo technique, based on the observed fit uncertainties,

to generate an ensemble of 1000 reconstructions of B.Vn
SW for a

given index. The root-mean-square deviations of the best fits and

the data ϵo2 � 〈(Iobs − Ip2)2〉1/2 are then computed. To generate

each ensemble member, a random number generator was used to

perturb all the data points individually by an error drawn at

random from a Gaussian distribution of mean zero and standard

deviation ϵo2. The best fit is then found for each set of error-

perturbed data using the Nelder–Mead search method, and we

check that 95% of the unperturbed data points lie within the plus

and the minus 2σ points of the distribution of 1000 fitted

variations. We then use Equations 4–7 of Lockwood et al.

(2014b) but in a slightly different way in that we generate an

ensemble of 1 million members for each of the four index

pairings by using every permutation of the 1000-fit ensembles

for the pair of indices used. Because of the matrix manipulation

used in MATLAB, this can be achieved in relatively short

computation times. This is done for each of the four pairings

of indices that show sufficiently different best-fit values of the

exponent n. The annual median of the total of four million

reconstruction ensemble members is then taken for both B and

VSW, along with the 2σ uncertainty limits.

Figure 7 studies how well the exponent n is defined in each

case. The top panel, A, shows the correlation coefficients r2
between the index Iobs and B.Vn

SW as a function of the exponent n.

The n values giving peak correlation r2 = ropt2 are marked by

vertical dashed lines. The question arises as to what extent small

differences in r2 are statistically significant. We here look at the

significance S of the difference between ropt2 and r2 at a different n

by computing the p-value of the null hypothesis that they are the

same (where S = 1 − p). To compute p, we use the Meng-Z test for

the difference between the correlations between A and B and

between A and C, which allows for the intercorrelation of B and C

(Meng et al., 1992). We test against the AR1 red-noise model by

using the effective number of independent data pairs, Neff,

given by

Neff � N 1 − a1( )/ 1 + a1( ) (3)

where N is the actual number of data pairs, and a1 is the

autocorrelation at lag 1 (Wilks, 1995). The results for S as a

function of n are shown in the middle panel (B) of Figure 7.

TABLE 1 Fits of near-Earth IMF B and solar wind speed VSW to the four geomagnetic indices used in this study. Fit 1 is a multiple regression using
second-order polynomials, and the fitted index is given by a + b.VSW + c.V2

SW + d.B + e.B.VSW+f .B2, where the coefficients a to f are for B in nT and
VSW in kms−1 and give the fitted index in nT. The optimum correlation coefficient for this fit is ropt1, and the maximum and minimum values of the 2σ
uncertainty range are rmax1 and rmin1, respectively. Fit 2 is a simpler fit of BVn

SW , and the table gives the best-fit exponent n and the corresponding
maximum, optimum, and minimum correlation coefficients rmax2, ropt2, and rmin2. The 2σ uncertainties of the two fits (1 = rmax1 − rmin1 and 1 =
rmax2 − rmin2) are given for comparison with the differences Δ in the correlations for the two fits (rmin1 − rmin2), (ropt1 − ropt2) and (rmax1 − rmax2). All Δ
values are positive showing that fit 1 is always better than fit 2, but the differences are extremely small andmuch smaller than the uncertainties  in
either fit. The text describesMeng-Z and AIC tests that show that the larger number of free fit parameters for Fit 1 compared to Fit 2mean that the
small increases Δ obtained using Fit 1 are not significant or justified.

Fit parameter aaH IHV IDV IDV(1d)

1 a 1.5279 15.3313 -7.0278 -8.6359

1 b -0.0082 -0.0506 0.0202 0.0306

1 c 0.0000 0.0000 0.0000 0.0000

1 d -2.3251 -2.1924 2.0013 1.1309

1 e 0.0121 0.0191 0.0004 0.0001

1 f 0.0037 -0.1306 0.0195 0.0132

1 rmin1 0.950 0.933 0.864 0.863

1 ropt1 0.971 0.962 0.921 0.917

1 rmax1 0.983 0.979 0.955 0.951

2 n 1.76 1.68 -0.05 -0.05

2 g -6.483 5.9624 -4.6830 -3.7070

2 h 6.6483 × 10–5 1.5924 × 10–4 3.0778 2.0094

2 rmin2 0.946 0.920 0.860 0.860

2 ropt2 0.968 0.955 0.919 0.915

2 rmax2 0.981 0.975 0.954 0.949

ϵ1 (rmax1 − rmin1)/2 0.017 0.023 0.046 0.044

ϵ2 (rmax2 − rmin2)/2 0.018 0.028 0.042 0.045

Δ (rmin1 − rmin2) 0.004 0.013 0.004 0.003

Δ (ropt1 − ropt2) 0.003 0.007 0.002 0.002

Δ (rmax1 − rmax2) 0.002 0.004 0.001 0.002
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If two indices have identical exponents n, there is no

independent information in the two, and B and VSW cannot be

separated—the errors in their derivation become infinite. If the n

values are similar such that the difference approaches zero, the

errors in B andVSW are very large and tend to infinity. For the four

indices used here, there are six permutations for combining them

in pairs. For two index pairs, specifically IDV and IDV(1d) and

IHV and aaH, the peak correlations are at almost identical n, which

means they cannot be used to separate the variations of B andVSW.

This leaves four usable permutations. The bottom panel (C) of

Figure 7 checks that the values of n for these indices are

significantly different. The probability of index Iobs1 having a

general value of n is (1 − S1), and the probability that a second

index Iobs2 has the same value is (1 − S2); hence, the probability that

both have that value of n is (1 − S1) (1 − S2), which is plotted as a

function of n in the bottom panel. It can be seen that the most

clearly distinct combination is IDV and aaH (in red) for which the

peak probability of them not being distinct is 0.004% for n near 1.

The least-distinct pairing is IHV and IDV(1d) (in orange) for

which the peak probability is larger (0.08%) but still very small. For

IHV and IDV (in green), it is 0.07%, and for IDV(1d) and aaH (in

black), it is 0.06%. The uncertainties in B and VSW from a given

index pairing are found to increase with the peak value of (1 −

S1)×(1 − S2) and are extremely large, and indeed often infinite, for

the two unused pairings, which give (1 − S1)×(1 − S2) that peaks

very close to unity around the peaks of the correlations.

