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In this short note we show how the Generalised Uncertainty Principle (GUP) and
the Extended Uncertainty Principle (EUP), two of the most common generalised
uncertainty relations proposed in the quantum gravity literature, can be derived
within the context of canonical quantum theory, without the need for modified
commutation relations. A generalised uncertainty principle-type relation naturally
emerges when the standard position operator is replaced by an appropriate Positive
Operator Valued Measure (POVM), representing a finite-accuracy measurement
that localises the quantum wave packet to within a spatial region σg > 0. This
length scale is the standard deviation of the envelope function, g, that defines
the positive operator valued measure elements. Similarly, an extended uncertainty
principle-type relation emerges when the standard momentum operator is
replaced by a positive operator valued measure that localises the wave packet
to within a region ̃σg > 0 in momentum space. The usual generalised uncertainty

principle and extended uncertainty principle are recovered by setting σg ≃ √ℏG/c3,
the Planck length, and ̃σg ≃ ℏ√Λ/3, where Λ is the cosmological constant.
Crucially, the canonical Hamiltonian and commutation relations, and, hence,
the canonical Schrödinger and Heisenberg equations, remain unchanged. This
demonstrates that generalised uncertainty principle and extended uncertainty
principle phenomenology can be obtained without modified commutators, which
are known to lead to various pathologies, including violation of the equivalence
principle, violation of Lorentz invariance in the relativistic limit, the reference frame-
dependence of the “minimum” length, and the so-called soccer ball problem for
multi-particle states.

KEYWORDS

generalised uncertainty relations, generalised uncertainty principle, extended uncertainty
principle, finite-accuracy measurements, POVM

1 Introduction

In canonical quantum mechanics the Heisenberg uncertainty principle (HUP)
implies a fundamental trade-off between the precisions of position and momentum

Frontiers in Astronomy and Space Sciences 01 frontiersin.org

https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org/journals/astronomy-and-space-sciences#editorial-board
https://doi.org/10.3389/fspas.2023.1087724
https://crossmark.crossref.org/dialog/?doi=10.3389/fspas.2023.1087724&domain=pdf&date_stamp=2021-10-15
mailto:matthewjlake@narit.or.th
https://doi.org/10.3389/fspas.2023.1087724
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fspas.2023.1087724/full
https://www.frontiersin.org/articles/10.3389/fspas.2023.1087724/full
https://www.frontiersin.org/articles/10.3389/fspas.2023.1087724/full
https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org/journals/astronomy-and-space-sciences#articles


Lake et al. 10.3389/fspas.2023.1087724

measurements. 1 It can be introduced heuristically, via the famous
Heisenberg microscope thought experiment, giving (Heisenberg,
1927; Heisenberg, 1930)

Δxi Δpj ≳
ℏ
2
δi j, (1.1)

or derived rigorously from the canonical quantum formalism, yielding
(Isham, 1995; Rae, 2002)

Δψx
i Δψpj ≥

ℏ
2
δi j. (1.2)

The inequality in Eq. 1.2 is exact and, unlike the heuristic uncertainties
Δxi and Δpj in Eq. 1.1, Δψx

i and Δψpj represent well-defined standard
deviations of the probability distributions |ψ(x)|2 and |ψ̃ℏ(p)|

2,
respectively, where themomentum space representation of the particle
wave function is given by the ℏ-scaled Fourier transform of its position
space representation:

ψ̃ℏ (p) = (
1
√2πℏ
)

3
∫ψ (x)e−

i
ℏ
p.xd3x. (1.3)

We emphasise the scale-dependence of the canonical quantumFourier
transform, which is often neglected in standard treatments, by
introducing the subscript ℏ. Eq. 1.2 is obtained by combining the
Schrödinger-Robertson relation for arbitrary Hermitian operators, Ô1
and Ô2 (Robertson, 1929; Schrödinger, 1930),

ΔψO1 ΔψO2 ≥
1
2
|⟨ψ| [Ô1, Ô2] |ψ⟩|, (1.4)

with the canonical position-momentum commutator,

[x̂i, p̂j] = iℏδ
i
j �̂�. (1.5)

