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The existence of a small, non-zero cosmological constant is one of the major

puzzles in fundamental physics. Naively, quantum field theory arguments would

imply a cosmological constant which is up to 10,120 times larger than the

observed one. It is believed a comprehensive theory of quantum gravity

would resolve this enormous mismatch between theory and observation. In

this work, we study the ability of generalized uncertainty principle (GUP)

models, which are phenomenologically motivated models of quantum

gravity, to address the cosmological constant problem. In particular, we

focus on how these GUP models may change the phase space of QFT, and

how this affects the momentum space integration of the zero-point energies of

normal modes of fields. We point out several issues that make it unlikely that

GUP models, in their current form, would be able to adequately address the

cosmological constant problem.

KEYWORDS

generalized uncertainty principle, cosmological constant, minimal length, vacuum
energy density, quantum vacuum

1 Introduction

A theory of quantum gravity, although not yet a reality, has been advertised as being

able to solve many of the ills of classical general relativity, such as the singularities that

occur in black hole and cosmological solutions (Penrose, 1965; Hawking and R Ellis,

1973). Quantum gravity is also supposed to resolve some of the issues surrounding the

results of applying quantum field theory in a curved space-time such as what happens to a

black hole at the end of evaporating via Hawking radiation (Hawking, 1975), and what

happens to the information stored in a black hole due to this evaporation (Susskind and

Lindesay, 2005).

The puzzle we address in this work is the apparent mismatch between the observed

cosmological constant and the theoretically calculated cosmological constant—a

conundrum known as the cosmological constant problem. This cosmological constant

problem has been known for a long time. A nice relatively recent review of the issue is

reference (Weinberg, 1989). The problem is that having a cosmological constant, Λ, is
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equivalent to having a constant energy density, ρvac, as a source in

the Einstein field equations. The relationship is (using the units

and notation of (Weinberg, 1989))

ρvac �
Λ

8πG
. (1)

The subscript vac comes from quantum field theory where

one obtains a constant vacuum energy density by adding up all

the energy zero modes of vacuum quantum fields. The zero

modes are given by 1
2 Zωp � 1

2Ep � 1
2

�������
�p
2 +m2

√
, and summing

these up to get the vacuum energy density yields

ρvac � ∫ d3p

2π( )3
1
2

�������
�p
2 +m2

√
� 1
2
∫pc

0

4π

2π( )3 dp p2
�������
p2 +m2

√
≈

p4
c

16π2 .
(2)

Note that p � | �p|, we use these notations interchangeably

throughout the rest of the paper. Since the integral is divergent,

we cut off the dp integration at some scale pc, which is usually

taken to be the Planck scale, pc ~ (8πG)−1/2. Using (2) gives ρvac ≈
2 × 1071 GeV4. In contrast, the measured vacuum energy density

(Zyla et al., 2020) is about ρvac ≈ 10–47 GeV4. The difference

between the theoretically calculated ρvac from (2) versus

experimentally measured ρvac is a difference of 118 orders of

magnitude. This massive discrepancy is the cosmological

constant problem. Even if one lowers the cut off scale to the

QCD scale of ΛQCD ~ 200 MeV, where we think we fully

understand QFT, one still gets a disagreement between theory

and experiment of 41 order of magnitude. Some drastic change in

our understanding of either QFT, general relativity, or both is

needed to resolve this puzzle.

2 Generalized uncertainty principle
and quantum gravity

One of the proposed resolutions to the cosmological constant

problem is a theory of quantum gravity, a catch-all solution to all

open problems in fundamental theoretical physics. In this work,

we utilize the phenomenological generalized uncertainty

principle (GUP) approach to quantum gravity. The GUP

approach to quantum gravity is a bottom up approach [in

contrast to the more top down approaches to quantum

gravity such as superstring theory (Polchinski, 1998) or loop

quantum gravity (Rovelli, 2008)]. There is a vast amount of

literature on GUP, with a few of the important representative

papers being (Veneziano, 1986; Amati et al., 1987; Gross and

Mende, 1987; Gross and Mende, 1988; Amati et al., 1988; Amati

et al., 1989; Amati et al., 1990; Maggiore, 1993; Garay, 1995;

Kempf et al., 1995; Adler and Santiago, 1999; Scardigli, 1999;

Adler et al., 2001). After this original burst of work on GUP there

were various other works, a sample of where can be found in

references (Myung et al., 2007; Zhu et al., 2009; Chemissany et al.,

2011; Das and Mann, 2011; Sprenger et al., 2011; Ali et al., 2015;

Anacleto et al., 2015; Garattini and Faizal, 2016) which further

developed this area of research. There are also some very recent

works (Tamburini and Licata, 2020; Fadel and Maggiore, 2022)

which deal with the algebraic and physical structure of spacetime

in connection with GUP.