5 Reconstructions of near-Earth
interplanetary conditions

Figure 8A shows the reconstructions of the near-Earth IMF,

B. The four colored lines are the median values of the ensembles

of 1 million fits for each of the four index pairings. The blue dots

give the annual means of the observations by spacecraft in near-

Earth interplanetary space from the Omni dataset, B′. Figure 8B
presents the superposed scatter plots of B as a function of B′ for
1964–2020, inclusive, and Table 2 gives the correlation

coefficients. The four best-fit least-squares linear regression

fits are shown in Figure 8B and are indistinguishable. For all

FIGURE 6
Variations of annual means of B.Vn

SW and the best-fit geomagnetic index from Eq. 2 using the best-fit coefficients g, h, and n given in Table 1. In
each panel, the yellow and black lines indicate the B.Vn

SW variation for the optimum n, and the colored line is the scaled observed geomagnetic index,
which from Eq. 2 is (Iobs − g)/h. Panel (A) is for aaH (blue line), (B) is for IHV (mauve line), (C) is for IDV(1d) (cyan line), and (D) is for IDV (black line). Their
correlation coefficients and uncertainty ranges are presented in Table 1.
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years after 1880, the four median reconstructions are almost

identical and lying very close to the center of the gray area, which

is the ±2σ uncertainty band of the ensemble of all four million

values. This is the ultimate test of the geomagnetic data used to

compile all four reconstructions because the interplanetary

parameters do not depend on where the geomagnetic data

were measured, nor on the instrumentation used, nor on the

calibration of the instrumentation. Hence, if there are differences

in the geomagnetic data that are used, they should be there and

should not be corrected on the (false) assumption that the

geomagnetic data should all agree with each other.

Before 1880, the situation is different. In this interval, the only

data available are the aaH index (extended back to before 1868 using

data from Helsinki, St. Petersburg, and, where possible, Greenwich),

IDV(1d) and IDV (Lockwood et al., 2014a). As discussed above,

IDV(1d) at this time is based on theHelsinki data (after correction for

erroneous hourly means of the horizontal component during cycle

11), whereas IDV uses Bartels’ u-index, which he regarded as

illustrative only for most of the interval. The aaH–IDV(1d)

pairing gives the black line and the aaH–IDV pairing the red line,

and we can see that before 1880, the two give quite similar variations

but do diverge somewhat. The procedure at this time generates

ensembles of 2 million members: the median of the total ensemble is

between the red and black lines, in which the ±2σ uncertainty band is

somewhat broader than that for later years.

Figure 9 shows the corresponding four median reconstructions

of the near-Earth solar wind speed, VSW. Again, the annual mean

from theOmni dataset of spacecraft observationsVSW′ is given by the

blue dots; the scatter plots of VSW as a function of VSW′ are given in

Part B and the correlation coefficients in Table 2. The agreement

between the different pairings is not as close as for the IMF B, nor

with the spacecraft observations for 1964–2020. However, agreement

is still very good. All the time series show peaks in annual means of

VSW in the declining phase of most solar (but not all) cycles. This is

expected because in this phase of the solar cycle, isolated coronal

holes form at low latitudes, along with extensions of polar coronal

holes to low latitudes. This increases the probability of Earth-directed

fast solar wind and raises the occurrence of corotating interaction

regions impacting Earth, giving recurrent geomagnetic disturbances.

The derived sequence has similarities to that derived byMursula et al.

(2017) using the fact that the geomagnetic activity response depends

on the latitude of the station (Finch et al., 2008). Mursula et al. (2017)

noted variations in this time series related to the rise and fall of the

grand maximum. Here, we again note that the close agreement

between the results of different pairings of geomagnetic activity

indices means that errors in those indices are small, and so,

differences are real and should not be corrected.

6 Reconstruction of open solar flux

We here use a development of the procedure of Lockwood

et al. (2014b) to compute the (signed) OSF FS. We use the Parker

spiral theory, and we need to evaluate its accuracy and make any

correction required.

Figure 10 shows the results of a survey of daily mean values of

the interplanetary data and compares the observed IMF

“gardenhose” angle with those predicted by the Parker spiral

theory. Polar histograms of the observed (gray filled, θobs) and

predicted (mauve outlined, θp) distributions of the IMF

gardenhose angle are presented for daily means of the near-

continuous interplanetary observations from 1995 to 2020, where

θobs � tan−1 −BY/BX( ) (4)

and BY and BX are the Y and X IMF components in the GSE

frame, respectively. The plots are for 12 ranges of observed solar

FIGURE 7
(A) correlograms showing the correlation coefficient r2
between the observed geomagnetic index Iobs and B.Vn

SW from
interplanetary data as a function of the exponent n for the four
indices using the same colors as in Figure 6, i.e., blue for aaH,
mauve for IHV, cyan for IDV(1d), and black for IDV. The vertical
dashed lines indicate the peak value of r2, ropt2. (B) the significance
S = 1 − p of the difference between the correlation at general n, r2,
and its peak value, ropt2 (where the p-value is the probability of the
null hypothesis, which is that r2 and ropt2 are the same): this is
evaluated using the Meng-Z test that allows for the
intercorrelation between variations of B.Vn

SW at different n. (C) the
probability (×103) that the value of n is the same for pairs of indices
for which ropt2 is at a significantly different n, (1 − S1)×(1 − S2) where
S1 and S2 denote the values of S for the two indices in question: red
is for the combination of aaH with IDV, black for aaH with IDV(1d),
green for IHV with IDV, and orange for IHV with IDV(1d). For these
four pairings, (1 − S1)×(1 − S2) is small at all n, but for the other two
possible pairings (aaH with IHV and IDV(1d) with IDV), the value of
(1 − S1)×(1 − S2) is always close to unity.
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wind speed,VSW, each containing one 12th of the total number of

samples in the dataset. The predictions use the daily mean VSW

value and Parker spiral theory

θp � tan−1 rω/VSW( ) (5)

where ω is the angular velocity of the solar corona with respect to

the fixed stars, and r is heliocentric distance. A corresponding

plot for hourly means was presented by Lockwood et al. (2019),

who studied the causes of the largest deviations from Parker

spiral orientations, namely, orthogardenhose flux.We predict the

modulus of the radial field |[Br]p| using

| Br[ ]p |� B cos β( ) ≈ B cos θp( ) � Brω/ r2ω2 + V2
SW{ }1/2 (6)

where β is the angle between the IMF vector �B and the radial

direction. This is, in general, different from the gardenhose angle

θ, and the two are only the same if the IMF component BZ = 0.