In recent years, thought experiments in quantum gravity research
have suggested the existence of generalised uncertainty relations
(GURs). By reconsidering Heisenberg’s 1927 gedanken experiment,
and accounting for the gravitational interaction between the massive
particle and the probing photon, we obtain the generalised uncertainty
principle (GUP),

Δxi ≳ ℏ
2Δpj

δi j[1+ α0
2G
ℏc3
(Δpj)

2], (1.6)

where α0 is a numerical constant of order unity (Maggiore, 1993; Adler
and Santiago, 1999; Scardigli, 1999). By minimising the right-hand
side with respect to Δpj, the GUP implies the existence of a minimum
position uncertainty of the order of the Planck length, lPl = √ℏG/c3 ≃
10−33 cm.

Reconsidering Heisenberg’s arguments in the presence of
a constant dark energy density ρΛ = Λc

2/(8πG) ≃ 10–30 g.cm−3

(Riess et al., 1998; Perlmutter et al., 1999), or, equivalently, an
asymptotically de Sitter background with minimum scalar curvature
of the order of the cosmological constant, Λ ≃ 10–56 cm−2 (Ade et al.,

1 In classical error analysis the term “precision” is used to refer to the statistical
spread of the results whereas the term “accuracy” refers to the discrepancy
between the measured value of a quantity and its true value. In keeping with this
general usage, we use the term precision to refer to the quantum mechanical
uncertainty and accuracy to refer to the width of the error bars associated with
each individual measurement.

2014; Betoule et al., 2014), gives the extended uncertainty principle
(EUP),

Δpj ≳
ℏ

2Δxi
δi j [1+ 2η0Λ(Δx

i)2] , (1.7)

where η0 is of order one (Bolen and Cavaglia, 2005; Park, 2008; Bambi
and Urban, 2008). The EUP implies the existence of a minimum
momentum uncertainty of the order of the de Sitter momentum,
mdSc = ℏ√Λ/3 ≃ 10−56 g . cm s−1. This is physically reasonable since it
is the minimum momentum that a canonical quantum particle can
possess, when its wave function is localised within the asymptotic de
Sitter horizon, which is comparable to the present day radius of the
Universe rU(t0) ≃ ldS = √3/Λ ≃ 1028 cm.

Combining both effects yields the extended generalised
uncertainty principle (EGUP),

ΔxiΔpj ≳
ℏ
2
δi j[1+ α0

2G
ℏc3
(Δpj)

2 + 2η0Λ(Δx
i)2], (1.8)

which implies the existence of both minimum length and momentum
scales in nature (Bolen and Cavaglia, 2005; Park, 2008; Bambi
and Urban, 2008). Like their forebearer Eq. 1.1 all three relations
Eqs 1.6–1.8 are heuristic in nature and it remains an open problem
how to rigorously derive GURs from within a modified quantum
formalism.

Perhaps the simplest way to obtain the GUP, EUP or EGUP, given
Eq. 1.4, is to modify the canonical position-momentum commutator
Eq. 1.5 and it is clear that a modification of the form

[x̂i, p̂j] = iℏδ
i
j �̂� ↦ [X̂

i, P̂j]

= iℏδi j(�̂� + α0
2G
ℏc3
(P̂j)

2 + 2η0Λ (X̂
i)2) (1.9)

gives rise to an EGUP-type uncertainty relation, at least when
both ⟨P̂j⟩ψ = 0 and ⟨X̂i⟩ψ = 0 (Kempf et al., 1995). Here, we use
capital letters to denote modified operators, which generate modified
commutators, and lower case letters to denote their canonical
quantum counterparts. However, the assumption above is problematic
since, even if both ⟨P̂j⟩ψ = 0 and ⟨X̂i⟩ψ = 0 in a given frameof reference,
a simple shift of coordinate origin or a Galilean velocity boost of the
observer alters the numerical value of the associated Schrödinger-
Robertson bound:

ΔψX
iΔψPj ≥

ℏ
2
δi j{1+ α0

2G
ℏc3
[(ΔψPj)

2 + ⟨P̂j⟩
2
ψ
]

+ 2η0Λ [(ΔψX
i)2 + ⟨X̂i⟩2ψ]} . (1.10)

This leads immediately to the reference frame-dependence of the
(supposedly invariant) minimum length. In fact, the situation is even
worse since even a redefinition of the position-coordinate origin alters
the value of the bound on the right-hand side. This gives rise to a
coordinate-dependent “minimum” length, which is clearly unphysical,
and which strongly suggests that GUR models based on modified
commutation relations are not mathematically self-consistent (Lake,
2020; Lake et al., 2023).