The basic idea is that quantum gravity should modify the

standard position and momentum commutator of canonical

quantum mechanics from [x̂i, p̂j] � iδijZ to

[X̂i, P̂j] � iδijZf(x,p); with f (x, p) representing the effects of

quantum gravity. The capital X and P indicate that the position and

momentum operators are changed from their canonical form. A

common example that we will refer to often in this work is the

modified commutator of (Kempf et al., 1995) of the form

X̂i, p̂j[ ] � iδijZ 1 + β| �p|2( ) . (3)

In this model the position and momentum as given by

X̂i � iZ 1 + β| �p|2( ) z

zpi
and p̂i � pi , (4)

i.e., the position operator is modified but the momentum

operator is not. The constant β is a phenomenological

parameter that characterizes the scale at which quantum

gravity effects become important. Conventionally, it is thought

β should be of the Planck scale i.e. β ~ l2Pl
Z2
with lPl being the Planck

length. A full analysis of the system in Equations 3, 4 is given in

reference (Kempf et al., 1995), but for our purposes we recall two

important results for this particular GUP model:

• Equations 3, 4 have a minimum length of Δ| �x| � Z
��
β

√
at Δ| �p| � 1�

β
√

• In order for position and momentum operators to be

symmetric i.e. (〈ψ|pi)|ϕ〉 = 〈ψ|(pi|ϕ〉) and (〈ψ|xi)|ϕ〉 =

〈ψ|(xi|ϕ〉), the scalar product of this model needs to be

given by

〈ψ|ϕ〉 � ∫∞

−∞
d3p

1 + β| �p|2ψ
p p( )ϕ p( ). (5)

The modification of the scalar product as given by (5) is for

three dimensions, but in n dimensions one still has the same

modifying factor for the momentum integration, namely dnp

1+β| �p|2.
More generally, for a modified position operator of the form

X̂i � iZf | �p|2( ) z

zpi
, (6)

the scalar product must take the form

〈ψ|ϕ〉 � ∫∞

−∞
dnp

f | �p|2( )ψp p( )ϕ p( ) . (7)

These results from (5) and (7) will become important in the

next section.
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3 GUP and its effects on vacuum
energy calculations

3.1 Vacuum energy in KMM GUP

The main issue we want to examine is how GUP affects the

calculation of the vacuum energy and cosmological constant as

laid out in (1), (2), and the surrounding discussion. One of the

earliest and most impactful works dealing with the cosmological

constant problem in the context of GUPs is the work by Chang

et al. (Chang et al., 2002). In their work, the authors calculate how

the GUP, as defined by (3) and (4), modifies Liouville’s theorem

and the phase space volume, i.e. dnx dnp, in n spatial dimensions.

The modified phase space found in (Chang et al., 2002) for the

GUP from (3) and (4) is

dnx dnp

1 + β| �p|2( )n . (8)

The volume in (8) is integrated out (∫dnx → V). Upon

quantization, the claimed phase space volume from (Chang

et al., 2002) becomes

V dnp

2π( )n 1 + β| �p|2( )n . (9)

Recall we are using units with Z = 1 as consistent with

reference (Weinberg, 1989). Thus, to compare 9) with the result

in (Chang et al., 2002), one should replace the factor 2π by 2πZ in

the denominator above. Using the result in (9) for three spatial

dimensions, the calculation of ρvac via 2) changes to

ρvac � ∫ d3p

2π( )3 1 + β| �p|2( )3 12
�������
�p
2 +m2

√

� 1
2
∫∞

0

4π

2π( )3 dp
p2

�������
p2 +m2

√
1 + β| �p|2( )3 .

(10)

Since the integrand of (10) isO( 1
| �p|3) at large momentum, it is

convergent and does not need to have the dp integration capped

as in (2). One can integrate (10) exactly for any m (Chang et al.,

2002); for the sake of simplicity, when m = 0 (10) becomes

ρvac m � 0( ) � 1

16π2β2
. (11)

If one takes β to be of the Planck scale, then the result from

(11) still leaves the GUP modified vacuum energy to be about

118 orders of magnitude larger than the measured vacuum

energy of ρvac ≈ 10–47 GeV−4. In fact, by comparing 2) and 11)

and using dimensional analysis, one finds that β ~ p−2
c . Thus,

using the GUP cutoff factor of 1
(1+β| �p|2)3, while making ρvac finite,

still leaves ρvac much too large which fails to resolve the

cosmological constant problem. One has only replaced the “by

hand” cutoff in (2) with the functional cutoff of (10). This failure

of the GUP, defined by (3) and (4), to address the cosmological

constant puzzle was already noted in (Chang et al., 2002).