Hence, we need to evaluate the effect of nonzero BZ caused by the

need to adopt the approximation inherent in Equation 5 because

we cannot reconstruct BZ. We also need to investigate the effect

of the averaging timescale τ as we will be using annual mean data.

The combined effect of these two factors is investigated in

Figure 11, compiled from the 26 years’ data used to compile

FIGURE 8
Reconstructions of the near-Earth heliospheric field; (B) reconstructions from individual index pairs are plotted as a time series in panel (A) and
as a scatter plot against themeans of observed values from the Omni dataset, B′, in (B). In both panels, the colors for each index pairing are as used in
the bottom panel of Figure 7. The values shown are themedians for the ensemble of onemillionmembers. Because differences are generally smaller
than the linewidths in panel (A), it is important to note that they are plotted in the above order, i.e., red, green, orange, and then black. Hence, for
example, the fact that the orange line cannot be seen is because it is everywhere under the black line. In the scatter plot shown in part (B), the points
plotted first are slightly larger, so that they can be seen. The best-fit linear regressions are also shown in (B) using the same colors. In (A), the annual
means of Omni observations are shown as blue dots, and the gray area is bounded by the 2σ points of the distribution of all four million ensemble
members from the four index pairings.

TABLE 2 Correlation coefficients rm of the optimum fit (the median of the ensemble, denoted by the prime) with the corresponding observed near-
Earth interplanetary parameters B and VSW and the OSF FS for each of the four pairings of indices.

Index Index rm rm rm s c

1 2 B′ and B VSW′ and VSW FS′ and FS (1015Wb)

aaH IDV 0.925 0.905 0.884 0.6742 -0.0426

aaH IDV(1d) 0.921 0.879 0.880 0.6783 -0.0468

IHV IDV 0.924 0.858 0.895 0.6659 -0.0426

IHV IDV(1d) 0.914 0.826 0.891 0.6683 -0.0373
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Figure 10. We evaluate | [Br]p | using Equation 6 and from that

the fractional error given by

ϵ � | Br[ ]p| − | Br[ ]obs|( )/| Br[ ]obs| � B cosθp/| Br[ ]obs|( ) − 1 (7)

where |[Br]obs| is the absolute value of the observed radial IMF

component. The distribution of ϵ values was computed for 1-day

means (shown in Figure 11A) and then for running boxcarmeans of

the 1-day values over timescales τ of B 7 days, C 27 days, and D

1 year. Figure 11D shows that the mean of the distribution of errors

μϵ is not zero, as was assumed by Lockwood et al. (2014b), but is

0.198, which means that we need to divide the predicted radial field

estimates |[Br]p| by (1 + μϵ) ≈ 1.2. We find no evidence that the

error ϵ depends on either |[Br]p| or |[Br]obs|, and so the same

correction can be applied to all data. This correction explains why FS
estimates are a bit smaller than those given by Lockwood et al.

(2014b) but do not change the estimated percentage rise because all

FS values are changed by the same factor.

Themean μϵ and standard deviation σϵ of the distribution of ϵ
values are given in each panel along with the 1σ fractional error in

using the procedure and then correcting for the offset of the mean

value, σϵ/(1 + μϵ). For daily means, that error is by a factor of close

to 6, but the distribution narrows as τ is increased, such that for

τ = 7 days, the error is 25%; for τ = 27 days, it is 12.5%; and for τ =

1 year, it is just below 5%.

We also have to consider another factor that has been given a

variety of names: “excess flux” (Lockwood et al., 2009b,a;

Lockwood and Owens, 2009), “inversions” (Owens et al.,

2013), “folded flux” (Owens et al., 2017b), and “switchbacks”

(e.g., Mozer et al., 2020). The radial heliospheric magnetic field

(HMF) can be used to compute the OSF because of two factors.

First, we are averaging out any structure in the Carrington

longitude by taking means over several solar rotations for

annual means at Earth (specifically 13.42 rotations in a leap

year and 13.38 in a non-leap year). The second factor is that the

Ulysses satellite showed that the radial component of the

heliospheric field was approximately independent of

heliographic latitude (Balogh et al., 1995; Smith and Balogh,

1995), a result we can understand considering that close to the

Sun, the plasma beta is low, i.e., pressure is dominated by the

magnetic field. This means solar wind flows close to the Sun are

slightly nonradial until the tangential pressure is equalized, which

means that the modulus of the radial magnetic field |Br| is

equalized, and this is carried out by the radial solar wind flow

into the heliosphere (Suess and Smith, 1996; Suess et al., 1996,

1998). The tangential magnetic pressure depends on the radial

field of either polarity (toward or away from the Sun), and this is

why it is the modulus of the radial field that is constant. At a

heliocentric distance r, the unsigned magnetic flux (of either

polarity) threading the surface of radius r is 4πr2|Br|. Owens et al.

(2008) surveyed radial field measurements throughout the

heliosphere and showed that although |Br| remained

approximately independent of latitude at all r, the unsigned

flux FS increased with r. We here use signed flux (of one

polarity), and Maxwell’s equation (∇. �B � 0 (the nonexistence

of magnetic monopoles) means that for any r, the outward

magnetic flux equals the inward flux, and the signed flux is

FS = 2πr2|Br|. At the coronal source surface r = ro, where Br = Bro,

FIGURE 9
The same as Figure 8 for the near-Earth solar wind speed, VSW.
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this flux is the signed OSF FS � 2πr2o|Bro|, and from the result of

Owens et al. (2008), we can write

FS � 2πr2o|Bro| � 2πr2|Br| − Δ r( ) (8)

where Δ is the “excess flux” that increases with r (Lockwood and

Owens, 2009). This is the magnetic flux that threads the coronal

source surface (with either “Toward,” T, or “Away,” A, field

polarity in the − r and + r directions, respectively) and loops back

toward the Sun in the heliosphere (termed an “inversion,” a

“switchback,” or “folded flux”) so that it threads a surface at a

given heliocentric distance r more than once. Excess flux also

includes orthogardenhose flux tubes that are also bent back

toward the Sun but by a smaller angle, such that they are no

longer in the gardenhose sectors of IMF orientation. If it does this

once, such a heliospheric flux tube containing OSF flux dFS of A

polarity at the coronal source surface contributes flux 2. dFS to

total A flux threading the sphere of radius r and adds dFS to the

total T flux threading the sphere. Likewise, if the flux dFS at the

source surface is of T polarity, it contributes 2. dFS to the total T

flux threading the sphere of radius r and dFS to the total A flux

threading the sphere. In both cases, the excess flux added is Δ = 2.

dFS (Lockwood and Owens, 2013). If the flux tube were to do this

twice, it would add Δ = 4. dFS, and so on. Note that excess flux is

undoubtedly a real physical phenomenon and cannot be

dismissed as noise or an artifact of using a modulus—indeed,

the use of the modulus is necessary here to avoid artifacts induced

by averaging over a region containing two opposite polarities.