In addition, the modified position-momentum commutator
Eq. 1.9 implies a modification of the canonical Heisenberg equation,
which immediately gives rise to mass-dependent accelerations for
quantum particles, violating the equivalence principle (Tawfik and
Diab, 2014; Tawfik and Diab, 2015). Such models also violate Lorentz
invariance in the relativistic limit and suffer from the so-called
soccer ball problem, so that sensible GUP-compatible multi-particle
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states cannot be defined (Hossenfelder, 2013; Amelino-Camelia,
2017) 2.

The heuristic, model-independent nature of the gedanken
experiments that lead to the relations Eqs. 1.6–1.8, together with
the pathologies displayed by modified commutator models, motivate
us to consider alternative ways to generate GUP, EUP, and EGUP
phenomenology,withoutmodifying the canonicalHeisenberg algebra.
In this paper, we consider one way in which such a scheme can
be implemented from within the canonical quantum formalism.
The physical basis of the model is the notion of a finite-accuracy
measurement and these are represented mathematically by the
construction of appropriate POVM. Roughly speaking, since errors
add in quadrature for independent random variables, finite-accuracy
measurements of position and momentum with detection “sweet
spots” of width σg ≃ lPl and σ̃g ≃mdSc, respectively, give rise to the
GUP and EUP, to first order in the relevant Taylor expansion. These
individual relations may then be combined to give the EGUP.

2 GUR from finite-accuracy
measurements described by POVM

In this section, we show that GUP, EUP and EGUP-type
uncertainty relations can be derived in an effective model, where
position and momentum measurements in canonical quantum theory
are not perfectly accurate, and are described by POVM, rather than
perfect projective measurements.

Let us begin by replacing the usual position-measurement
operator, x̂, with POVM elements corresponding to the result x:

Êx ≔ ∫g(x′ − x) |x′〉〈x′|d3x′, (2.1)

where g(x′ − x) is any normalised function, ∫|g(x′ − x)|2d3x′ = 1. These
elements satisfy the relations Ê†xÊx ≥ 0 and ∫ Ê†xÊxd3x = �̂�, as required,

2 In Amelino-Camelia (2017) an ingenious solution to the soccer ball problem was
proposed. In this approach, the generalised momentum operators of a given
modified commutator model are defined to be the generators of “generalised
spatial translations.” The unitary transformation Û(X) ≔ exp[(i/ℏ)X.P̂], which acts
non-trivially only on the X̂i operators, is required to leave the modified [X̂i, P̂j],
[X̂i, X̂j] and [P̂i, P̂j] algebras, as well as the multi-particle Hamiltonian of the
model, Ĥ, invariant. This defines the “generalised translation symmetries” of the
system and, when these symmetries hold, the corresponding Noether charge
for an N-particle state is represented by the operator P̂Total ≔∑

N
I=1
̂Pi, where

[P̂Total,Ĥ] = 0. The usual law of linear momentum addition therefore holds for
multi-particle states but a different non-linear addition law, derived ultimately
from the notion of spatial locality, holds for transfers of momentum between
individual particles, due to the interactions specified by Ĥ. Unfortunately for
GUP models, in the example system considered in Amelino-Camelia (2017),
the definition of the generalised spatial translations required to maintain the
linear addition law also requires one of the position-momentum commutators
to equal zero, i.e., [X̂i, P̂i] = 0, for some i. In this case there is no Heisenberg
uncertainty principle, let alone a GUP, even though a minimum length scale l still
appears in the model via the position-position commutator, e.g., [X̂1, X̂2] = ilX̂1.
This illustrates a general point, that it is by no means certain whether a particular
modified momentum operator, corresponding to a particular modification of
the canonical Heisenberg algebra, and, hence, a particular form of the GUP, is
compatible with a linear addition law derived via Amelino-Camelia’s procedure.
Therefore, although this procedure represents a useful criterion for defining
physically viable GUP models, it is clear that arbitrary deformations of the
canonical Heisenberg algebra are not consistent with the existence of a linear
momentum addition law and that further work is required to determine which
models truly suffer from a soccer ball problem and which ones do not. Though
some GUP models may be free from this pathology, a great many could still
be afflicted by it.

