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Editorial on the Research Topic

Bioregenerative Life-Support Systems for Crewed Missions to the Moon

and Mars

The present decade may see the beginning of a sustainable human presence on the

Moon; the next may be that of humankind’s first steps on Mars. Such at least is the goal of

the leading space agencies (ISECG, 2018), and private companies—most publicized,

SpaceX—have stated related objectives (Musk, 2017).

Humans, of course, need a habitable environment and a wealth of consumables to

survive: food, water, oxygen and possibly medication, to name a few. As missions get

longer andmore remote, providing all these consumables from Earth becomes unrealistic:

launch costs, travel times, and risks of failure are critical obstacles. Bioregenerative life-

support systems (BLSS) are a highly promising way of addressing this limitation, even

more so if they can be combined with in situ resource utilization (ISRU). In the present

Research Topic, this is illustrated by Berliner et al., who argue for an integrated

biomanufacturing plant for resource production and recycling on Mars. They also

present associated challenges, goals, and example systems.

Despite extensive research performed over the last few decades, no BLSS project has

reached enoughmaturity to significantly increase the autonomy of even a small-sized base

on the Moon or Mars. Experience gained from long-running BLSS projects (e.g., ESA’s

MELiSSA project; Lasseur et al., 2010; Walker and Granjou, 2017) shows that their

development is a long-term process. Pragmatic efforts are thus needed presently for BLSS

to be ready whenMoon andMars missions would benefit from them. This Research Topic

aimed at stimulating such efforts.

Lunar and Martian BLSS will most likely include plants, which are necessary for food

production. In addition, they provide air revitalization and water purification capabilities

(e.g., Wheeler, 2010), and could be used for other functions including, for instance,

pharmaceutical production (McNulty et al., 2021). Accordingly, nine contributions to this
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Research Topic focus on plant cultivation. Johnson et al. review

NASA’s work toward the development of plant chambers for

supplemental, fresh food production in space. Such chambers

could be used in early missions, before on-site production covers

the crewmembers’ entire nutritional needs. Another facility, this

one at the University of Naples, is described by Pannico et al.

(with a higher focus on its atmosphere control system): the Plant

Characterization Unit, an environmentally-controlled chamber

for investigations on BLSS higher plant compartments. Poulet

et al. describe major challenges for space crop production, as

identified by the Kennedy Space Center, as well as NASA’s efforts

to overcome them.Medina et al. and Schuerger each focus on one

of these challenges. Medina et al. give an overview of the available

knowledge, and its gaps, on the influence of gravity levels below

1 g on the early development of plants. Schuerger argues that

pests and phytopathogens, common in terrestrial agriculture, will

be a concern in plant-supported missions to the Moon andMars;

he therefore outlines a first-order integrated pest management

program. Tack et al. introduce an additional challenge: their

results suggest that average ionizing radiation levels at the surface

of Mars could reduce plant productivity (but not germination),

although technical difficulties made conclusions hard to draw.

Handy et al. describe, rather than challenges, some opportunities:

those brought by plant growth promoting bacteria. They identify

promising ones, isolated from a crop production system aboard

the ISS. Finally, two articles pertain to the use of lunar and

Martian regolith as plant growth substrates. In the first, Duri et al.

describe regolith simulants previously used for cultivation

experiments, review these experiments, and discuss solutions

aimed at improving the suitability of simulants (and, possibly, of

actual lunar and Martian regolith) for agriculture. In the second,

Peyrusson presents preliminary results which suggest that

hydrogels could improve the water retention of Martian

regolith, thereby fostering germination and growth under low

irrigation regimes.

Whether or not they are directly associated with plants,

microorganisms are other likely components of lunar and

Martian BLSS. The roles they could fulfill include waste

processing, food production, atmosphere regeneration, the

production of drugs, fuels, biomaterials and various

industrially useful chemicals, metal leaching, and food

processing for taste improvement (e.g., Hendrickx and

Mergeay, 2007; Horneck, 2008)—in some cases after genetic

engineering (see for instance Cockell, 2011; Montague et al.,

2012; Menezes et al., 2014; Verseux et al., 2016). A number of

microbial species have been proposed and the complexity of the

targeted applications, as well as the variety of microbial

metabolisms, make it hard to select rationally the

microorganisms to be used. Averesch provides insights: he

compares microbial systems which could be suitable for ISRU

on Mars and sketches some classification schemes. He suggests,

for instance, that microbial systems can be sorted based on

carbon conversion: on whether carbon is directly converted

from an inorganic state to end products, or first fixed by

primary producers and then used as a substrate for secondary

producers. An example of the latter case is provided by Cestellos-

Blanco et al. They present a process aimed at producing PHB (a

biodegradable polyester whose material properties resemble that

of polyethylene, and which can be 3D-printed) from Mars’s

atmospheric CO2 in two steps, each carried by a separate

bacterium: CO2 is first used as feedstock to generate acetate,

which then serves as a substrate for PHB production.