Note that the theory of why the heliospheric radial field is

constant (Suess and Smith, 1996; Suess et al., 1996, 1998)

shows that it is the modulus that we should use because both

the T and A fields contribute to the tangential field pressure. Note

also that excess flux has two causes. The first is orthogardenhose

flux, where flux tubes are bent back toward the Sun but by an

angle large enough to take it out of the gardenhose IMF

orientation sector but not large enough to take it into the

gardenhose sector of the opposite T/A polarity. The second is

folded flux (a.k.a. switchbacks), where the flux tube is bent back

by an angle large enough (approaching 180°) for it to remain in a

gardenhose orientation sector (but becomes T flux where it was A

or vice versa). Both contribute to excess flux, but only in the

FIGURE 10
Polar histograms of interplanetary magnetic field (IMF) gardenhose angle distributions, both observed (gray filled,θobs) and predicted (mauve
outlined, θp), where θ = tan−1 (−BY/BX) for daily means of the near-continuous interplanetary observations from 1995 to 2020. The plots are for
12 ranges of observed solar wind speed, VSW, each containing 639 samples (one 12th of the total total number of samples in the dataset, which is
7668). The predictions use the daily mean VSW value and Parker spiral theory. The corresponding plot for hourly means was presented by
Lockwood et al. (2019).
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orthogardenhose flux case can it be identified from the field

orientation. Recent results from the Parker Solar Probe mission

showed how common switchbacks are in the inner heliosphere

(e.g., Mozer et al., 2020), and so accurately computing the excess

flux Δ is of great importance.

However, there is no easy way to compute the total excess

flux, Δ. From potential field source surface (PFSS) modeling, we

can identify the polarity of the radial field at the source surface

and average over the T and A sectors of the source surface. If we

could identify where sector boundaries in the source surface map

to in the satellite data, we could average the signed Br over the

intervals of one source polarity (it is important to note that we

need source polarity, not polarity at the spacecraft), which would

cancel excess flux because the additional + dFS of A flux of any

orthogardenhose or folded flux tube would cancel the −dFS of the

corresponding T flux. Smith and Balogh (1995) first identified the

latitudinal invariance of the radial field (often referred to as the

“Ulysses result”) by assuming that they could define the source

sector boundaries from the field polarity at the spacecraft.

However, the T/A polarity at the source surface does not

always stay the same all the way to the spacecraft, and so, we

cannot, in general, identify the source sector boundaries in the

satellite data. For example, if there is a short interval of opposite

polarity radial field in a sector, one can never know if it is folded

flux (and so does not appear in the source surface) or if it reflects

real polarity structure on the source surface. Hence, this method

does not provide a self-consistent method, and we cannot rely on

this method to average out Δ (Lockwood and Owens, 2009). In

practice, comparison of OSF values from the (PFSS) modeling of

the corona can be made to agree by simply averaging the radial

heliospheric field at the spacecraft over a given timescale. Some of

these agreements are achieved by averaging out toward and away

excess flux, but toward and away structure that maps back to the

source surface, and hence is genuine OSF, is also averaged out. It

was found that an averaging timescale of approximately 1 day

made spacecraft and PFSS estimates agree rather well, but there

was no physical reason to choose this averaging timescale, and so,

it was an arbitrary correction, and we could never be sure it

always applied. In addition, it must be remembered that the PFSS

method contains many assumptions.

Other methods, such as using orientation with respect to the

Parker spiral theory (Erdős and Balogh, 2012, 2014), can be used

to remove the orthogardenhose component of the excess flux but

relied on the use of an averaging timescale over an arbitrary

FIGURE 11
Histograms of the fractional error in the absolute value of the radial IMF generated from the Parker spiral theory using the observed solar wind
speed VSW and IMF magnitude B from the same dataset used in Figure 10. The fractional error ϵ is defined as (Bcosθp/|[Br]obs|) − 1, where |[Br]obs| is
the observed radial component of the IMF, and θp = tan−1 (r.ω/VSW) is the predicted garden house angle, where ω is the angular velocity of the solar
corona with respect to the fixed stars, and r is heliocentric distance. Plots are for boxcar running means of interplanetary data over timescales τ
of (A) 1 day, (B) 7 days, (C) 27 days, and (D) 1 year. The vertical mauve lines indicate perfect prediction of the observations (ϵ = 0), and the mean, μϵ,
and the standard deviation, σϵ, of the distribution of the ϵ values is given in each panel, along with the 1σ error in using the procedure described in the
text to compute Br.
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timescale to remove the folded flux component and so were not

any more satisfactory. Lockwood et al. (2009a) devised a

method to use the gradients in solar wind speed with frozen-

in flux to estimate the excess flux (the kinematic correction) and

showed that it could broadly explain the difference between

PFSS and spacecraft values more physically. However, by far,

the best method is that devised by Owens et al. (2017b) using

strahl electrons to identify folded flux (and orthogardenhose

flux) and compute the excess flux. Strahl electrons are generated

by the high temperatures of the solar corona. They flow along

heliospheric field lines, and because the field-aligned velocity is

much higher than field-perpendicular velocities of the field

lines, the field lines move only a small distance during the short

electron transit times, and the electron trajectories are close to

(but not quite exactly) field-aligned. Strahl electrons are

sometimes seen moving back toward the Sun, and this is a

unique identifier of excess flux (either orthogardenhose or

folded flux). Strahl on orthogardenhose HMF is sunward, as

is strahl on inverted gardenhose HMF that has been through a

switchback and is folded back on itself. Owens et al. (2017b)

used strahl data from the Advanced Composition Explorer

(ACE) spacecraft to compute the total flux of field lines

showing sunward strahl and properly measure the excess

flux Δ for the first time. The results showed that the

kinematic correction was valuable but slightly and

systematically overestimated the excess flux. Frost et al.