so that Eq. 2.1 defines a standard POVM in canonical quantum
mechanics (Nielsen and Chuang, 2000). From here on, we refer to g
as the “envelope function” of the measure. For spherically symmetric
functions the envelope is centred on the value x, and, for the sake
of concreteness, we may imagine |g(x′ − x)|2 as a three-dimensional
Gaussian distribution with mean x and standard deviation σg .

Finite-accuracy position measurements, conducted on an
arbitrary state |ψ⟩, then give rise to the first and second order
moments

〈Ex〉ψ = ∫x〈ψ|Ê
†
xÊx|ψ〉d3x = 〈x〉g + 〈x〉ψ,

〈E2
x〉ψ = ∫x2〈ψ|Ê†xÊx|ψ〉d3x = 〈x2〉g + 〈x2〉ψ, (2.2)

where ⟨xn⟩ f ≔ ∫x
n | f(x)|2 d3x with f(x) = g(x) or ψ(x). Since

|g(x′ − x)|2 is a normalised function centred on x′ = x, ⟨x⟩g = 0, and
the corresponding variance is given by

(ΔψEx)
2 = (Δψx)

2 + σ2
g , (2.3)

where σg ≔ σigei and σig denotes the width of |g|2 in each
coordinate direction xi. By spherical symmetry, σig = σg for
all i, and we may rewrite Eq. 2.3 in terms of the individual
components as

(ΔψEi)
2 = (Δψx

i)2 + σ2
g , (2.4)

where we have used the shorthand notation ΔψEi ≡ ΔψExi .
In like manner, finite-accuracy momentum measurements may be

introduced via the operators

�̂�p ≔ ∫ ̃g(p′ − p) |p′〉〈p′|d3p′, (2.5)

where ∫| ̃g(p′ − p)|2dp′ = 1, but it is important to note that there is no
intrinsic relation between the functions g and ̃g, which may be chosen
independently for a given POVM model. Nevertheless, if both |g|2

and | ̃g|2 represent Gaussian distributions, which is perhaps the most
natural choice for an envelope function, then g and ̃g are related via a
Fourier transform,

̃g(p′ − p) = ∫g(x′ − x)e
i
β
(x′−x).(p′−p)d3x′, (2.6)

where the new action scale β ≠ ℏ is given by

β≔ 2σgσ̃g, (2.7)

and σ̃g is the standard deviation of | ̃g|2. However, it is equally important
to note that there is nothing fundamental about the relation Eq. 2.6.
Unlike the ℏ-scaled Fourier transform relating the position and
momentum space representations of the quantum wave function,
Eq. 1.3, the β-scaled transform relates the “envelope functions” of the
model.

Finite-accuracy momentum measurements, conducted on an
arbitrary state |ψ⟩, then give rise to the first and second order
moments

〈𝔼p〉ψ = ∫p〈ψ|�̂�
†
p�̂�p|ψ〉d3p = 〈p〉g + 〈p〉ψ,

〈𝔼2p〉ψ = ∫p2〈ψ|�̂�†p�̂�p|ψ〉d3p = 〈p2〉g + 〈p2〉ψ, (2.8)
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where ⟨pn⟩ f ≔ ∫p
n | ̃f(p)|2 d3p with ̃f(p) = ̃g(p) or ψ̃ℏ(p). Since

| ̃g(p′ − p)|2 is normalised and centred at p′ = p, ⟨p⟩g = 0, and

(Δψ𝔼p)
2 = (Δψp)