However, there may be an additional problem with the

integration over the momentum in (10): it appears to disagree

with the momentum integration from (Kempf et al., 1995), as

given by the definition of the scalar product in (5) or more

generally in (7). In the momentum space integration in (5), there

is only one factor of (1 + β| �p|2) in the denominator, as compared

to the denominator of (10), which has three factors of (1 + β| �p|2).
If one only had one factor of (1 + β| �p|2) in the denominator of

(10), as implied by (5), then the integrand would go asO(| �p|) and
would thus diverge.

The derivation of the phase space volume carried out in

(Chang et al., 2002) that gave the result in (8) is long, but straight

forward, so it is hard to see any problem with this result. On the

other hand, having a momentum space volume that has a factor

of (1 + β| �p|2)−n for the dnp integration would then violate the

symmetry of the position operator which is the requirement that

led to (5); that is if the momentum integration in (10) is correct

then this would imply (〈ψ|xi)|ϕ〉 ≠ 〈ψ|(xi|ϕ〉).
One potential solution to the difference in the integration

factors between 5) and 9) could be to reconsider the spatial/

volume calculation. In the transition from (8) to (9), it is

assumed that the real spatial volume with GUP is the same as

without GUP, that is, ∫dnx = V. The introduction of a minimal

length may change the calculation of volumes in some way. If

one could argue the n − 1 factors of (1 + β| �p|2) should go with

the dnx integration, this would leave the correct single factor of

(1 + β| �p|2) to go with the dnp integration. This would resolve

the discrepancy between 5) and (8). Ordinarily, all the factors

of (1 + β| �p|2) should fall under the dnp integration, but in the

GUP given by (3) and (4) one can see that the position

operator becomes dependent on the momentum. We

suggest that in spherical coordinates every length r should

carry with it a factor of (1 + β| �p|2)−1. The n dimensional

version of the GUP modified phase space given in (8)

should be written as

dnx

1 + β| �p|2( ) n−1( )
⎛⎜⎜⎝ ⎞⎟⎟⎠ dnp

1 + β| �p|2( )⎛⎝ ⎞⎠
� rn−1drdΩ

1 + β| �p|2( ) n−1( )
⎛⎜⎜⎝ ⎞⎟⎟⎠ dnp

1 + β| �p|2( )⎛⎝ ⎞⎠ .

(12)

For low energy/momentum, where β| �p|2 ≪ 1, the length will

not change much, but for high energy/momentum, where

β| �p|2 ≫ 1, the length is reduced. This way, the modified

momentum integration from the requirement of symmetry of

the position and momentum operators as given in (5) and the

GUP modified phase space of (8) now agree.

If the momentum space integration is now given by one

factor of (1 + β| �p|2), as implied by (12), rather than n factors as

implied by (9) or (10), then not only does the GUP of Equations
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3, 4 not solve the cosmological constant puzzle, as already

acknowledged in (Chang et al., 2002), but the cosmological

constant is not even finite. In the next subsection, we will

investigate a different GUP, which does give a finite

cosmological constant and examine to what extent this

different GUP can address the cosmological constant problem.

3.2 Alternative GUP and the associated
vacuum energy

From the generalized modified position operators of (6) and

the associated modified momentum integration in (7), one can

see that the integrand for ρvac will be of order O( | �p|3
f(| �p|)). Thus,

f(| �p|) must have a dependence of | �p|5 or higher for the integral
to be finite. One such GUP that meets this requirement is given in

the recent paper (Bishop et al., 2021) which has modified

operators in three spatial dimensions of the form

Xi � iZ cosh2 | �p|
pM

( )zpi ; Pi � pipM

| �p| tanh
| �p|
pM

( ) . (13)

From (6), we see that (13) implies f(| �p|) � cosh2(| �p|
pM
). Thus,

the GUP in (13) implies a vacuum energy density of

ρtanhvac � ∫ d3 p

2π( )3 cosh2 | �p|
pM

( )
1
2

���������
�P( )2 +m2

√

≈
1
2
∫∞

0

4π

2π( )3 dp
p2pM tanh

p

pM
( )

cosh2 p

pM
( )