(2022) have recently extended the survey of Owens et al.

(2017b) by using both the ACE and WIND spacecraft, and

we here use linear regression their values of the OSF derived

using Equation 8 to scale OSF values obtained from the

geomagnetic reconstructions of B and VSW using Equation 6.

This yields

FS′ � sFSG + c � s 2πr2| Br[ ]p|( ) + c

� 2sπr2BVsω/ r2ω2 + V2
SW[ ]1/2 + c

(9)

where s and c are the coefficients from the linear regression of

the estimates FS′ from spacecraft data (allowing for excess flux

using the strahl observations), and FSG is the estimate derived

from the annual mean geomagnetic activity (with no

allowance for excess flux). Note that the excess flux Δ is

accounted for by the intercept of the regression, c and the

slope s allows for the mean fractional error μϵ introduced by

using the Parker spiral theory for annual means (see

Figure 11). Table 2 presents the coefficients s and c for the

OSF values FS′ of Frost et al. (2022), available for 1995–2020,
and the values of FSG from individual geomagnetic index pairs.

It should be noted that the correction for excess flux from

strahl electrons by Frost et al. (2022) provides a slightly larger

OSF than the kinematic correction, which was used in past

reconstructions by Lockwood et al. (2014b). On the other

hand, Figure 11 shows that proper allowance for Parker spiral

means we need to reduce OSF by a factor of (1 + μϵ) ≈ 1.2. These

two opposing effects happen to be of similar magnitude, and so,

the OSF values derived here are quite similar to those derived by

Lockwood et al. (2014b).

The signed OSF derived this way is presented in Figure 12

and compared with the values of Frost et al. (2022) indicated by

the blue dots after 1995 in Part A. Before 1995, no suitable strahl

data are available, and the blue dots for 1964–1994 are the

kinematically corrected values of Lockwood et al. (2009a) that

have been adjusted using the best-fit linear regression of the

excess flux estimates with the Frost et al. (2022) values for

1995–2020. This composite of satellite OSF values, corrected

for excess flux, FS′ are plotted along the x-axis in Part B. The 2σ

uncertainty band of the total OSF reconstruction is slightly

broader than that for B and VSW because it includes the effect

of the 5% uncertainty σϵ introduced by the use of the Parker spiral

theory on annual timescales (presented in Figure 11D). The

correlations for the median of the ensemble for each index

pairing are very slightly reduced compared with those for VSW

of B for the same reason. The regression fits of the ensemble

medians to the satellite data are similar for the four geomagnetic

index pairings in Figure 12B, but those involving IHV give a

distinctly greater slope. This is reflected in the reconstruction

variations presented in Figure 12A for which the IHV-IDV(1d)

and IHV-IDV pairings (the orange and green lines) give the

lowest values early in the 20th century. In this context, we note

that IHV is not available for cycle 24, and this is a low-activity

cycle that helps constrain the reconstructions early in the 20th

century when solar activity is low. Even considering this, the

agreement is again very good. Supplementary Table S1 in the

supplementary material file provides analysis of the correlations

of reconstructed B, VSW, and FS for each of the four usable index

pairings individually and for the median of the ensemble of four

million reconstructions.

Here, we have used the aaH rather than the corrected

version of aa employed by Lockwood et al. (2014b), which has

introduced some differences. The main effect of this change

has been the reduction of discrepancies between the

reconstructions for different geomagnetic index pairings as

well as the reduction of the overall 2σ uncertainties. However,

the use of aaH has made only minimal difference to the

variation of the optimum OSF reconstruction. What has

had a much greater effect, and is the main reason why the

percentage rise in OSF was somewhat lower than those in the

results of Lockwood et al. (2014b), is the evolving

improvement to the excess flux calculation. This has

resulted in the best estimate of the percentage rise in OSF

over the first half of the 20th century changing from 100% in

the study by Lockwood et al. (2014b) to the 67% found here.

The use of strahl electrons is by far the best method devised

(Owens et al., 2017b; Frost et al., 2022), and it generates

slightly lower excess flux values than the kinematic correction

employed by Lockwood et al. (2014b). This raises all OSF

estimates, and a small rise in OSF estimates for early in the

20th century explains the change in the percent rise estimate.
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7 Long-term variations in the modern
grand maximum

Figures 1 and 2 use running boxcar averages over 11 years to

look at the long-term variations. However, because the solar

cycles are not exactly 11 years in duration, this gives a residual of

approximately 11-year period in the smoothed variations. In

addition, the variation in solar cycle durations means that

removing them completely using a low-pass filter causes

changes to the long-term variation. Lockwood and Frölich

(2007) devised a method to give the long-term variations

without this ripple nor the need to assume the solar cycle

duration. The boxcar running means are taken over a range

of interval durations τ between 8 and 14 years. Twice in each

solar cycle, these means form “nodes,”where their value is almost

the same for all τ. We take the average of the running means at

these nodes and interpolate between them using the piecewise

cubic hermite interpolating polynomial (PCHIP) interpolation.

Figure 13B shows the result for the (revised) international

sunspot number, RISN. The nodes are shown as yellow points,

and the interpolated variation is black. Note that the green line

(the boxcar smoothed variation for τ = 11 years) is always very

close to the black line, but its residual 11-year ripple has been

ironed out. The plot starts shortly after the emergence from the

Maunder minimum. Compared with the relatively quiet latest

values (〈RISN〉τ ≈ 20), we can see three clear maxima: one either

side of the Dalton minimum (peaks around 1782 and 1840) and

the 20th-century grand maximum that shows twin peaks (in

1951 and 1985, the former being the larger) and has similar

maximum values to the other two but lasts longer. The first of the

two peaks in the 20th century grand maximum is higher in

〈RISN〉. If we look at all peaks in sunspot number sequences, they

are in 1731, 1782, 1840, 1859, 1951, and 1985, giving separations

of 51, 58, 19, 92, and 34 years. Hence, it is hard to argue for a

regular period beyond the 11-year cycle.