2 + σ̃2
g , (2.9)

where σ̃g ≔ σ̃gjej and σ̃gj denotes the width of | ̃g|2 in each momentum
space direction pj. Again employing spherical symmetry, σ̃gj = σ̃g for
all j, Eq. 2.9 may be rewritten in terms of the individual components
as

(Δψ𝔼j)
2 = (Δψpj)

2 + σ̃2
g , (2.10)

where we have again used the shorthand Δψ𝔼j ≡ Δψ𝔼pj .
To obtain a GUP-type relation from Eq. 2.4 we simply take the

square root, Taylor expand the right-hand side to first order, and
substitute for Δψx

i from the HUP Eq. 1.2. Likewise, an EUP-type
relation is obtained from Eq. 2.10 by taking the square root, Taylor
expanding to first order, and substituting for Δψpj. Next, using the
substitutions

σg ≔√2α0 lPl, σ̃g ≔√6η0 mdSc, (2.11)

where

lPl ≔√ℏG/c3, mdSc≔ ℏ√Λ/3, (2.12)

immediately gives

ΔψX
i ≳ ℏ

2Δψpj
δi j[1+ α0

2G
ℏc3
(Δψpj)

2], (2.13)

ΔψPj ≳
ℏ

2Δψx
i δ

i
j [1+ 2η0Λ(Δψx

i)2] , (2.14)

where we have relabelled ΔψEi ≡ ΔψX
i and Δψ𝔼j ≡ ΔψPj, for

convenience.These expressions are formally analogous to the heuristic
relations, Eqs. 1.6, 1.7, respectively, but with Δpj and Δxi on the right
replaced by the well-defined standard deviations Δψpj and Δψx

i.
This proves that GUP- and EUP-type relations can be derived

rigorously, from within the canonical quantum formalism, but a
remaining criticism of the formulae above is that the uncertainties
on the right-hand sides of Eqs 2.13, 2.14 are not equivalent to the
uncertainties on the left. Indeed, according to the POVM model, Δψpj
and Δψx

i are not operationally observable quantities.They arise only in
the limits σg → 0 and σ̃g→ 0, respectively, inwhich bothEqs 2.13, 2.14
reduce to the standard HUP Eq. 1.2. This objection can be overcome,
however, by first substituting for Δψx

i from Eq. 1.2 in Eq. 2.4 and
then again for Δψpi from Eq. 2.10. This gives rise to an uncertainty
relation between the observable standard deviations, ΔψEi ≡ ΔψX

i and
Δψ𝔼j ≡ ΔψPj. It is straightforward to show that, taking the square root,
Taylor expanding to first order, and neglecting the final term of order
σgσ̃g ≃ lPl.mdSc, this relation reduces to

ΔψX
iΔψPj ≳

ℏ
2
δi j[1+ α0

2G
ℏc3
(ΔψPj)

2 + 2η0Λ(ΔψX
i)2]. (2.15)

Therefore, the EGUP can be rigorously derived within the canonical
quantum formalism. The GUP and EUP proper then arise as limits of
this more fundamental relation.

We stress that, in this model, ΔψEi ≡ ΔψX
i and Δψ𝔼j ≡ ΔψPj

represent the physically observable precisions, obtained from
generalised position and momentum measurements with finite

accuracies σg > 0 and σ̃g > 0. By contrast, the canonical Hamiltonian
is determined by the canonical (projective) position and momentum
operators, x̂ and p̂, via Ĥ = p̂2/(2m) +V(x̂), where the former obey the
canonical Heisenberg algebra: [x̂i, p̂j] = iℏδ

i
j �̂�, [x̂

i, x̂j] = 0, [p̂i, p̂j] = 0.
This leaves the canonical Heisenberg and Schrödinger equations
unchanged and neatly evades the pathologies that afflict modified
commutator models (Lake, 2020; Hossenfelder, 2013; Tawfik and
Diab, 2014; Tawfik and Diab, 2015; Lake et al., 2023).