(14)

which has an integrand that exponentially decays with

momentum. In (14) we set the rest mass equal to zero (m =

0), and used | �P| � | �p|pM

| �p| tanh(| �p|
pM
) � pM tanh( p

pM
). One can

evaluate the last expression exactly and this yields a finite answer

ρtanhvac � p4
M ln 2( )
4π2

. (15)

Thus, with this GUP model we do get a finite vacuum

energy density while maintaining symmetry of the position

and momentum operators. In contrast the GUP model given

by Equations 3, 4, has an infinite vacuum energy density

when only one power of 1 + β| �p|2 (as argued in this work) is

used in the denominator of the vacuum energy density (10).

Even for the GUP models like that in (13), where the vacuum

energy density is finite, the end conclusion is essentially the

same as for the vacuum energy density in (2) which is

obtained via a “by-hand” cutoff: both go as momentum to

the fourth power. Comparing the vacuum energy densities

from (2), (11), and (15), they all have essentially the same

form, with different notations for the momentum scale cut-

off. Thus, whether the vacuum energy is infinite and cut-off

“by-hand” or is finite due to using a GUP like (13), both these

models are equally ineffective at addressing the cosmological

constant problem.

4 Summary and conclusions

In this work, we have examined how the GUP may alter the

calculation of the vacuum energy density and the related

cosmological constant. In standard QFT, which was reviewed

in Introduction section, the vacuum energy diverges and must be

cut-off as in (2), which leads to a quartic dependence of the

vacuum energy density on the cut-off.

GUP models with their associated minimal length scales

provide a potential avenue to calculate a finite vacuum energy

density. Having a minimal length implies a maximum energy-

momentum which cuts off the divergence in the standard

vacuum energy density given in (2). An early work (Chang

et al., 2002) led to a finite vacuum energy density given by (10)

and (11). However, one of our points was to argue that the

calculation of the vacuum energy given in (Chang et al., 2002)

by (10) is inconsistent with the requirement that the position

and momentum operators are symmetric in GUP models such

as (Kempf et al., 1995). This symmetry requirement leads to an

integration over momentum as given in (5) for the GUP from

Equations 3, 4 or for a more general modified position as in

(7). Although, if one takes only a single factor of 1 + β| �p|2 in
the momentum integration used to calculate ρvac, then one

finds that the vacuum energy density from the GUP is not

finite, which conflicts with the results of (Chang et al., 2002)

which has n factors of 1 + β| �p|2. Alternatively, one can

preserve the symmetry of the position and momentum

operators, but then the vacuum energy density is infinite

for some GUPs like 3) and (4). In the present work, we

argued for the latter option, because when arriving at the

momentum integration measure of (10), one had to integrate

out the spatial volume, as is done in going from (8) to (9).

However, the implication is that one is treating the spatial

volume the same as in a theory with no minimal length. In

order to take into account the minimal length of the GUP, n −

1 of the n factors of 1 + β| �p|2 should correspond to the volume

integration to take into account the minimal length, leaving

one factor to go with the momentum integration.

In a larger sense, GUPs may not be able to resolve the

cosmological constant problem. We presented an GUP model

13) where the integrand in the vacuum energy density decayed

exponentially and led to a finite integral. However, this led to the

same quartic momentum behavior as the in “by-hand” cutoff of

(2) which were all essentially the same up tomultiplicative factors

of order one. Regardless, the end result for all the models is more

or less the same.

There may be a way for a GUP model to address the

cosmological constant problem by requiring the function
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f(| �p|), which gives the modification for the position operator,

take negative values for some range of | �p|. All the GUP

functions discussed here (i.e. 1 + βp2 or cosh (p/pM)) were

positive definite. In integrating the momentum from 0 up to

the QCD scale of ΛQCD ~ 200 MeV, one already had a huge

disagreement between the observed and theoretically

calculated vacuum energy density. To compensate for this

already large disagreement, a GUP function that is negative

for some range of | �p| beyond the QCD scale is needed to cancel

out the positive contribution from the low momentum part of

the integration. This is reminiscent of the supersymmetry

approach to the cosmological constant problem where the

positive bosonic contribution to the vacuuum energy density

is canceled by the negative fermionic contribution. Note, that

requiring f(| �p|) to be negative is similar to a parity

transformation �x → − �x but is an unusual parity

transformation in that it is not discrete but rather changes

continuously as momentum increases. In any case, this may

provide a fruitful new avenue for addressing the cosmological

constant problem with GUPs.
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