The ISN data are annual mean values. These are available

from a full set of daily values for 1818 onward. Before 1818, there

are gaps in the daily series, but monthly means are still generated

from 1749 onward and annual means from 1700. Hence, the

sequence shown is not homogeneous in the data available. In

addition, sunspot observers, their apparatus, and their location

differ, and indeed, observers’ acuity may vary over time, for

example, improving with new instrumentation or decaying with

failing eyesight. For later years in the sequence, the mean of

observation distribution can be taken, but going back in time, the

sequence often relies on single observers, the results from whom

need calibration. However, at times, there is little overlap to allow

this calibration (Clette and Lefèvre, 2016; Muñoz-Jaramillo and

Vaquero, 2019). These calibrations are daisy-chained, and errors

in the regression between successive observers (see Lockwood

et al., 2016a) accumulate as one goes back in time. A method to

calibrate early data against one common standard was devised by

Usoskin et al. (2016) using “active day fractions” (ADFs, the

fraction of days on which a given observer detects sunspots),

FIGURE 12
The same as Figure 8 for the signed open solar flux (OSF) FS. The blue dots in part (A) and x-axis in part (B) are the values from satellite
observations that have been corrected using the excess flux. For 1995–2020, excess flux has been derived using strahl electrons by Frost et al. (2022),
but for 1966–1994, no suitable strahl data are available, and the values are kinematically corrected using themethod of Lockwood et al. (2009a), with
values adjusted using the linear regression with the strahl-corrected values for 1995–2020.
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which works well at moderate sunspot numbers but has

limitations at both low and high levels (Willamo et al., 2018).

Chatzistergos et al. (2017) used both daisy-chaining and ADFs to

generate a long sunspot number data series, RGC; they also used

group sunspot numbers, which, unlike RISN, means that the more

unreliable observations of individual spots are avoided.

Figure 13A shows the variation of 〈RGC〉, and it has

similarities—but also some noticeable differences—to RISN. In

particular, 〈RGC〉 is increasingly lower than 〈RISN〉 before about

1900, which means that for RGC, the MGSM is larger than the

previous maxima in amplitude as well as in integrated solar

activity level.

Parts C to H of Figure 13 show the smoothed variation of

other indices and reconstructed parameters in the same format as

Parts A and B. However, these do no extend back far enough to

compare with the peak before the Dalton minima, nor quite to

the peak of 〈RISN〉 in 1840, but they do show interesting

similarities and differences in behavior to both 〈RISN〉 and

FIGURE 13
Smoothed long-term data series showing the MGSM. These are generated by taking boxcar running means 〈RISN〉τ over intervals of duration τ
between 8 and 14 years. The yellow dots are “nodes,”where the spread of values for the different τ is a minimum (in many cases, zero) and the mean
value is taken. The black line is the PCHIP interpolation between the nodes. (A) the group sunspot number series compiled by Chatzistergos et al.
(2017), RGC; (B) the international sunspot number, RISN; (C) the IDV(1d) geomagnetic index; (D) the total area of sunspot groups AG from the
recalibrated dataset by Mandal et al. (2020); and (E) the homogeneous aaH index. Also shown are the new extended reconstructions presented in this
article: (F) the signed OSF, FS; (G) the near-Earth solar wind speed, VSW; and (H) the near-Earth IMF B. In each panel, the light-gray area is the least-
squares linear regression fit of the smoothed sunspot number variation 〈RISN〉, and the darker-gray area is the smoothed group sunspot number
variation 〈RGC〉 shown in parts (A) and (B) fitted to the data series in question.
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〈RGC〉 (shown linearly regressed to the parameter in question in

each panel by the light- and dark-gray areas, respectively).

Figure 13C presents the IDV(1d) index. The plot for IDV is

essentially identical (not shown), because the agreement of IDV

and IDV(1d) is so close (see the bottom panels of Figure 4). The

agreement between the long-term variations in 〈IDV(1d)〉 (and

hence also of 〈IDV〉) and the best linear regressions of 〈RISN〉
and 〈RGC〉 is extremely close but is less good for the earlier data.

This could potentially indicate that these two geomagnetic

sequences are in error at this time or the sunspot data are in

error, or both. However, we urge caution before drawing the

conclusion that there is an error in one or both of these data

sequences. Close inspection shows that the fall in group sunspot

numbers after 1985 has been slightly greater than that in sunspot

numbers, and hence, it may be a false assumption that the two

should agree that closely. Nevertheless, the divergence in the

earliest data is considerable. Figure 13C illustrates that the first

peak of the 20th-century grand maximum is the larger for

IDV(1d) (and so for IDV also) as it is for the sunspot

numbers. The earliest IDV(1d) data are more similar to RISN

than RGC.

Figure 13D presents the corresponding plot for the sunspot

group area 〈AG〉 composite of data from the Royal Greenwich

Observatory (RGO), solar optical observing network, and

Kislovodsk, Pulkovo, Debrecen, Kodaikanal, Rome, Catania,

and Yunnan observatories, which covers the period between

1874 and 2019 and was compiled and being intercalibrated by

Mandal et al. (2020). The group area 〈AG〉 shows the 20th-

century grand maximum and is very similar in amplitude and

form to that in the sunspot numbers. The agreement is very good

except for the very earliest AG data, which largely come

from RGO.

Figure 13E presents the variation for the aaH index, which

shows great agreement with the aaHN and aaHS subindices, with

the Potsdam/Seddin/Niemegk k-index composite and the IHV

index (see top panels of Figure 4), for which the corresponding

plot is therefore almost identical (not shown). However, the aaH
data, even with the Helsinki/St. Petersburg extension, do not

quite reach back to the peak in sunspot numbers in 1840, but the

1848 values do imply that this peak is not as pronounced for aaH
as for RISN and is more like RGC. Hence, where IDV(1d) is more

like RISN at this time, aaH is more like RGC, and so using the

geomagnetic data to try to discriminate between the two sunspot

records gives ambiguous results. However, the most interesting

feature is that the second of the 20th-century grand maximum

peaks in aaH is larger than the first, opposite to the sunspot data.

Looking at the reconstructed values, the reason is clear. The IMF

strength 〈B〉 (Figure 13H) and the OSF 〈FS〉 (Figure 13F) have

long-term variations that are very similar to those for the susnpot

numbers. In contrast, the solar wind velocity variation 〈VSW〉
(Figure 13G) is significantly different from those for the sunspot

numbers with a broader maximum and dominant peak in 1985.