3 Discussion

We have shown that the three most common GURs studied in the
quantum gravity literature, the GUP, EUP, and EGUP, can be derived
from within the formalism of canonical quantum mechanics. A GUP-
type uncertainty relation is obtained when the standard (projective)
position operator is replaced by an appropriate POVM, representing
finite-accuracy measurements with error bars of width σg > 0 in real
space. In like manner, an EUP-type relation is obtained from finite-
accuracy measurements with error bars of width σ̃g > 0 in momentum
space. These can be combined to give a relation that is formally
analogous to the EGUP and the standard EGUP is recovered by setting
σg ≃ lPl, the Planck length, and σ̃g ≃mdSc, where mdS = (ℏ/c)√Λ/3 is
the de Sitter mass.

Thiswork suggests thatGUP, EUP, andEGUPphenomenology can
be understood in a physically intuitive way, as a simple and natural
outcome of finite-accuracy measurements. Such measurements are
capable of generating all three GURs and the same phenomenology
is obtained, at the level of the uncertainty relations, regardless of
whether the limits (ΔψX

i)
min
= σg and (ΔψPj)min

= σ̃g are fundamental,
or merely effective, as an outcome of an imperfect measurement
scheme.

We propose that this should give pause for thought to the GUP
community. If modified commutators are not necessary for GUP
phenomenology, and, after nearly 30 years of research, we are no
closer to resolving the pathologies that have afflicted these models
since they were first proposed in the mid-1990s, then serious attempts
should be made to find alternative mathematical structures that give
rise to GURs. These should be capable of generating, via rigorous
derivation, the uncertainty relations predicted by model-independent
gedanken experiments, but without the problems associated with
modified commutation relations.

In this paper, we have proposed one suchmodel, within the context
of canonical quantum theory. Another, more radical, alternative is
to consider additional quantum mechanical degrees of freedom, not
present in the canonical theory, which are capable of describing
quantum fluctuations of the background geometry. Such a model
was proposed in a recent series of works (Lake, 2019; Lake et al.,
2019; Lake et al., 2020; Lake, 2021a; Lake, 2021b) and shares many
features with the model described here, including the existence of a
new action scale that relates the accuracies of generalised position and
momentum measurements, β≔ 2σgσ̃g ≃ 10−61ℏ (*). The fundamental
difference between the two models is the existence of new degrees of
freedom in the latter. From this, it follows that the new action scale β
implies a modified de Broglie relation of the form p′ = ℏk+ β(k′ − k),
where, here, p′ denotes the observable momentum. Heuristically, the
non-canonical term β(k′ − k) can be interpreted as an additional
momentum “kick,” transferred to the canonical wave function by
a quantum fluctuation of the background. The interested reader is
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referred to (Lake, 2020; Lake, 2019; Lake et al., 2019; Lake et al., 2020;
Lake, 2021a; Lake, 2021b; Lake et al., 2023) for further details.

At first glance, this more radical alternative has nothing to do
with the POVM approach described here. It requires extra degrees
of freedom associated with the quantum state of the background
geometry, contrary to the POVM formalism, which remains entirely
within the context of canonical quantum theory. It follows from
Stinespring’s dilation theorem (Stinespring, 1955; Paulsen, 2003),
however, that the two formalisms are equivalent if we assume the
particular values, σg ≃ lPl and σ̃g ≃mdSc, and hence the relation (*)
above. The POVM picture results from tracing out the x′ (p′) degrees
of freedom associated with quantum fluctuations of the background
and the x′ (p′) degrees of freedom appear as a consequence of dilating
the POVM.

The POVM approach describes a quantum measurement of finite
accuracy. The minimum resolution of the measurement may be due
to technical limitations, or it can reflect the fact that the minimum
length and momentum scales are fundamentally related. We postulate
that in a universe with both fundamental and technological limitations
to measurement accuracy, the complete description of a realistic
quantum measurement should be a POVM extension of the model
presented in (Lake, 2019; Lake et al., 2019). We expect that this
would give rise to two additional contributions to the position and
momentum variances, i.e., σ2

g + σ2
h and σ̃2

g + σ̃2
h, respectively, where

g is the fundamental smearing function that models the quantum
indeterminacy of space-time, and h is the envelope function of a
realistic detector. In the limit σh ≫ σg , σ̃h ≫ σ̃g, which corresponds to
all present-day measurements, the latter are expected to dominate the
former.
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