While in the example given above the carbon fixer is an

acetogen, most microbial primary producers under consideration

are photosynthetic. Six articles of the present Research Topic

treat of such organisms. Fahrion et al. review experiments

performed with photobioreactors, over the past three decades,

in view of developing BLSS for human space exploration. They

also identify gaps in knowledge. Two articles focus on Limnospira

indica (formerly Arthrospira sp. PCC8005), the cyanobacterium

included in MELiSSA (Hendrickx et al., 2006). In the first,

Poughon et al. describe a mass-balanced mechanistic model

which can describe and predict its growth in photobioreactors

of various scales. In the second, Sachdeva et al. compare the

effects of three different nitrogen sources (nitrates, and the

prominent nitrogen forms in non-nitrified urine: urea and

ammonium) on its oxygen production rates, in a ground

demonstrator where the cyanobacterium revitalizes the air

breathed by a mouse. Results should help in assessing whether

the nitrification of urine fed to cyanobacteria can be skipped,

which could reduce the complexity of the MELiSSA loop. Detrell

writes on the potential of the eukaryotic microalga Chlorella

vulgaris (recently sent to the ISS for experiments on life support;

Detrell et al., 2020) as a BLSS component for food production and

air revitalization, as well as on the associated challenges. Cycil

et al. exposed five microalgal species, considered for food

production and air revitalization, to low total pressures (down

to 80 hPa) of high-CO2 atmospheres. The goal was to compare

the organisms’ tolerance for hypobaric conditions: relying on

lower-than-ambient pressures in photobioreactors could help

relax engineering constraints, and consequently the costs, of

microalgal cultivation on the Moon or Mars (Kanervo et al.,

2005; Verseux et al., 2021). Finally, Matula et al. assess the impact

of rapid temperature variation on the oxygen production of

temperate and psychrotolerant microalgae. Results will help in

assessing the feasibility of using culture media as a heat sink in

crewed spacecraft, thereby coupling air revitalization with

temperature control.

While carbon is certainly central to BLSS, as illustrated by the

many articles in this Research Topic which focus on organisms

capable of its fixation, nitrogen is another key element (see, e.g.,

Loader et al., 1997). Its recycling will most likely require

microorganisms, and so may its fixation from Mars’s

atmospheric N2: though abiotic fixation with the Haber-Bosch

process is being considered as well, the associated upmass and

energy consumption are high. Three articles address this theme.
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One is that of Sachdeva et al., already mentioned above. Another

is that of Langenfeld et al., who review approaches considered for

nitrogen fixation and recycling in BLSS. The third is that of

Verbeelen et al., who discuss nitrogen recovery from urine waste

streams (the main source of nitrogen in BLSS waste) and detail

the compartment which, within MELiSSA, performs such

functions.

Microbial capabilities on the Moon and Mars can go beyond

basic life support. In addition to the PHB production process

described by Cestellos-Blanco et al., this is exemplified by

Kozyrovska et al.: they discuss potential applications of

kombucha microbial communities beyond Earth that range

from the synthesis of health-promoting compounds to the

production of clothing materials.

Plants, bacteria and microalgae are not the only organisms

considered for lunar or Martian BLSS. Examples of proposed

elements include fungi (Cortesão et al., 2020), insects (Li et al.,

2015), and fish. Przybyla addresses the last. He discusses the

prospects of space aquaculture, reviews experiments with fish in

low Earth orbit, and describes Lunar Hatch: a project whose

contributors assess the feasibility of sending fish eggs to the

Moon for on-site hatching.

A number of concepts for BLSS elements have been described,

here and elsewhere, and promising proofs-of-concept have been

obtained. The next steps are highly challenging. Efforts are

nonetheless underway to test the integration of different

elements, or to assess the cost-efficiency of maturing BLSS

technologies. Garcia-Gragera et al., for instance, report recent

results from MELiSSA’s Pilot Plant, a ground-based

demonstrator whose focus is currently on the integration of

three elements: a nitrifying packed-bed bioreactor, an air-lift

photobioreactor for L. indica, and an animal isolator with rats

as a mock-up crew. McNulty et al. present an assessment, based

largely on equivalent system mass (a single metric accounting for

mass, volume, power, cooling and crew-time requirements; Levri

et al., 2003), of different strategies for the purification of

monoclonal antibodies. More broadly, they discuss paths

toward the development on-site pharmaceutical production

systems, as well as approaches to their evaluation. Finally, Irons

and Irons propose a framework to quantify the sustainability of

BLSS, after pointing out that, while BLSS are often seen as enablers

of sustainability beyond Earth, ways of formally quantifying

sustainability are lacking.

When proposing this Research Topic, we hoped that it would

both provide an overview of the field and lessons from past

efforts, as well as introduce innovative concepts and new results

that may find their way into mission designs. Thanks to the

enthusiasm of our colleagues who submitted manuscripts, and to

the diligence of the solicited reviewers, we hope that readers from

the broader scientific community will find that these objectives

have been met.
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