So the dependence of aaH on V1.76
SW found in this study explains

why the second grand maximum peak is larger than the first for

〈aaH〉. The smoothed long-term variation 〈VSW〉 also shows low
values at the start of the reconstruction, potentially explaining

why the early values indicate that this peak in 〈aaH〉 is not as

pronounced as that in the sunspot number 〈RISN〉.

8 Discussion and conclusion

There are several important points to note about these

reconstructions. First, the fact that four independent

geomagnetic index pairings generate very similar

reconstructions of near-Earth IMF strength B, solar wind

velocity VSW, and OSF FS (demonstrated by Figures 8, 9, 12,

respectively) is highly significant. The fact that none of these

parameters depends in any way on how and where the

geomagnetic data are measured shows that the indices are

generally homogeneous in their calibration and accuracy. Note

that the indices can differ from each other, but after 1880, at least,

the very close similarities of the reconstructions eliminate the

possibility that any such differences are an error; in other words,

where the geomagnetic indices differ, they should differ, and

correcting them to agree with each other would be a retrograde

and erroneous step. It is worth noting that to reach this position,

we have had to allow for the effect of the geomagnetic latitudes of

the stations and how those latitudes have changed because of

secular change in the geomagnetic field. This has been done in

full for the aaH and IDV(1d) indices. The IDV index does make

allowance for the geomagnetic latitudes of stations but not for the

secular change in those geomagnetic latitudes; however, unlike

aaH and IDV(1d) (which use philosophy B in their construction,

i.e., daisy chaining of data series that have been corrected for the

effects of secular change in the intrinsic field), IDV uses a basket

of stations (philosophy A) that make it global in nature. This

works when there are sufficient stations in a uniform network

across the globe so that secular changes at one station are

counterbalanced by changes at others. We note that this

becomes increasingly less valid as we go back in time, and the

number of available magnetometer stations decreases.

Nevertheless, IDV and IDV(1d) agree to a remarkable extent

back to approximately 1880. Before then, we have more faith in

IDV(1d) because the lack of stations is exposing the weakness of

philosophy A when station numbers are low. For the IHV index,

Svalgaard and Cliver (2007) showed that the values did not

depend on latitude, as long as the stations were well away from

the auroral oval (below 55° geomagnetic latitude). Hence, no

correction for latitude was needed because stations that were well

removed from the auroral oval were chosen at all times.

The agreement between the four reconstructions for B, VSW,

and FS from the different index pairings shown here means that

we can move on from discussions about the accuracy of any of

these geomagnetic index data series and exploit the differences

between them to infer the behavior and different aspects of the
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Sun and near-Earth space. The only caveat to this relates to the

earliest geomagnetic data. We find very good agreement between

the reconstructions after 1880, which leaves a 48-year interval

between the advent of the first well-calibrated magnetometer (the

work of of Gauss in 1832) and the date when all the indices

become unambiguously fit for purpose (i.e., when all the

reconstructions based on them agree). For the earliest data,

philosophy A (using a basket of stations) is evidently

inadequate, and indices using philosophy B (using a well-

calibrated and stable station with model allowance for its

changing geomagnetic latitude) should be deployed.

Figure 14 presents a comparison of the reconstruction of

annual means in OSF presented here with some other recent

reconstructions. In Parts A, C, and D, the green and yellow

dashed lines indicate the previous reconstruction from

geomagnetic data by Lockwood et al. (2014b) (LEA14), the

mauve and cyan lines indicate the modeled reconstructions

from sunspot numbers by Krivova et al. (2021) (KEA21) and

Lockwood and Owens (2014) (L&O14), respectively. The pale-

mauve area indicates the reconstruction from the 14C cosmogenic

isotope by Usoskin et al. (2021) (UEA21) (which extends up to

1899). Figure 14B presents histograms of the annual values from

these reconstructions and emphasizes that the MGSM has given

unusually high OSF values. The reconstruction of UEA21, based

on 14C data from 1971 to 1899 gives a mode value considerably

lower than that observed for the more recent data. Comparison

with the reconstructions based on sunspot number (for after

1616) suggests that there were prior grand minima to 1616 that

were deeper than the Maunder minimum. The distribution of

reconstructed values presented here (for after 1844) has a higher

mode value than for the longer data series derived from 14C and

sunspot numbers, and for the spacecraft observation period, it is

higher still. The distributions for the spacecraft observations,

most of which were during the MGSM, contain the highest OSF

values in the last 1000 years, and hence, the space age and the

MGSM have been an interval of unusually high OSF.

The corrections to the open flux estimates made here (using a

better estimate of the excess flux from strahl electron

observations and the better allowance for the effects of the

Parker spiral gardenhose angle) have important effects. The

green and yellow dashed lines in Parts A and C of Figure

14 indicate that the optimum OSF reconstruction presented

FIGURE 14
Comparison of long-long–term reconstructions of signed OSF, FS. (A) time series. The black line indicates the reconstruction presented in this
article, with its ±2σ uncertainty band shaded in pink. The green and yellow dashed lines indicate the previous reconstruction from geomagnetic data
by Lockwood et al. (2014b) (LEA14), and the mauve and cyan lines are the modeled reconstructions from sunspot numbers by Krivova et al. (2021)
(KEA21) and Lockwood and Owens (2014) (L&O14), respectively. The pale-mauve area is the reconstruction from the 14C cosmogenic isotope
by Usoskin et al. (2021) (UEA21) (extends up to 1899). The annual means of the observations in the near-Earth heliosphere are indicated by blue dots.
Part (C) shows deviations from the ensemble median series presented in this article, ΔFS, presented using the same color scheme. Part (D) gives the
probability distributions of the ΔFS values, the numbers being the percentage of values that are within the ±2σ uncertainty band around zero. Part (B)
shows histograms of the complete FS datasets: the pale-mauve histogram is the UEA21 dataset (covers 971–1899); themauve histogram is the KEA21
series (1616–2017); the cyan histogram the L&O14 series (1616–2017); the orange histogram is the dataset presented in this article (1844–2020); and
the blue histogram is the spacecraft observations (1964–2019).
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here has slightly increased OSF values compared with the

previous estimates by Lockwood et al. (2014b). There has also

been a very slight decrease in the rise since 1900 introduced by

using the aaH index, with its allowance for the secular drift in the

geomagnetic latitude of the stations. The LEA14 values always lie

within the 2σ uncertainties of the present values. Figure 14A

shows that all reconstructions agree closely on the solar cycle and

long-term variations of OSF. The percentages of simultaneous

values that lie within the estimated uncertainties of the

reconstructions presented in this study are given in Part D;

they are 83% for the spacecraft observations, 71% for the

KEA17 reconstruction from sunspot numbers, 57% for the

L&O14 reconstructions from sunspot numbers, and 46% for

the UEA21 reconstruction from 14C (which ends before the start

of the MGSM).

Implementing the improvements detailed in this study, we

find the rise in solar activity levels in the 20th-century results in

solar cycle means of the OSF FS increasing from 2.46 × 1014Wb in

1906 to 4.10 × 1014Wb in 1949, at the peak of the MGSM. Hence,

we find that the rise in open flux was by a factor of 67%. It is

interesting to note that the peak OSF of the grand maximum

derived here is only slightly lower than those estimated by

(Lockwood et al., 1999) and by (Lockwood et al., 2014b).

However, the value for cycle 14 (around 1906) found here is

larger than those estimated in the aforementioned studies, and

this lowers the estimated percentage rise in OSF during the

MGSM. This is still considerably larger than the 25% rise

estimated by Svalgaard and Cliver (2005) and Svalgaard and

Cliver (2010), who actually discussed the near-Earth IMF B

rather than the OSF FS but did not acknowledge the

differences between these two parameters (Lockwood and

Owens, 2011). We here find that the solar cycle means in the

IMF B rose from 5.21 in 1901 to 7.63 nT in 1955, indicating a rise

of 46%. Lockwood et al. (2006) showed that the low estimate of

Svalgaard and Cliver (2005) for the rise in B was because of the

adoption of unsafe linear regression procedures.

The variations shown here are otherwise very similar to those

derived by Lockwood et al. (2014b), and the variations in the IMF

B and solar wind speed VSW are very similar indeed. Hence, the

addition of the solar cycle 24 data, where available, has

strengthened the correlations used but not changed these

results to any great extent. The slight reduction in the

amplitude of the MGSM on OSF was caused by the more

rigorous computation of the excess flux using strahl observations.

The variations confirm the similarity of the long-term

variations of the IMF and OSF and the sunspot numbers that

have been noted before and so give further confidence that OSF

modeling based on sunspot numbers (Solanki et al., 2000, 2002;

Mackay and Lockwood, 2002; Vieira and Solanki, 2010; Owens

and Lockwood, 2012; Lockwood and Owens, 2014; Owens et al.,

2017a; Krivova et al., 2021) are not missing a key external factor,

although some (small) adjustments of coefficients may be needed

to account for the adjusted OSF reconstruction presented here.

Mursula et al. (2017) suggested that the occurrence of low-

latitude coronal hole, and hence fast solar wind at Earth and the

consequent rise in average solar wind speed, is enhanced during

the declining phase of a grand maximum. Figure 14E supports

this as average flow speeds are indeed found to be enhanced

(relative to the average sunspot numbers) as the open flux

declines after the grand maximum. However, the same is true

in the rising phase, albeit to a smaller extent. A more detailed

study of the enhanced solar wind flow speed will be presented in

Paper II (Lockwood et al., 2022).

The reconstructions of the OSF from geomagnetic activity

provide a vital dataset for understanding the long-term

evolution of the solar atmosphere and the solar magnetic

cycle. In particular, like in situ measurements by satellites

in near-Earth orbit or in halo orbits around the L1 Lagrange

point, the geomagnetic data are measurements of the ecliptic

plane and so at low heliographic latitudes (between

approximately −7° and +7°) and usually in the streamer

belt. However, the results from the Ulysses mission show

that they have implications for the solar atmosphere and

inner heliosphere at all solar latitudes. This generalization

of localized measurements to a global solar value, such as the

OSF, may only be valid to first order, and it is probable that the

results from Solar Orbiter and Solar Probe will give

refinements that can be implemented. In addition, properly

joined-up numerical modeling of the solar atmosphere and

inner heliosphere offers great promise of improvements.

That being said, tests have shown that the Ulysses result is

certainly valid for computing the OSF to first order (Lockwood

et al., 2004; Owens et al., 2008; Lockwood and Owens, 2009), and

the reconstructions based on geomagnetic data have already been

vital. They extend back long enough to allow us to calibrate the

very long data series of cosmogenic abundance data in terms of

OSF (Usoskin et al., 2021). However, they also raise an interesting

dichotomy. The source surface OSF estimates derived from

remote photospheric magnetic field observations and

numerical modeling are typically a factor of two lower than

estimates derived from the in situ satellite and geomagnetic data

(Linker et al., 2017; Wallace et al., 2019). Observations of coronal

holes also lead to values that are smaller by a similar factor

(Lowder et al., 2014, 2017). OSF has been determined using a

number of modeling and observational methods. These range

from simple PFSS models (Altschuler and Newkirk, 1969;

Schatten et al., 1969; Wang and Sheeley, 1992) to complex

magnetohydrodynamic (MHD) coronal models (e.g., Lionello

et al., 2009). These methods are based on global magnetograms,

maps assembled from full-disk observations of the line-of-sight

photospheric field. The methods use a number of (different)

assumptions and pre-process the input photospheric data in

different ways. This can be crucial, for example, Wang and

Sheeley (1995) made PFSS and in situ OSF values consistent

by adopting a latitude-dependent saturation level for the

magnetograph data. However, this is just one of a large

Frontiers in Astronomy and Space Sciences frontiersin.org24

Lockwood et al. 10.3389/fspas.2022.960775

https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org
https://doi.org/10.3389/fspas.2022.960775


number of potential causes of the discrepancy (Stevens et al.,

2012). Recent observations by Parker Solar Probe indicate that

the discrepancy is not because of heliocentric distance in the

heliosphere: modeled and remotely sensed OSF values are also

too small than those derived from in situ observations closer to

the Sun (at heliocentric distances down to 0.13AU) (Badman

et al., 2021).

In Paper II (Lockwood et al., 2022), we look at how these results

from geomagnetic observations can be combined with long data

series of solar observations to gain a deeper understanding of the

long-term change in the solar corona and heliosphere during the rise

and fall of the MGSM. The reconstructed data series presented here

and the spacecraft interplanetary data are available in the

Supplementary Material attached to this study.
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